Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Evaluation of the In Vitro Antimicrobial Activities of Delphinium roylei: An Insight from Molecular Docking and MD-Simulation Studies

Author(s): Wajahat Rashid Mir, Basharat Ahmad Bhat, Abdullah Almilaibary, Syed Mohammed Basheeruddin Asdaq and Manzoor Ahmad Mir*

Volume 18, Issue 10, 2022

Published on: 02 June, 2022

Page: [1109 - 1121] Pages: 13

DOI: 10.2174/1573406418666220429093956

Price: $65

Abstract

Ethnopharmacological Relevance: The burden of antimicrobial resistance demands a continued search for new antimicrobial drugs. The synthetic drugs used clinically have serious side effects. Natural products or compounds derived from natural sources show diversity in structure and play an essential role in drug discovery and development.

Objective: Delphinium roylei is an important medicinal herb of Kashmir Himalaya, India. Traditionally this medicinal plant treats liver infections, skin problems, and chronic lower back pain. The current study evaluates the antimicrobial potential of various extracts by in -vitro and in -silico studies.

Methods: Three extracts and 168 bioactive compounds analysed through LC-MS data, with the vast majority of them having therapeutic applications. D. roylei have been screened for the antimicrobial activity against bacteria (Escherichai coli, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungi (Candida albicans, Candida glabrata, Candida paropsilosis) species through molecular docking using autodock Vina, MD simulation and a broth microdilution method for minimum inhibitory concentration (MIC) evaluation.

Results: The extracts and the compounds analyzed through the LC-MS technique of Delphinium roylie showed significant antimicrobial activity.

Conclusion: Our study established that the leaf extracts of Delphinium roylei exhibit antimicrobial activity and thus confirm its importance in traditional medicine.

Keywords: Delphinium roylei, medicinal herb, antimicrobial, delsoline, docking analysis, molecular dynamic simulation, Mycobacterium luteus, Klebsiella pneumoniae.

