[1]
Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on Machine learning. New york; USA: ICML Res: 2028, 160-7.
[http://dx.doi.org/10.1145/1390156.1390177]
[http://dx.doi.org/10.1145/1390156.1390177]
[2]
Girshick R. Fast r-cnn. Proceedings of the IEEE international conference on computer vision 2015; 1440-8.
[3]
Ding Y, Lei X, Liao B, Wu F-X. Machine learning approaches for predicting biomolecule-disease associations. Brief Funct Genomics 2021; 20(4): 273-87.
[http://dx.doi.org/10.1093/bfgp/elab002] [PMID: 33554238]
[http://dx.doi.org/10.1093/bfgp/elab002] [PMID: 33554238]
[4]
Morgan E. Modeling the rate of senescence: Can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci 2013; 68(6): 667-74.
[http://dx.doi.org/10.1093/gerona/gls233]
[http://dx.doi.org/10.1093/gerona/gls233]
[5]
Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature 2018; 561(7721): 45-56.
[http://dx.doi.org/10.1038/s41586-018-0457-8] [PMID: 30185958]
[http://dx.doi.org/10.1038/s41586-018-0457-8] [PMID: 30185958]
[6]
Richard J. The genomic loci of specific human tRNA genes exhibit ageing-related dna hypermethylation. Nat Commun 2021; 12(1): 1-14.
[PMID: 33397941]
[PMID: 33397941]
[7]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[8]
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14(10): R115.
[http://dx.doi.org/10.1186/gb-2013-14-10-r115] [PMID: 24138928]
[http://dx.doi.org/10.1186/gb-2013-14-10-r115] [PMID: 24138928]
[9]
Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 2016; 8(3): 389-99.
[http://dx.doi.org/10.2217/epi.15.114] [PMID: 26673039]
[http://dx.doi.org/10.2217/epi.15.114] [PMID: 26673039]
[10]
Mikeska T, Craig JM. DNA methylation biomarkers: Cancer and beyond. Genes (Basel) 2014; 5(3): 821-64.
[http://dx.doi.org/10.3390/genes5030821] [PMID: 25229548]
[http://dx.doi.org/10.3390/genes5030821] [PMID: 25229548]
[11]
Angermueller C, Heather J, Reik W, Stegle O. Deepcpg: Accurate prediction of single-cell dna methylation states using deep learning. Genome Biol 2017; 18(1): 1-13.
[PMID: 28077169]
[PMID: 28077169]
[12]
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018; 19(6): 371-84.
[http://dx.doi.org/10.1038/s41576-018-0004-3] [PMID: 29643443]
[http://dx.doi.org/10.1038/s41576-018-0004-3] [PMID: 29643443]
[13]
Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018; 10(4): 573-91.
[http://dx.doi.org/10.18632/aging.101414] [PMID: 29676998]
[http://dx.doi.org/10.18632/aging.101414] [PMID: 29676998]
[14]
Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 2015; 16(1): 25.
[http://dx.doi.org/10.1186/s13059-015-0584-6] [PMID: 25633388]
[http://dx.doi.org/10.1186/s13059-015-0584-6] [PMID: 25633388]
[15]
Freije JM, López-Otín C. Reprogramming aging and progeria. Curr Opin Cell Biol 2012; 24(6): 757-64.
[http://dx.doi.org/10.1016/j.ceb.2012.08.009] [PMID: 22959961]
[http://dx.doi.org/10.1016/j.ceb.2012.08.009] [PMID: 22959961]
[16]
Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013; 49(2): 359-67.
[http://dx.doi.org/10.1016/j.molcel.2012.10.016] [PMID: 23177740]
[http://dx.doi.org/10.1016/j.molcel.2012.10.016] [PMID: 23177740]
[17]
Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA methylation clocks in aging: Categories, causes, and consequences. Mol Cell 2018; 71(6): 882-95.
[http://dx.doi.org/10.1016/j.molcel.2018.08.008] [PMID: 30241605]
[http://dx.doi.org/10.1016/j.molcel.2018.08.008] [PMID: 30241605]
[18]
Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 2019; 11(2): 303-27.
[http://dx.doi.org/10.18632/aging.101684] [PMID: 30669119]
[http://dx.doi.org/10.18632/aging.101684] [PMID: 30669119]
[19]
Kresovich JK, Xu Z, O’Brien KM, Weinberg CR, Sandler DP, Taylor JA. Methylation-based biological age and breast cancer risk. J Natl Cancer Inst 2019; 111(10): 1051-8.
[http://dx.doi.org/10.1093/jnci/djz020] [PMID: 30794318]
[http://dx.doi.org/10.1093/jnci/djz020] [PMID: 30794318]
[20]
Marioni RE, Shah S, McRae AF, et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol 2015; 44(4): 1388-96.
