Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In silico Exploration of Dakshina Kannada Medicinal Plants as Anti- SARS-CoV-2 Agents by Molecular Docking and Simulation Approaches

Author(s): Jainey P. James*, Divya Jyothi*, Vinod Devaraji and Sneh Priya

Volume 20, Issue 10, 2023

Published on: 27 August, 2022

Page: [1544 - 1556] Pages: 13

DOI: 10.2174/1570180819666220429161808

Price: $65

Abstract

Aims: The rich ethnomedicinal practices of Dakshina Kannada have received considerable attention, and many treatment methods have been documented. This work aimed to explore the traditional medicinal plants originating from Dakshina Kannada for their anti-SARS-CoV-2 activity by employing in silico methodologies.

Methods: Virtual screening of Dakshina Kannada's plants was conducted, which are known for their antiviral activities. Potent plants were shortlisted as Tinospora cordifolia, Nyctanthes arbortristis, Bacopa monnieri, Bombax ceiba, and Curcuma longa based on molecular docking scores. Among these, the active plant Tinospora cordifolia possessed the most potent phytochemicals. Molecular dynamics (MD) simulation and MM/GBSA calculations have been performed on cordifolioside A, syringin, and cordioside.

Results: Initially, the selected plants were docked into the active site of SARS-CoV-2 protein. MD simulations were performed to investigate the various conformations and validate the docking results, revealing that cordifolioside A and syringin were more stable than cordioside. The stability of the phytoconstituents in complex with SARS-CoV-2 protein was steady throughout the 100 ns simulation time. Finally, the binding free energies were calculated using the MM/GBSA method. The pharmacophore model has confirmed the hydrogen bond interactions, and PASS prediction determined their antiviral activities.

Conclusion: Thus, the present study identified the most potent plant from Dakshina Kannada against the SARS-CoV-2 virus as Tinospora cordifolia with powerful phytochemicals (cordifolioside A, syringin and cordioside). Furthermore, in vitro and in vivo experiments are needed to provide experimental data to develop anti-SARS-CoV-2 drugs.

Keywords: Dakshina Kannada, SARS-CoV-2, molecular docking, molecular dynamics, MM/GBSA