Graphical Abstract

[1]
Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci., 2022, 170, 106103.
[http://dx.doi.org/10.1016/j.ejps.2021.106103] [PMID: 34936936]
[2]
Mir, M.A. Developing costimulatory molecules for immunotherapy of diseases; Academic Press, 2015.
[3]
Mousavi, S.M.; Babakhani, S.; Moradi, L.; Karami, S.; Shahbandeh, M.; Mirshekar, M.; Mohebi, S.; Moghadam, M.T. Bacteriophage as a novel therapeutic weapon for killing colistin-resistant multi-drug-resistant and extensively drug-resistant gram-negative bacteria. Curr. Microbiol., 2021, 78(12), 4023-4036.
[http://dx.doi.org/10.1007/s00284-021-02662-y] [PMID: 34633487]
[4]
Sheikh, B.A.; Bhat, B.A.; Mehraj, U.; Mir, W.; Hamadani, S.; Mir, M.A. Development of new therapeutics to meet the current challenge of drug resistant tuberculosis. Curr. Pharm. Biotechnol., 2021, 22(4), 480-500.
[http://dx.doi.org/10.2174/1389201021666200628021702] [PMID: 32600226]
[5]
Sheikh, B.A.; Bhat, B.A.; Ahmad, Z.; Mir, M.A. Strategies employed to evade the host immune response and the mechanism of drug resistance in Mycobacterium tuberculosis: In search of finding new targets. Curr. Pharm. Biotechnol., 2022. [Epub ahead]
[http://dx.doi.org/10.2174/1389201023666211222164938] [PMID: 34951359]
[6]
Hafeez, S.; Urooj, M.; Saleem, S.; Gillani, Z.; Shaheen, S.; Qazi, M.H.; Naseer, M.I.; Iqbal, Z.; Ansari, S.A.; Haque, A.; Asif, M.; Mir, M.A.; Ali, A.; Pushparaj, P.N.; Jamal, M.S.; Rasool, M. BAD, a Proapoptotic protein, Escapes ERK/RSK phosphorylation in Deguelin and siRNA-treated Hela cells. PLoS One, 2016, 11(1), e0145780.
[http://dx.doi.org/10.1371/journal.pone.0145780] [PMID: 26745145]
[7]
Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 2019, 9(11), 258.
[http://dx.doi.org/10.3390/metabo9110258] [PMID: 31683833]
[8]
O. World Health. WHO global report on traditional and complementary medicine 2019; World Health Organization, 2019.
[9]
Mir, M.A.; Mehraj, U.; Sheikh, B.A. Recent advances in chemotherapeutic implications of deguelin: A plant-derived retinoid. Nat. Prod. J., 2021, 11(2), 169-181.
[http://dx.doi.org/10.2174/2210315510666200128125950]
[10]
Mir, M.A.; Hamdani, S.S.; Sheikh, B.A.; Mehraj, U. Recent advances in metabolites from medicinal plants in cancer prevention and treatment. Curr. Immunol. Rev., 2019, 15(2), 185-201.
[http://dx.doi.org/10.2174/1573395515666191102094330]
[11]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[12]
Agnihotri, P.; Jena, S.N.; Husain, D.; Husain, T. Perspective of the genus Delphinium linnaeus (Ranunculaceae) in India. Pleione, 2014, 8(2), 344-352.
[13]
Sharma, P.K.; Singh, V. Ethnobotanical studies in northwest and Trans-Himalaya. V. Ethno-veterinary medicinal plants used in Jammu and Kashmir, India. J. Ethnopharmacol., 1989, 27(1-2), 63-70.
[http://dx.doi.org/10.1016/0378-8741(89)90078-0] [PMID: 2615427]
[14]
Kumar, S.; Hamal, I. A. Herbal remedies used against arthritis in Kishtwar high altitude National Park, 2011.
[15]
Ulubelen, A. Royleinine, a new norditerpenoid alkaloid from Delphinium roylei. Heterocycles, 2000, 53(10), 2279-2283.
[http://dx.doi.org/10.3987/COM-00-9010]
[16]
Parajuli, R. Delphinium brunonianum Royle Delphinium himalayae Munz Delphinium roylei Munz Delphinium vestitum Wall. ex Royle. In: Ethnobotany of the Himalayas. Ethnobotany of mountain Regions; Kumar, R.M.; Sher, H.; Bussmann, R.W., Eds.; Springer: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-45597-2_79-1]
[17]
Shu, H.; Chen, H.; Wang, X.; Hu, Y.; Yun, Y.; Zhong, Q.; Chen, W.; Chen, W. Antimicrobial activity and proposed action mechanism of 3-Carene against Brochothrix thermosphacta and Pseudomonas fluorescens. Molecules, 2019, 24(18), 3246.
[http://dx.doi.org/10.3390/molecules24183246] [PMID: 31489899]
[18]
Li, X.; Li, N.; Sui, Z.; Bi, K.; Li, Z. An investigation on the quantitative structure-activity relationships of the anti-inflammatory activity of diterpenoid alkaloids. Molecules, 2017, 22(3), 363.
[http://dx.doi.org/10.3390/molecules22030363] [PMID: 28264454]
[19]
Ahrens, F.B. Staphisagroin, ein neues Alkaloid. Ber. Dtsch. Chem. Ges., 1899, 32(2), 1581-1584.
[http://dx.doi.org/10.1002/cber.18990320238]
[20]
Liu, X-Y.; Wang, F-P.; Qin, Y. Synthesis of three-dimensionally fascinating diterpenoid alkaloids and related diterpenes. Acc. Chem. Res., 2021, 54(1), 22-34.
[http://dx.doi.org/10.1021/acs.accounts.0c00720] [PMID: 33351595]
[21]
Yin, T.; Cai, L.; Ding, Z. An overview of the chemical constituents from the genus Delphinium reported in the last four decades. RSC Advances, 2020, 10(23), 13669-13686.
[http://dx.doi.org/10.1039/D0RA00813C]
[22]
Pitt, J.J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev., 2009, 30(1), 19-34.
[PMID: 19224008]
[23]
Bhat, G.; Shawl, A.S.; Shah, Z.; Tantry, M. HPLC-DAD-ESI-MS/MS identification and characterization of major constituents of Iris cro-cea, Iris germanica and Iris spuria growing in Kashmir Himalayas, India. J. Anal. Bioanal. Tech., 2014, 5(6), 1.