[http://dx.doi.org/10.1093/ije/dyu277] [PMID: 25617346]
[http://dx.doi.org/10.1093/ije/dyu277] [PMID: 25617346]
[21]
Nevalainen T, Kananen L, Marttila S, et al. Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clin Epigenetics 2017; 9(1): 20.
[http://dx.doi.org/10.1186/s13148-016-0301-7] [PMID: 28289477]
[http://dx.doi.org/10.1186/s13148-016-0301-7] [PMID: 28289477]
[22]
Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging (Albany NY) 2015; 7(12): 1130-42.
[http://dx.doi.org/10.18632/aging.100859] [PMID: 26655927]
[http://dx.doi.org/10.18632/aging.100859] [PMID: 26655927]
[23]
Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY) 2015; 7(12): 1198-211.
[http://dx.doi.org/10.18632/aging.100864] [PMID: 26684672]
[http://dx.doi.org/10.18632/aging.100864] [PMID: 26684672]
[24]
Horvath S, Langfelder P, Kwak S, et al. Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY) 2016; 8(7): 1485-512.
[http://dx.doi.org/10.18632/aging.101005] [PMID: 27479945]
[http://dx.doi.org/10.18632/aging.101005] [PMID: 27479945]
[25]
McCrory Cathal, Fiorito Giovanni, Hernandez Belinda, Polidoro Silvia. Grimage outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. The Journals of Gerontology 2021; 76(5): 741-9.
[26]
Joshua J, Titus AJ, Petersen CL, Chen Y, Salas LA, Christensen BC. Methylnet: An automated and modular deep learning approach for dna analysis. BMC Bioinformatics 2020; 21(1): 1-15.
[PMID: 31898485]
[PMID: 31898485]
[27]
Galkin F, Mamoshina P, Kochetov K, Sidorenko D, Zhavoronkov A. Deepmage: A methylation aging clock developed with deep learning. Aging Dis 2021; 12(5): 1252-62.
[http://dx.doi.org/10.14336/AD.2020.1202] [PMID: 34341706]
[http://dx.doi.org/10.14336/AD.2020.1202] [PMID: 34341706]
[28]
de Lima Camillo LP, Lapierre LR, Singh R. Altumage: A pantissue dna-methylation epigenetic clock based on deep learning. bioRxiv 2021. https://www.biorxiv.org/content/early/2021/09/17/2021.06.01.446559
[29]
Daniel JW, David VDB, Fei P, Benjamin PB, Peter WL, et al. Comprehensive DNA methylation analysis on the illumine assay platform 2008.
[30]
Sandoval J, Heyn H, Moran S, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011; 6(6): 692-702.
[http://dx.doi.org/10.4161/epi.6.6.16196] [PMID: 21593595]
[http://dx.doi.org/10.4161/epi.6.6.16196] [PMID: 21593595]
[32]
Tejas D, Whitney WF, Kohli P, Tenenbaum J. Deep convolutional inverse graphics network In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R, Eds Advances in Neural Information Processing Systems Curran Associates, Inc 2015; 28.
[33]
Diederik P, Mohamed S, Rezende DJ, Welling M. Semisupervised learning with deep generative models. In: Advances in neural information processing systems. 2014; pp. 3581-9.
[34]
Alexander J, Bobak CA, Christensen BC. A new dimension of breast cancer epigenetics. 9th International Conference on Bioinformatics Models, Methods and Algorithms.
[35]
Caruana R. Multitask learning. Mach Learn 1997; 28(1): 41-75.
[http://dx.doi.org/10.1023/A:1007379606734]
[http://dx.doi.org/10.1023/A:1007379606734]
[36]
Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V. Massively multitask networks for drug discovery arXiv preprint arXiv:150202072 2015.
[37]
Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A. Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Res Rev 2019; 49: 49-66.
[http://dx.doi.org/10.1016/j.arr.2018.11.003] [PMID: 30472217]
[http://dx.doi.org/10.1016/j.arr.2018.11.003] [PMID: 30472217]
[38]
Ashiqur Rahman S, Giacobbi P, Pyles L, Mullett C, Doretto G, Adjeroh DA. Deep learning for biological age estimation. Brief Bioinform 2021; 22(2): 1767-81.
[http://dx.doi.org/10.1093/bib/bbaa021] [PMID: 32363395]
[http://dx.doi.org/10.1093/bib/bbaa021] [PMID: 32363395]
[39]
Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning–based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 2018; 24(6): 1248-59.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0853] [PMID: 28982688]
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0853] [PMID: 28982688]
[40]
A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun 2018; 9(1): 1-13.
[PMID: 29317637]
[PMID: 29317637]
[41]
Antol S, Agrawal A, Lu J, Mitchell M, Batra D. Vqa: Visual question answering. In: Proceedings of the IEEE international conference on computer vision. 2425-33.