Graphical Abstract

[1]
Keni, R.; Alexander, A.; Nayak, P.G.; Mudgal, J.; Nandakumar, K. COVID-19: Emergence, spread, possible treatments, and global burden. Front. Public Health, 2020, 8, 216.
[http://dx.doi.org/10.3389/fpubh.2020.00216] [PMID: 32574299]
[2]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Anti-Coronavirus vaccines: Past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under development against SARS-CoV-2 infection. Curr. Med. Chem., 2021, 29(1), 4-18.
[http://dx.doi.org/10.2174/0929867328666210521164809] [PMID: 34355678]
[3]
Prussia, A.; Thepchatri, P.; Snyder, J.P.; Plemper, R.K. Systematic approaches towards the development of host-directed antiviral therapeutics. Int. J. Mol. Sci., 2011, 12(6), 4027-4052.
[http://dx.doi.org/10.3390/ijms12064027] [PMID: 21747723]
[4]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[5]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Vlietinck, A.J.; Vanden Berghe, D.A. Can ethnopharmacology contribute to the development of antiviral drugs? J. Ethnopharmacol., 1991, 32(1-3), 141-153.
[http://dx.doi.org/10.1016/0378-8741(91)90112-Q] [PMID: 1652667]
[7]
Jassim, S.A.; Naji, M.A. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol., 2003, 95(3), 412-427.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02026.x] [PMID: 12911688]
[8]
Vicidomini, C.; Roviello, V.; Roviello, G.N. In silico investigation on the interaction of chiral phytochemicals from Opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry (Basel), 2021, 13(6), 1041.
[http://dx.doi.org/10.3390/sym13061041]
[9]
Vicidomini, C.; Roviello, V.; Roviello, G.N. Molecular basis of the therapeutical potential of clove (Syzygium aromaticum L.) and clues to its anti-COVID-19 utility. Molecules, 2021, 26(7), 1880.
[http://dx.doi.org/10.3390/molecules26071880] [PMID: 33810416]
[10]
Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. Forest-bathing and physical activity as weapons against COVID-19: A review. Environ. Chem. Lett., 2022, 20, 131-140.
[http://dx.doi.org/10.1007/s10311-021-01321-9] [PMID: 34566548]
[11]
Roviello, V.; Roviello, G.N. Less COVID-19 deaths in southern and insular Italy explained by forest bathing, Mediterranean environment, and antiviral plant volatile organic compounds. Environ. Chem. Lett., 2021, 1-11.
[http://dx.doi.org/10.1007/s10311-021-01309-5] [PMID: 34483793]
[12]
Roviello, V.; Roviello, G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett., 2022, 20, 7-17.
[http://dx.doi.org/10.1007/s10311-020-01063-0] [PMID: 32837486]
[13]
Naidu, L.G.; Srinivas, S.; Kumar, S.C. Characterising soil and climatic constraints for sustainable forest development in Karnataka using Remote Sensing and Geographic Information System. J. Indian Soc. Soil Sci., 2009, 57(2), 101-108.
[14]
Prajapati, R.C. Biodiversity of Karnataka at a Glance; Karnataka Biodiversity Board: Karnataka, India, 2010.
[15]
Jose, M.; Sharma, B.B.; Shantaram, M.; Ahmed, S.A. Ethnomedicinal herbs used in oral health and hygiene in coastal Dakshina Kannada. J. Oral Health Community Dent., 2011, 5(3), 119-123.
[http://dx.doi.org/10.5005/johcd-5-3-119]
[16]
Bhandary, M.J.; Chandrashekar, K.R. Diversity and use of ethnomedicinal plants in coastal Karnataka, India. Biodiversitas (Surak.), 2014, 15(1), 89-93.
[http://dx.doi.org/10.13057/biodiv/d150113]
[17]
Harsha, V.H.; Hebbar, S.S.; Shripathi, V.; Hegde, G.R. Ethnomedicobotany of Uttara Kannada District in Karnataka, India--plants in treatment of skin diseases. J. Ethnopharmacol., 2003, 84(1), 37-40.
[http://dx.doi.org/10.1016/S0378-8741(02)00261-1] [PMID: 12499074]
[18]
Tabassum, N.; Hamdani, M. Plants used to treat skin diseases. Pharmacogn. Rev., 2014, 8(15), 52-60.
[http://dx.doi.org/10.4103/0973-7847.125531] [PMID: 24600196]
[19]
Policepatel, S.S.; Manikrao, V.G. Ethnomedicinal plants used in the treatment of skin diseases in Hyderabad Karnataka region, Karnataka, India. Asian Pac. J. Trop. Biomed., 2013, 3(11), 882-886.
[http://dx.doi.org/10.1016/S2221-1691(13)60173-2]
[20]
Hegde, H.V.; Hegde, G.R.; Kholkute, S.D. Herbal care for reproductive health: Ethno medicobotany from Uttara Kannada district in Karnataka, India. Complement. Ther. Clin. Pract., 2007, 13(1), 38-45.
[http://dx.doi.org/10.1016/j.ctcp.2006.09.002] [PMID: 17210510]
[21]
Balamurugan, S.; Vijayakumar, S.; Prabhu, S.; Morvin Yabesh, J.E. Traditional plants used for the treatment of gynaecological disorders in Vedaranyam taluk, South India - An ethnomedicinal survey. J. Tradit. Complement. Med., 2017, 8(2), 308-323.
[http://dx.doi.org/10.1016/j.jtcme.2017.06.009] [PMID: 29736387]
[22]
Bhandary, M.J.; Chandrashekar, K.R. Treatment for poisonous snake-bites in the ethnomedicine of coastal Karnataka. J. Med. Aromat. Plant Sci., 2000, 22(4a), 505-510.
[23]
Upasani, S.V.; Beldar, V.G.; Tatiya, A.U.; Upasani, M.S.; Surana, S.J.; Patil, D.S. Ethnomedicinal plants used for snakebite in India: A brief overview. Integr. Med. Res., 2017, 6(2), 114-130.
[http://dx.doi.org/10.1016/j.imr.2017.03.001] [PMID: 28664135]
[24]
Chikhale, R.V.; Sinha, S.K.; Patil, R.B.; Prasad, S.K.; Shakya, A.; Gurav, N. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J. Biomol. Struct. Dyn., 2021, 39(14), 5033-5047.
[http://dx.doi.org/10.1080/07391102.2020.1784289] [PMID: 32579064]
[25]
Faccin-Galhardi, L.C.; Yamamoto, K.A.; Ray, S.; Ray, B.; Carvalho Linhares, R.E.; Nozawa, C. The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus. J. Ethnopharmacol., 2012, 142(1), 86-90.
[http://dx.doi.org/10.1016/j.jep.2012.04.018] [PMID: 22855945]
[26]
Borkotoky, S.; Banerjee, M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J. Biomol. Struct. Dyn., 2021, 39(11), 4111-4121.
[http://dx.doi.org/10.1080/07391102.2020.1774419]
[27]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[28]
Kim, H.J.; Yoo, H.S.; Kim, J.C.; Park, C.S.; Choi, M.S.; Kim, M.; Choi, H.; Min, J.S.; Kim, Y.S.; Yoon, S.W.; Ahn, J.K. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol., 2009, 124(2), 189-196.
[http://dx.doi.org/10.1016/j.jep.2009.04.046] [PMID: 19409970]
[29]
Ichsyani, M.; Ridhanya, A.; Risanti, M.; Desti, H.; Ceria, R.; Putri, D.H.; Sudiro, T.M.; Dewi, B.E. December. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo. IOP Conf. Ser. Earth Environ. Sci., 2017, 101, 012005.
[http://dx.doi.org/10.1088/1755-1315/101/1/012005]
[30]
Tewtrakul, S.; Subhadhirasakul, S.; Cheenpracha, S.; Karalai, C. HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phytother. Res., 2007, 21(11), 1092-1095.
[http://dx.doi.org/10.1002/ptr.2252] [PMID: 17696192]
[31]
Pongtuluran, O.B.; Rofaani, E. Antiviral and immunostimulant activities of Andrographis paniculata. Hayati J. Biosci., 2015, 22(2), 67-72.
[http://dx.doi.org/10.4308/hjb.22.2.67]
[32]
Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci., 2010, 72(5), 546-556.
[http://dx.doi.org/10.4103/0250-474X.78519] [PMID: 21694984]
[33]
Murali, K.S.; Sivasubramanian, S.; Vincent, S.; Murugan, S.B.; Giridaran, B.; Dinesh, S.; Gunasekaran, P.; Krishnasamy, K.; Sathishkumar, R. Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac. J. Trop. Med., 2015, 8(5), 352-358.
[http://dx.doi.org/10.1016/S1995-7645(14)60343-6] [PMID: 26003593]
[34]
Balasubramanian, G.; Sarathi, M.; Venkatesan, C.; Thomas, J.; Hameed, A.S. Oral administration of antiviral plant extract of Cynodon dactylon on a large scale production against white spot syndrome virus (WSSV) in Penaeus monodon. Aquaculture, 2008, 279(1-4), 2-5.
[http://dx.doi.org/10.1016/j.aquaculture.2008.03.052]
[35]
Gupta, A.; Chaphalkar, S. Antimicrobial studies of Ficus benghalensis and Ficus racemosa on pathogenic viral diseases. Adv. Herbal Med., 2016, 2(3), 5-12.
[36]
Calligari, P.; Bobone, S.; Ricci, G.; Bocedi, A. Molecular investigation of SARS–CoV-2 proteins and their interactions with antiviral drugs. Viruses, 2020, 12(4), 445.
[http://dx.doi.org/10.3390/v12040445] [PMID: 32295237]
[37]
James, J.P.; Kumar, P.; Kumar, A.; Bhat, K.I.; Shastry, C.S. In silico anticancer evaluation, molecular docking and pharmacophore modeling of flavonoids against various cancer targets. Lett. Drug Des. Discov., 2020, 17(12), 1485-1501.
[http://dx.doi.org/10.2174/1570180817999200730164222]
[38]
Kodical, D.D.; James, J.P.; Deepthi, K.; Kumar, P.; Cyriac, C.; Gopika, K.V. ADMET, Molecular docking studies and binding energy calculations of Pyrimidine-2-Thiol Derivatives as Cox Inhibitors. Res. Pharm. Technol., 2020, 13(9), 4200-4206.
[http://dx.doi.org/10.5958/0974-360X.2020.00742.8]
[39]
James, J.P.; Jyothi, D.; Priya, S. In silico screening of phytoconstituents with antiviral activities against SARS-COV-2 main Protease, Nsp12 Polymerase, and Nsp13 Helicase proteins. Lett. Drug Des. Discov., 2021, 18(8), 841-857.
[http://dx.doi.org/10.2174/1570180818666210317162502]
[40]
James, J.P. Apoorva; Monteiro, S.R.; Sukesh, K.B.; Varun, A. Design and identification of lead compounds targeting nipah g attachment glycoprotein by in silico approaches. J. Pharm. Res. Int., 2021, 33(40A), 156-169.
[http://dx.doi.org/10.9734/jpri/2021/v33i40A32232]
[41]
Ravikumar, K.; Vijayasankar, R.; Murugan, R.; Goraya, G.S.; Begum, S.N. Photo Guide to Selected Medicinal Plants of Karnataka; Foundation for Revitalisation of local Health Tradition: Bangalore,, 2009.
[42]
Schrödinger.. Schrödinger Release 2020-2; LLC: New York, NY, 2020.
[43]
Schrödinger. LigPrep. Schrödinger Release 2020-2; LLC: New York, NY,, 2020.
[44]
Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The crystal structure of COVID-19 main protease in complex with an inhibitor N3. Protein DataBank, 2020. Available from: https://www.ncbi.nlm.nih.gov/Structure/pdb/6LU7
[45]
Schrodinger.. Glide. Schrödinger Release 2020-2; LLC: New York,NY, 2020.
[46]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[47]
Schrödinger, Desmond. Schrödinger Release 2020-2;, LLC: New York, NY,. 2020. Available from: https://www.schrodinger.com/products/desmond
[48]
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A. Scalable algorithms for molecular dynamics simulations on commodity clusters. ACM/IEEE Conf. Supercomput, 2006, pp. 43-43.
[http://dx.doi.org/10.1109/SC.2006.54]
[49]
Schrödinger. Prime. Schrödinger Release 2020-2, LLC: New York,NY,. 2020. Available from: https://www.schrodinger.com/products/prime
[50]
Schrödinger. Phase. Schrödinger Release 2020-2, LLC: New York,NY,. 2020. Available from: https://www.schrodinger.com/products/phase
[51]
Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des., 2006, 67(5), 370-372.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00384.x] [PMID: 16784462]
[52]
Schrödinger. QikProp. Schrödinger Release 2020-2, LLC: NewYork, NY. 2020. Available from: https://www.schrodinger.com/products/qikprop
[53]
Mittal, M.; Goel, R.K.; Bhargava, G.; Mahajan, M.P. PASS-assisted exploration of antidepressant activity of 1,3,4-trisubstituted-β-lactam derivatives. Bioorg. Med. Chem. Lett., 2008, 18(20), 5347-5349.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.064] [PMID: 18835165]
[54]
Poroikov, V.V.; Filimonov, D.A.; Ihlenfeldt, W.D.; Gloriozova, T.A.; Lagunin, A.A.; Borodina, Y.V.; Stepanchikova, A.V.; Nicklaus, M.C. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J. Chem. Inf. Comput. Sci., 2003, 43(1), 228-236.
[http://dx.doi.org/10.1021/ci020048r] [PMID: 12546557]
[55]
Sharmila, D.J.S.; Blessy, J.J.; Subramanian, K.S.; Gunasekaran, K.; Uthandi, S. Molecular docking and dynamics studies on the protein-protein interactions of electrically active pilin nanowires of Geobacter Sulfurreducens. J. Proteins Proteom., 2017, 8(2), 93-103.
[56]
Ranjith, MS; Ranjitsingh, AJA; Shankar, SG; Vijayalaksmi, GS; Deepa, K; Sidhu, HS Enhanced phagocytosis and antibody production by Tinospora cordifolia-A new dimension in immunomodulation. African J. Biotechnol, 2008, 7(2), 081-085.
[57]
Alsuhaibani, S.; Khan, M.A. Immune-stimulatory and therapeutic activity of Tinospora cordifolia: Double-edged sword against salmonellosis. J. Immunol. Res., 2017, 2017, 1787803.
[http://dx.doi.org/10.1155/2017/1787803] [PMID: 29318160]
[58]
Nair, P.K.; Rodriguez, S.; Ramachandran, R.; Alamo, A.; Melnick, S.J.; Escalon, E.; Garcia, P.I., Jr; Wnuk, S.F.; Ramachandran, C. Immune stimulating properties of a novel polysaccharide from the medicinal plant Tinospora cordifolia. Int. Immunopharmacol., 2004, 4(13), 1645-1659.
[http://dx.doi.org/10.1016/j.intimp.2004.07.024] [PMID: 15454117]
[59]
Akhtar, S. Use of Tinospora cordifolia in HIV infection. Indian J. Pharmacol., 2010, 42(1), 57.
[http://dx.doi.org/10.4103/0253-7613.62402] [PMID: 20606842]
[60]
Saikia, S.; Bordoloi, M.; Sarmah, R.; Kolita, B. Antiviral compound screening, peptide designing, and protein network construction of influenza a virus (strain a/Puerto Rico/8/1934 H1N1). Drug Dev. Res., 2019, 80(1), 106-124.
[http://dx.doi.org/10.1002/ddr.21475] [PMID: 30276835]
[61]
Saha, P.S.; Sarkar, S.; Jeyasri, R.; Muthuramalingam, P.; Ramesh, M.; Jha, S. In vitro propagation, phytochemical and neuropharmacological profiles of Bacopa monnieri (L.) Wettst.: A review. Plants, 2020, 9(4), 411.
[http://dx.doi.org/10.3390/plants9040411] [PMID: 32224997]
[62]
Rege, A.; Chowdhary, A.S. Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIV protease inhibitors. Int. J. Pharm. Sci. Rev. Res., 2014, 25, 315-318.
[63]
Saha, S.; Ghosh, S. Tinospora cordifolia: One plant, many roles. Anc. Sci. Life, 2012, 31(4), 151-159.
[http://dx.doi.org/10.4103/0257-7941.107344] [PMID: 23661861]
[64]
Namthabad, S.; Mamidala, E. Molecular Docking of HIV-1 Protease using Alkaloids from Tinospora cordifolia. Int. J. Res. Appl., 2014, 1(1), 12-16.
[http://dx.doi.org/10.17812/IJRA.1.1(3)2014]
[65]
Puri, A.; Saxena, R.; Saxena, R.P.; Saxena, K.C.; Srivastava, V.; Tandon, J.S. Immunostimulant activity of Nyctanthes arbor-tristis L. J. Ethnopharmacol., 1994, 42(1), 31-37.
[http://dx.doi.org/10.1016/0378-8741(94)90020-5] [PMID: 8046941]
[66]
Gupta, P.; Bajpai, S.K.; Chandra, K.; Singh, K.L.; Tandon, J.S. Antiviral profile of Nyctanthes arbortristis L. against encephalitis causing viruses. Indian J. Exp. Biol., 2005, 43(12), 1156-1160.
[PMID: 16359127]
[67]
Jain, P.K.; Pandey, A. The wonder of Ayurvedic medicine-Nyctanthes arbortristis. Int. J. Herb. Med., 2016, 4(4), 9-17.
[68]
Wang, G.K.; Lin, B.B.; Rao, R.; Zhu, K.; Qin, X.Y.; Xie, G.Y.; Qin, M.J. A new lignan with anti-HBV activity from the roots of Bombax ceiba. Nat. Prod. Res., 2013, 27(15), 1348-1352.
[http://dx.doi.org/10.1080/14786419.2012.740032] [PMID: 23140388]
[69]
Tundis, R; Rashed, K; Said, A; Menichini, F; Loizzo, MR In vitro cancer cell growth inhibition and antioxidant activity of Bombax ceiba (Bombacaceae) flower extracts. Nat. Prod. Commun, 2014, 9(5), 1934578X1400900527.
[http://dx.doi.org/ 10.1177/1934578X1400900527]
[70]
Ti, H.; Mai, Z.; Wang, Z.; Zhang, W.; Xiao, M.; Yang, Z.; Shaw, P. Bisabolane-type sesquiterpenoids from Curcuma longa L. exert anti-influenza and anti-inflammatory activities through NF-κB/MAPK and RIG-1/STAT1/2 signaling pathways. Food Funct., 2021, 12(15), 6697-6711.
[http://dx.doi.org/10.1039/D1FO01212F] [PMID: 34179914]
[71]
Dao, T.T.; Nguyen, P.H.; Won, H.K.; Kim, E.H.; Park, J.; Won, B.Y.; Oh, W.K. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem., 2012, 134(1), 21-28.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.015]
[72]
Wan, S.; Bhati, A.P.; Zasada, S.J.; Coveney, P.V. Rapid, accurate, precise and reproducible ligand-protein binding free energy prediction. Interface Focus, 2020, 10(6), 20200007.
[http://dx.doi.org/10.1098/rsfs.2020.0007] [PMID: 33178418]

© 2024 Bentham Science Publishers | Privacy Policy