[http://dx.doi.org/10.4172/2155-9872.1000223]
[24]
Lone, A.M.; Rather, M.A.; Bhat, M.A.; Bhat, Z.S.; Tantry, I.Q.; Prakash, P. Synthesis and in vitro evaluation of 2-(((2-ether)amino)methylene)-dimedone derivatives as potential antimicrobial agents. Microb. Pathog., 2018, 114, 431-435.
[http://dx.doi.org/10.1016/j.micpath.2017.12.022] [PMID: 29233781]
[25]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Bryant, S.H. PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 2009, 37(suppl_2), W623-W633.
[http://dx.doi.org/10.1093/nar/gkp456]
[26]
Schrödinger, L.L.C. The PyMOL molecular graphics system, version 1.8 2015.
[27]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[28]
Li, F.; Wang, H.; Wang, Y.; Feng, S.; Hu, B.; Zhang, X.; Wang, J.; Li, W.; Cheng, M. Computational investigation reveals Picrasidine C as selective PPARα lead: Binding pattern, selectivity mechanism and ADME/tox profile. J. Biomol. Struct. Dyn., 2020, 38(18), 5401-5418.
[http://dx.doi.org/10.1080/07391102.2019.1699861] [PMID: 31787028]
[29]
Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9(1), 71.
[http://dx.doi.org/10.1186/1741-7007-9-71] [PMID: 22035460]
[30]
El Sayed, A.M.; Basam, S.M.; El-Naggar, E.B.A.; Marzouk, H.S.; El-Hawary, S. LC-MS/MS and GC-MS profiling as well as the antimicro-bial effect of leaves of selected Yucca species introduced to Egypt. Sci. Rep., 2020, 10(1), 17778.
[http://dx.doi.org/10.1038/s41598-020-74440-y] [PMID: 33082381]
[31]
Lotfaliani, M.; Ayatollahi, S.A.; Kobarfard, F.; Ghanadian, M.; Pour, P.M. Chemistry, biological activities and toxic effects of alkaloidal constituents of genus Delphinium-A mini review. J. Herbmed. Pharmacol., 2021, 10(4), 486-499.
[http://dx.doi.org/10.34172/jhp.2021.56]
[32]
Arulmozhi, P.; Vijayakumar, S.; Kumar, T. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb. Pathog., 2018, 123, 219-226.
[http://dx.doi.org/10.1016/j.micpath.2018.07.009] [PMID: 30009969]
[33]
Tripathee, H.P.; Sharma, R.P.; Timilsina, Y.P.; Pathak, R.; Devkota, K.P. An assessment of ethnomedicinal use, chemical constituents analysis and bioactivity evaluation on high altitude medicinal plant Delphinium brunonianum of Manang district. Nepal J. Sci. Technol., 2011, 12, 111-118.
[http://dx.doi.org/10.3126/njst.v12i0.6488]
[34]
Fernández, M.A.; García, M.D.; Sáenz, M.T. Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophu-laria sambucifolia. J. Ethnopharmacol., 1996, 53(1), 11-14.
[http://dx.doi.org/10.1016/0378-8741(96)01419-5] [PMID: 8807471]
[35]
Baydar, N.G.; Özkan, G. Sağdiç, O. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control, 2004, 15(5), 335-339.
[http://dx.doi.org/10.1016/S0956-7135(03)00083-5]
[36]
Bruning, J.B.; Murillo, A.C.; Chacon, O.; Barletta, R.G.; Sacchettini, J.C. Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob. Agents Chemother., 2011, 55(1), 291-301.
[http://dx.doi.org/10.1128/AAC.00558-10] [PMID: 20956591]
[37]
Miyachiro, M.M.; Contreras-Martel, C.; Dessen, A. Penicillin-binding proteins (PBPs) and bacterial cell wall elongation complexes. In: Macromolecular Protein Complexes II; Structure and Function, 2019; pp. 273-289.
[http://dx.doi.org/10.1007/978-3-030-28151-9_8]
[38]
Achari, A.; Somers, D.O.; Champness, J.N.; Bryant, P.K.; Rosemond, J.; Stammers, D.K. Crystal structure of the anti-bacterial sulfona-mide drug target dihydropteroate synthase. Nat. Struct. Biol., 1997, 4(6), 490-497.
[http://dx.doi.org/10.1038/nsb0697-490] [PMID: 9187658]
[39]
Lange, R.P.; Locher, H.H.; Wyss, P.C.; Then, R.L. The targets of currently used antibacterial agents: Lessons for drug discovery. Curr. Pharm. Des., 2007, 13(30), 3140-3154.
[http://dx.doi.org/10.2174/138161207782110408] [PMID: 17979755]
[40]
Harvey, K.L.; Jarocki, V.M.; Charles, I.G.; Djordjevic, S.P. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front. Microbiol., 2019, 10, 2351.
[http://dx.doi.org/10.3389/fmicb.2019.02351] [PMID: 31708880]
[41]
Wolf, H.; Chinali, G.; Parmeggiani, A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc. Natl. Acad. Sci. USA, 1974, 71(12), 4910-4914.
[http://dx.doi.org/10.1073/pnas.71.12.4910] [PMID: 4373734]
[42]
Prezioso, S.M.; Brown, N.E.; Goldberg, J.B. Elfamycins: Inhibitors of elongation factor-Tu. Mol. Microbiol., 2017, 106(1), 22-34.
[http://dx.doi.org/10.1111/mmi.13750] [PMID: 28710887]
[43]
Zeng, Y.; Charkowski, A.O. The role of ATP-binding cassette transporters in bacterial phytopathogenesis. Phytopathology, 2021, 111(4), 600-610.
[http://dx.doi.org/10.1094/PHYTO-06-20-0212-RVW] [PMID: 33225831]
[44]
Pogue, R.; Murphy, E.J.; Fehrenbach, G.W.; Rezoagli, E.; Rowan, N.J. Exploiting immunomodulatory properties of beta-glucans derived from natural products for improving health and sustainability in aquaculture-farmed organisms: Concise review of existing knowledge, in-novation and future opportunities. Curr. Opin. Environ. Sci. Health, 2021, 21, 100248.
[http://dx.doi.org/10.1016/j.coesh.2021.100248]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy