Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Review on Autism Spectrum Disorder: Pathogenesis, Biomarkers, Pharmacological and Non-Pharmacological Interventions

Author(s): Sagarika Majhi*, Sokindra Kumar and Lubhan Singh

Volume 22, Issue 5, 2023

Published on: 22 June, 2022

Page: [659 - 677] Pages: 19

DOI: 10.2174/1871527321666220428134802

open access plus

Abstract

Autistic spectrum disorder (ASD) is a complicated developmental disease characterized by persistent difficulties in social interaction, speech and nonverbal communication, and restricted/ repetitive activities. Our goal is to deliver a step ahead awareness on neurodevelopment in ASD through early behavioral screenings, genetic testing, and detection of various environmental triggers. This would significantly reduce the tally of people with autistic characteristics. As of now, much work is to be done in understanding and treating ASD. Firstly, awareness campaigns must be organized and maintained so that ASD children can be identified and treated feasibly. Secondly, prenatal and prepregnancy environmental risk awareness, including advice against consanguineous marriages, information on optimum mother nutrition, and minimizing pollutants exposure, can be focused. Finally, the extension of genetic screening along with early postnatal monitoring of newborn feeding, nutrition, and eye contact will help in early therapy. People with ASD have strict dietary habits, but they are also more prone to gastrointestinal problems, including diarrhoea, constipation, and sometimes irritable bowel syndrome. Despite significant studies on the symptoms and possible causes of ASD, GI dysfunction is becoming a hot issue of discussion. Dietary strategies can partially help to alleviate both GI and behavioural issues due to the link between gut-microbiota and brain activity. Dietary treatments may be less expensive, easier to administer and have fewer adverse effects than pharmacological interventions. Hence, there is an increasing interest in autistic children's customized diets and supplements. Future studies should look at whether these diets are applicable to diverse people and whether they are practical in various circumstances (areas with fewer resources, lower socioeconomic areas, countries with different dietary restrictions, etc.). The dietary phytochemicals, including curcumin, resveratrol, naringenin, and sulforaphane, have a substantial role as neurotherapeutic agents. These agents can act as an antioxidant, immunomodulator, gut microbiota modulator and Nrf2 activator to provide benefits to ASD patients. Hence an urgent need is to create brain-targeted delivery methods for these dietary phytochemicals and to investigate their therapeutic value in ASD.

Keywords: Autism spectrum disorder (ASD), Neuroinflammation, GI (gastrointestinal) dysfunction, diagnostic biomarkers, dietary phytochemicals, bioactive components.

Graphical Abstract

[1]
Bleuler E. The theory of schizophrenic negativism. New York, Journal of Nervous and Mental Disease Pub Co 1912.
[2]
MacFabe DF, Cain DP, Rodriguez-Capote K, et al. Neurobiological effects of intraventricular propionic acid in rats: Possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 2007; 176(1): 149-69.
[http://dx.doi.org/10.1016/j.bbr.2006.07.025] [PMID: 16950524]
[3]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. (3rd ed.), Arlington, VA: American Psychiatric Association 1980.
[4]
Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res 2009; 65(6): 591-8.
[http://dx.doi.org/10.1203/PDR.0b013e31819e7203] [PMID: 19218885]
[5]
ICD-10. International statistical classification of diseases and related health problems. Instruction manual. Geneva: World Health Organization 2010; p. 2.
[6]
Lord C, Risi S, DiLavore PS, Shulman C, Thurm A, Pickles A. Autism from 2 to 9 years of age. Arch Gen Psychiatry 2006; 63(6): 694-701.
[http://dx.doi.org/10.1001/archpsyc.63.6.694] [PMID: 16754843]
[7]
Risi S, Lord C, Gotham K, et al. Combining information from multiple sources in the diagnosis of autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2006; 45(9): 1094-103.
[http://dx.doi.org/10.1097/01.chi.0000227880.42780.0e] [PMID: 16926617]
[8]
American Psychiatric Publishing. Diagnostic and statistical manual of mental disorders: DSM-5. (5th ed.), Arlington, VA: American Psychiatric Publishing 2013.
[9]
Ozonoff S, Young GS, Carter A, et al. Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics 2011; 128(3): e488-95.
[http://dx.doi.org/10.1542/peds.2010-2825] [PMID: 21844053]
[10]
Sandin S, Hultman CM, Kolevzon A, Gross R, MacCabe JH, Reichenberg A. Advancing maternal age is associated with increasing risk for autism: A review and meta-analysis. J Am Acad Child Adolesc Psychiatry 2012; 51(5): 477-486.e1.
[http://dx.doi.org/10.1016/j.jaac.2012.02.018] [PMID: 22525954]
[11]
Abbeduto L, Seltzer MM, Shattuck P, Krauss MW, Orsmond G, Murphy MM. Psychological well-being and coping in mothers of youths with autism, Down syndrome, or fragile X syndrome. Am J Ment Retard 2004; 109(3): 237-54.
[http://dx.doi.org/10.1352/0895-8017(2004)109<237:PWACIM>2.0.CO;2] [PMID: 15072518]
[12]
Aggleton JP. The functional effects of amygdala lesions in humans: A comparison with findings from monkeys. The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. New York, NY: Wiley-Liss 1992; pp. 485-503.
[13]
Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: Anatomy and physiology. Physiol Rev 2003; 83(3): 803-34.
[http://dx.doi.org/10.1152/physrev.00002.2003] [PMID: 12843409]
[14]
Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9(1): 357-81.
[http://dx.doi.org/10.1146/annurev.ne.09.030186.002041] [PMID: 3085570]
[15]
Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet 2014; 383(9920): 896-910.
[http://dx.doi.org/10.1016/S0140-6736(13)61539-1] [PMID: 24074734]
[16]
Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR. A mechanism for impaired fear recognition after amygdala damage. Nature 2005; 433(7021): 68-72.
[http://dx.doi.org/10.1038/nature03086] [PMID: 15635411]
[17]
Adolphs R, Tranel D, Buchanan TW. Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nat Neurosci 2005; 8(4): 512-8.
[http://dx.doi.org/10.1038/nn1413] [PMID: 15735643]
[18]
Spezio ML, Huang PY, Castelli F, Adolphs R. Amygdala damage impairs eye contact during conversations with real people. J Neurosci 2007; 27(15): 3994-7.
[http://dx.doi.org/10.1523/JNEUROSCI.3789-06.2007] [PMID: 17428974]
[19]
Stuss DT, Knight RT. Principles of frontal lobe function. Oxford: Oxford University Press 2013.
[http://dx.doi.org/10.1093/med/9780199837755.001.0001]
[20]
Herbert MR, Ziegler DA, Makris N, et al. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 2004; 55(4): 530-40.
[http://dx.doi.org/10.1002/ana.20032] [PMID: 15048892]
[21]
Courchesne E, Mouton PR, Calhoun ME, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA 2011; 306(18): 2001-10.
[http://dx.doi.org/10.1001/jama.2011.1638] [PMID: 22068992]
[22]
Preuss TM. Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 1995; 7(1): 1-24.
[http://dx.doi.org/10.1162/jocn.1995.7.1.1] [PMID: 23961750]
[23]
Finger S. Origins of neuroscience: A history of explorations into brain function. New York, NY: Oxford University Press 2001.
[24]
Zelazo PD, Muller U. Executive function in typical and atypical development. Handbook of childhood cognitive development. Malden, MA: Blackwell Publishers Ltd. 2002; pp. 445-69.
[http://dx.doi.org/10.1002/9780470996652.ch20]
[25]
Alvarez JA, Emory E. Executive function and the frontal lobes: A meta-analytic review. Neuropsychol Rev 2006; 16(1): 17-42.
[http://dx.doi.org/10.1007/s11065-006-9002-x] [PMID: 16794878]
[26]
Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annu Rev Neurosci 2009; 32(1): 267-87.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135535] [PMID: 19555290]
[27]
Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE. Neuroelectric signatures of reward learning and decision-making in the human nucleus accumbens. Neuropsychopharmacology 2009; 34(7): 1649-58.
[http://dx.doi.org/10.1038/npp.2008.222] [PMID: 19092783]
[28]
Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 2001; 21(16): RC159.
[http://dx.doi.org/10.1523/JNEUROSCI.21-16-j0002.2001] [PMID: 11459880]
[29]
Ernst M, Nelson EE, McClure EB, et al. Choice selection and reward anticipation: An fMRI study. Neuropsychologia 2004; 42(12): 1585-97.
[http://dx.doi.org/10.1016/j.neuropsychologia.2004.05.011] [PMID: 15327927]
[30]
Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 2009; 46(1): 327-37.
[http://dx.doi.org/10.1016/j.neuroimage.2009.01.058] [PMID: 19457367]
[31]
Schlaepfer TE, Cohen MX, Frick C, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008; 33(2): 368-77.
[http://dx.doi.org/10.1038/sj.npp.1301408] [PMID: 17429407]
[32]
Eichenbaum H. The hippocampus and declarative memory: Cognitive mechanisms and neural codes. Behav Brain Res 2001; 127(1-2): 199-207.
[http://dx.doi.org/10.1016/S0166-4328(01)00365-5] [PMID: 11718892]
[33]
Veinante P, Yalcin I, Barrot M. The amygdala between sensation and affect: A role in pain. J Mol Psychiatry 2013; 1(1): 9.
[http://dx.doi.org/10.1186/2049-9256-1-9] [PMID: 25408902]
[34]
Wood JN, Grafman J. Human prefrontal cortex: Processing and representational perspectives. Nat Rev Neurosci 2003; 4(2): 139-47.
[http://dx.doi.org/10.1038/nrn1033] [PMID: 12563285]
[35]
Kim MJ, Whalen PJ. The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. J Neurosci 2009; 29(37): 11614-8.
[http://dx.doi.org/10.1523/JNEUROSCI.2335-09.2009] [PMID: 19759308]
[36]
Scott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY. Reward processing in autism. Autism Res 2010; 3(2): 53-67.
[http://dx.doi.org/10.1002/aur.122] [PMID: 20437601]
[37]
Soorya L, Carpenter LA, El-Ghoroury NH. Diagnosing and managing autism: How psychologists help with autism spectrum disorder (ASD). 2017. Available from: https://www.apa.org/topics/autism-spectrum-disorder/diagnosing (Accessed on: 2021-10-09).
[38]
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69(3): 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[39]
Barton KS, Tabor HK, Starks H, Garrison NA, Laurino M, Burke W. Pathways from autism spectrum disorder diagnosis to genetic testing. Genet Med 2018; 20(7): 737-44.
[http://dx.doi.org/10.1038/gim.2017.166] [PMID: 29048417]
[40]
Braunschweig D, Krakowiak P, Duncanson P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 2013; 3(7): e277.
[http://dx.doi.org/10.1038/tp.2013.50] [PMID: 23838888]
[41]
James SJ, Melnyk S, Jernigan S, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 2006; 141B(8): 947-56.
[http://dx.doi.org/10.1002/ajmg.b.30366] [PMID: 16917939]
[42]
Frye RE, Slattery JC, Quadros EV. Folate metabolism abnormalities in autism: Potential biomarkers. Biomarkers Med 2017; 11(8): 687-99.
[http://dx.doi.org/10.2217/bmm-2017-0109] [PMID: 28770615]
[43]
James SJ, Melnyk S, Jernigan S, et al. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism. Am J Med Genet B Neuropsychiatr Genet 2010; 153B(6): 1209-20.
[http://dx.doi.org/10.1002/ajmg.b.31094] [PMID: 20468076]
[44]
Gardener H, Spiegelman D, Buka SL. Prenatal risk factors for autism: Comprehensive meta-analysis. Br J Psychiatry 2009; 195(1): 7-14.
[http://dx.doi.org/10.1192/bjp.bp.108.051672] [PMID: 19567888]
[45]
Shen Y, Dong H, Lu X, et al. Associations among maternal pre-pregnancy body mass index, gestational weight gain and risk of autism in the Han Chinese population. BMC Psychiatry 2018; 18(1): 11.
[http://dx.doi.org/10.1186/s12888-018-1593-2] [PMID: 29343227]
[46]
Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 2017; 542(7641): 348-51.
[http://dx.doi.org/10.1038/nature21369] [PMID: 28202961]
[47]
Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med 2011; 9(1): 18.
[http://dx.doi.org/10.1186/1741-7015-9-18] [PMID: 21342500]
[48]
Canfield MA, Langlois PH, Rutenberg GW, et al. The association between newborn screening analytes and childhood autism in a Texas Medicaid population, 2010-2012. Am J Med Genet B Neuropsychiatr Genet 2019; 180(5): 291-304.
[http://dx.doi.org/10.1002/ajmg.b.32728] [PMID: 31016859]
[49]
Bujnakova I, Ondrejka I, Mestanik M, et al. Autism spectrum disorder is associated with autonomic underarousal. Physiol Res 2016; 65 (Suppl. 5): S673-82.
[http://dx.doi.org/10.33549/physiolres.933528] [PMID: 28006949]
[50]
Frye RE, James SJ. Metabolic pathology of autism in relation to redox metabolism. Biomarkers Med 2014; 8(3): 321-30.
[http://dx.doi.org/10.2217/bmm.13.158] [PMID: 24712422]
[51]
Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol Psychiatry 2014; 19(4): 504-10.
[http://dx.doi.org/10.1038/mp.2012.126] [PMID: 22965006]
[52]
Hicks SD, Rajan AT, Wagner KE, Barns S, Carpenter RL, Middleton FA. Validation of a Salivary RNA Test for Childhood Autism Spectrum Disorder. Front Genet 2018; 9: 534.
[http://dx.doi.org/10.3389/fgene.2018.00534] [PMID: 30473705]
[53]
Shen MD, Nordahl CW, Li DD, et al. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2-4 years: A case-control study. Lancet Psychiatry 2018; 5(11): 895-904.
[http://dx.doi.org/10.1016/S2215-0366(18)30294-3] [PMID: 30270033]
[54]
Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr, Hallmayer JF. Autism genetics: Opportunities and challenges for clinical translation. Nat Rev Genet 2017; 18(6): 362-76.
[http://dx.doi.org/10.1038/nrg.2017.4] [PMID: 28260791]
[55]
Amaral DG, Li D, Libero L, et al. In pursuit of neurophenotypes: The consequences of having autism and a big brain. Autism Res 2017; 10(5): 711-22.
[http://dx.doi.org/10.1002/aur.1755] [PMID: 28239961]
[56]
Frye RE, Sequeira JM, Quadros EV, James SJ, Rossignol DA. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol Psychiatry 2013; 18(3): 369-81.
[http://dx.doi.org/10.1038/mp.2011.175] [PMID: 22230883]
[57]
de Magistris L, Familiari V, Pascotto A, et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 2010; 51(4): 418-24.
[http://dx.doi.org/10.1097/MPG.0b013e3181dcc4a5] [PMID: 20683204]
[58]
Geier DA, Kern JK, Davis G, et al. A prospective double-blind, randomized clinical trial of levocarnitine to treat autism spectrum disorders. Med Sci Monit 2011; 17(6): PI15-23.
[http://dx.doi.org/10.12659/MSM.881792] [PMID: 21629200]
[59]
Frye RE, Melnyk S, Fuchs G, et al. Effectiveness of methylcobalamin and folinic Acid treatment on adaptive behavior in children with autistic disorder is related to glutathione redox status. Autism Res Treat 2013; 2013: 609705.
[http://dx.doi.org/10.1155/2013/609705] [PMID: 24224089]
[60]
Frye RE, Slattery J, Delhey L, et al. Folinic acid improves verbal communication in children with autism and language impairment: A randomized double-blind placebo-controlled trial. Mol Psychiatry 2018; 23(2): 247-56.
[http://dx.doi.org/10.1038/mp.2016.168] [PMID: 27752075]
[61]
Zamzow RM, Ferguson BJ, Ragsdale AS, Lewis ML, Beversdorf DQ. Effects of acute beta-adrenergic antagonism on verbal problem solving in autism spectrum disorder and exploration of treatment response markers. J Clin Exp Neuropsychol 2017; 39(6): 596-606.
[http://dx.doi.org/10.1080/13803395.2016.1252724] [PMID: 27841098]
[62]
Kosaka H, Okamoto Y, Munesue T, et al. Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: A 24-week randomized clinical trial. Transl Psychiatry 2016; 6(8): e872.
[http://dx.doi.org/10.1038/tp.2016.152] [PMID: 27552585]
[63]
Ajram LA, Horder J, Mendez MA, et al. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl Psychiatry 2017; 7(5): e1137.
[http://dx.doi.org/10.1038/tp.2017.104] [PMID: 28534874]
[64]
Muhle RA, Reed HE, Stratigos KA, Veenstra-VanderWeele J. The emerging clinical neuroscience of autism spectrum disorder: A review. JAMA Psychiatry 2018; 75(5): 514-23.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.4685] [PMID: 29590280]
[65]
Bacchelli E, Maestrini E. Autism spectrum disorders: Molecular genetic advances. Am J Med Genet C Semin Med Genet 2006; 142C(1): 13-23.
[http://dx.doi.org/10.1002/ajmg.c.30078] [PMID: 16419096]
[66]
Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol 2018; 60(5): 445-51.
[http://dx.doi.org/10.1111/dmcn.13717] [PMID: 29574884]
[67]
Harris KM. Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol 1999; 9(3): 343-8.
[http://dx.doi.org/10.1016/S0959-4388(99)80050-6] [PMID: 10395574]
[68]
Zoghbi HY. Postnatal neurodevelopmental disorders: Meeting at the synapse? Science 2003; 302(5646): 826-30.
[http://dx.doi.org/10.1126/science.1089071] [PMID: 14593168]
[69]
Jamain S, Radyushkin K, Hammerschmidt K, et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci USA 2008; 105(5): 1710-5.
[http://dx.doi.org/10.1073/pnas.0711555105] [PMID: 18227507]
[70]
Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan–McDermid syndrome). Mol Syndromol 2012; 2(3-5): 186-201.
[http://dx.doi.org/10.1159/000334260] [PMID: 22670140]
[71]
Peça J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011; 472(7344): 437-42.
[http://dx.doi.org/10.1038/nature09965] [PMID: 21423165]
[72]
Gabis L, Raz R, Kesner-Baruch Y. Paternal age in autism spectrum disorders and ADHD. Pediatr Neurol 2010; 43(4): 300-2.
[http://dx.doi.org/10.1016/j.pediatrneurol.2010.05.022] [PMID: 20837314]
[73]
Atsem S, Reichenbach J, Potabattula R, et al. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum Mol Genet 2016; 25(22): 4996-5005.
[http://dx.doi.org/10.1093/hmg/ddw328] [PMID: 28171595]
[74]
Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology 2017; 42(1): 284-98.
[http://dx.doi.org/10.1038/npp.2016.158] [PMID: 27534269]
[75]
Carpita B, Muti D, Dell’Osso L. Oxidative stress, maternal diabetes, and autism spectrum disorders. Oxid Med Cell Longev 2018; 2018: 3717215.
[http://dx.doi.org/10.1155/2018/3717215] [PMID: 30524654]
[76]
Maeyama K, Tomioka K, Nagase H, et al. Congenital cytomegalovirus infection in children with autism spectrum disorder: Systematic review and meta-analysis. J Autism Dev Disord 2018; 48(5): 1483-91.
[http://dx.doi.org/10.1007/s10803-017-3412-x] [PMID: 29185167]
[77]
Maher GM, O’Keeffe GW, Kearney PM, et al. Association of hypertensive disorders of pregnancy with risk of neurodevelopmental disorders in offspring: A systematic review and meta-analysis. JAMA Psychiatry 2018; 75(8): 809-19.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.0854] [PMID: 29874359]
[78]
Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine (Baltimore) 2017; 96(18): e6696.
[http://dx.doi.org/10.1097/MD.0000000000006696] [PMID: 28471964]
[79]
Veroniki AA, Rios P, Cogo E, et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: A systematic review and network meta-analysis. BMJ Open 2017; 7(7): e017248.
[http://dx.doi.org/10.1136/bmjopen-2017-017248] [PMID: 28729328]
[80]
Tang S, Wang Y, Gong X, Wang G. A meta-analysis of maternal smoking during pregnancy and autism spectrum disorder risk in offspring. Int J Environ Res Public Health 2015; 12(9): 10418-31.
[http://dx.doi.org/10.3390/ijerph120910418] [PMID: 26343689]
[81]
Taylor LE, Swerdfeger AL, Eslick GD. Vaccines are not associated with autism: An evidence-based meta-analysis of case-control and cohort studies. Vaccine 2014; 32(29): 3623-9.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.085] [PMID: 24814559]
[82]
Davidson M. Vaccination as a cause of autism-myths and controversies. Dialogues Clin Neurosci 2017; 19(4): 403-7.
[http://dx.doi.org/10.31887/DCNS.2017.19.4/mdavidson] [PMID: 29398935]
[83]
Cheslack Postava K, Winter AS. Short and long interpregnancy intervals: Correlates and variations by pregnancy timing among U.S. women. Perspect Sex Reprod Health 2015; 47(1): 19-26.
[http://dx.doi.org/10.1363/47e2615] [PMID: 25623196]
[84]
Saghazadeh A, Rezaei N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79(Pt B): 340-68.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.011]
[85]
LaSalle JM. Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J Hum Genet 2013; 58(7): 396-401.
[http://dx.doi.org/10.1038/jhg.2013.49] [PMID: 23677056]
[86]
Behnia F, Parets SE, Kechichian T, et al. Fetal DNA methylation of autism spectrum disorders candidate genes: Association with spontaneous preterm birth. Am J Obstet Gynecol 2015; 212(4): 533.e1-9.
[http://dx.doi.org/10.1016/j.ajog.2015.02.011] [PMID: 25687563]
[87]
Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447(7143): 407-12.
[http://dx.doi.org/10.1038/nature05915] [PMID: 17522673]
[88]
Akbarian S, Huang HS. Epigenetic regulation in human brain-focus on histone lysine methylation. Biol Psychiatry 2009; 65(3): 198-203.
[http://dx.doi.org/10.1016/j.biopsych.2008.08.015] [PMID: 18814864]
[89]
Wang H, Duclot F, Liu Y, Wang Z, Kabbaj M. Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles. Nat Neurosci 2013; 16(7): 919-24.
[http://dx.doi.org/10.1038/nn.3420] [PMID: 23727821]
[90]
Edmonson CA, Ziats MN, Rennert OM. A non-inflammatory role for microglia in autism spectrum disorders. Front Neurol 2016; 7: 9.
[http://dx.doi.org/10.3389/fneur.2016.00009] [PMID: 26869989]
[91]
Bauer J, Rauschka H, Lassmann H. Inflammation in the nervous system: The human perspective. Glia 2001; 36(2): 235-43.
[http://dx.doi.org/10.1002/glia.1112] [PMID: 11596131]
[92]
Ullian EM, Christopherson KS, Barres BA. Role for glia in synaptogenesis. Glia 2004; 47(3): 209-16.
[http://dx.doi.org/10.1002/glia.20082] [PMID: 15252809]
[93]
Nedergaard M, Takano T, Hansen AJ. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 2002; 3(9): 748-55.
[http://dx.doi.org/10.1038/nrn916] [PMID: 12209123]
[94]
Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012; 26(3): 383-92.
[http://dx.doi.org/10.1016/j.bbi.2011.08.007] [PMID: 21906670]
[95]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207-14.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[96]
Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell 2016; 167(4): 915-32.
[http://dx.doi.org/10.1016/j.cell.2016.10.027] [PMID: 27814521]
[97]
Belcheva A. MicroRNAs at the epicenter of intestinal homeostasis. BioEssays 2017; 39(3): 1600200.
[http://dx.doi.org/10.1002/bies.201600200] [PMID: 28155997]
[98]
Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One 2014; 9(8): e103740.
[http://dx.doi.org/10.1371/journal.pone.0103740] [PMID: 25170769]
[99]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[100]
Campos AC, Rocha NP, Nicoli JR, Vieira LQ, Teixeira MM, Teixeira AL. Absence of gut microbiota influences lipopolysaccharide-induced behavioral changes in mice. Behav Brain Res 2016; 312: 186-94.
[http://dx.doi.org/10.1016/j.bbr.2016.06.027] [PMID: 27316342]
[101]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2): 264-76.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[102]
Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012; 113(2): 411-7.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05344.x] [PMID: 22612585]
[103]
Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. BioEssays 2011; 33(8): 574-81.
[http://dx.doi.org/10.1002/bies.201100024] [PMID: 21732396]
[104]
Blachier F, Mariotti F, Huneau JF, Tomé D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 2007; 33(4): 547-62.
[http://dx.doi.org/10.1007/s00726-006-0477-9] [PMID: 17146590]
[105]
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73(17): 3221-47.
[http://dx.doi.org/10.1007/s00018-016-2223-0] [PMID: 27100828]
[106]
Sporn MB, Liby KT. NRF2 and cancer: The good, the bad and the importance of context. Nat Rev Cancer 2012; 12(8): 564-71.
[http://dx.doi.org/10.1038/nrc3278] [PMID: 22810811]
[107]
Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics. Free Radic Biol Med 2014; 71: 196-207.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.025] [PMID: 24681256]
[108]
Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys 2017; 617: 84-93.
[http://dx.doi.org/10.1016/j.abb.2016.08.005] [PMID: 27497696]
[109]
Sihvola V, Levonen AL. Keap1 as the redox sensor of the antioxidant response. Arch Biochem Biophys 2017; 617: 94-100.
[http://dx.doi.org/10.1016/j.abb.2016.10.010] [PMID: 27769838]
[110]
Habtemariam S. The Nrf2/HO-1 axis as targets for flavanones: Neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxid Med Cell Longev 2019; 2019: 4724920.
[http://dx.doi.org/10.1155/2019/4724920] [PMID: 31814878]
[111]
Holmström KM, Baird L, Zhang Y, et al. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2013; 2(8): 761-70.
[http://dx.doi.org/10.1242/bio.20134853] [PMID: 23951401]
[112]
Kim TH, Hur EG, Kang SJ, et al. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res 2011; 71(6): 2260-75.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3007] [PMID: 21278237]
[113]
Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 2013; 62: 157-69.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.027] [PMID: 23044265]
[114]
Chirumbolo S, Bjørklund G. PERM hypothesis: The fundamental machinery able to elucidate the role of xenobiotics and hormesis in cell survival and homeostasis. Int J Mol Sci 2017; 18(1): 165.
[http://dx.doi.org/10.3390/ijms18010165] [PMID: 28098843]
[115]
Bjorklund G, Saad K, Chirumbolo S, et al. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp (Warsz) 2016; 76(4): 257-68.
[http://dx.doi.org/10.21307/ane-2017-025] [PMID: 28094817]
[116]
Cobb CA, Cole MP. Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis 2015; 84: 4-21.
[http://dx.doi.org/10.1016/j.nbd.2015.04.020] [PMID: 26024962]
[117]
Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatr 1968; 35(4): 100-36. https://pubmed.ncbi.nlm.nih.gov/4880460/
[PMID: 4880460]
[118]
Sabers A, Bertelsen FC, Scheel-Krüger J, Nyengaard JR, Møller A. Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain. A possible new animal model of autism. Neurosci Lett 2014; 580: 12-6.
[http://dx.doi.org/10.1016/j.neulet.2014.07.036] [PMID: 25079904]
[119]
Wang Z, Hong Y, Zou L, et al. Reelin gene variants and risk of autism spectrum disorders: An integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2014; 165B(2): 192-200.
[http://dx.doi.org/10.1002/ajmg.b.32222] [PMID: 24453138]
[120]
Kim HJ, Cho MH, Shim WH, et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 2017; 22(11): 1576-84.
[http://dx.doi.org/10.1038/mp.2016.103] [PMID: 27400854]
[121]
El-Ansary A, Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflammation 2014; 11(1): 189.
[http://dx.doi.org/10.1186/s12974-014-0189-0] [PMID: 25407263]
[122]
Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H. Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 2006; 16(9): 1276-82.
[http://dx.doi.org/10.1093/cercor/bhj069] [PMID: 16306324]
[123]
Molloy CA, Morrow AL, Meinzen-Derr J, et al. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 2006; 172(1-2): 198-205.
[http://dx.doi.org/10.1016/j.jneuroim.2005.11.007] [PMID: 16360218]
[124]
Gonzales ML, LaSalle JM. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 2010; 12(2): 127-34.
[http://dx.doi.org/10.1007/s11920-010-0097-7] [PMID: 20425298]
[125]
Rosenfeld CS. Microbiome disturbances and autism spectrum disorders. Drug Metab Dispos 2015; 43(10): 1557-71.
[http://dx.doi.org/10.1124/dmd.115.063826] [PMID: 25852213]
[126]
Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol 2009; 19(2): 231-4.
[http://dx.doi.org/10.1016/j.conb.2009.06.003] [PMID: 19545994]
[127]
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 2015; 9: 313.
[http://dx.doi.org/10.3389/fnins.2015.00313] [PMID: 26483618]
[128]
Veenstra-VanderWeele J, Muller CL, Iwamoto H, et al. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci USA 2012; 109(14): 5469-74.
[http://dx.doi.org/10.1073/pnas.1112345109] [PMID: 22431635]
[129]
Bortolato M, Godar SC, Alzghoul L, et al. Monoamine oxidase A and A/B knockout mice display autistic-like features. Int J Neuropsychopharmacol 2013; 16(4): 869-88.
[http://dx.doi.org/10.1017/S1461145712000715] [PMID: 22850464]
[130]
McClellan JM, Werry JS. Evidence-based treatments in child and adolescent psychiatry: An inventory. J Am Acad Child Adolesc Psychiatry 2003; 42(12): 1388-400.
[http://dx.doi.org/10.1097/00004583-200312000-00005] [PMID: 14627873]
[131]
Karande S. Autism: A review for family physicians. Indian J Med Sci 2006; 60(5): 205-15.
[http://dx.doi.org/10.4103/0019-5359.25683] [PMID: 16733293]
[132]
McEachin JJ, Smith T, Lovaas OI. Long-term outcome for children with autism who received early intensive behavioral treatment. Am J Ment Retard 1993; 97(4): 359-72.
[PMID: 8427693]
[133]
Raudenska M, Gumulec J, Babula P, et al. Haloperidol cytotoxicity and its relation to oxidative stress. Mini Rev Med Chem 2013; 13(14): 1993-8.
[http://dx.doi.org/10.2174/13895575113136660100] [PMID: 24160710]
[134]
Nicoletti F, Bockaert J, Collingridge GL, et al. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology 2011; 60(7-8): 1017-41.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.022] [PMID: 21036182]
[135]
Stankovic MS, Janjetovic K, Velimirovic M, et al. Effects of IL-33/ST2 pathway in acute inflammation on tissue damage, antioxidative parameters, magnesium concentration and cytokines profile. Exp Mol Pathol 2016; 101(1): 31-7.
[http://dx.doi.org/10.1016/j.yexmp.2016.05.012] [PMID: 27222019]
[136]
Zhao Q, Wang Q, Wang J, et al. Maternal immune activation-induced PPARγ-dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiol Dis 2019; 125: 1-13.
[http://dx.doi.org/10.1016/j.nbd.2019.01.005] [PMID: 30659984]
[137]
Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 2018; 153: 105-15.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[138]
Dolske MC, Spollen J, McKay S, Lancashire E, Tolbert L. A preliminary trial of ascorbic acid as supplemental therapy for autism. Prog Neuropsychopharmacol Biol Psychiatry 1993; 17(5): 765-74.
[http://dx.doi.org/10.1016/0278-5846(93)90058-Z] [PMID: 8255984]
[139]
Nickel RE. Controversial therapies for young children with developmental disabilities. Infants Young Child 1996; 8(4): 29-40.
[http://dx.doi.org/10.1097/00001163-199604000-00005]
[140]
Wright B, Sims D, Smart S, et al. Melatonin versus placebo in children with autism spectrum conditions and severe sleep problems not amenable to behaviour management strategies: A randomised controlled crossover trial. J Autism Dev Disord 2011; 41(2): 175-84.
[http://dx.doi.org/10.1007/s10803-010-1036-5] [PMID: 20535539]
[141]
Garvey J. Diet in autism and associated disorders. J Fam Health Care 2002; 12(2): 34-8.
[PMID: 12415751]
[142]
James SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004; 80(6): 1611-7.
[http://dx.doi.org/10.1093/ajcn/80.6.1611] [PMID: 15585776]
[143]
Rossignol DA. Hyperbaric oxygen therapy might improve certain pathophysiological findings in autism. Med Hypotheses 2007; 68(6): 1208-27.
[http://dx.doi.org/10.1016/j.mehy.2006.09.064] [PMID: 17141962]
[144]
Freeman MP, Hibbeln JR, Wisner KL, et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 2006; 67(12): 1954-67.
[http://dx.doi.org/10.4088/JCP.v67n1217] [PMID: 17194275]
[145]
Wang J, Hodes GE, Zhang H, et al. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat Commun 2018; 9(1): 477.
[http://dx.doi.org/10.1038/s41467-017-02794-5] [PMID: 29396460]
[146]
Bahar E, Kim JY, Yoon H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. Int J Mol Sci 2017; 18(9): 1989.
[http://dx.doi.org/10.3390/ijms18091989] [PMID: 28914791]
[147]
Khalaj R, Hajizadeh Moghaddam A, Zare M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido-inflammatory stress in rat model of autism. Int J Dev Neurosci 2018; 69(1): 80-7.
[http://dx.doi.org/10.1016/j.ijdevneu.2018.06.009] [PMID: 29966739]
[148]
Bhandari R, Paliwal JK, Kuhad A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J Funct Foods 2018; 47(2): 361-75.
[http://dx.doi.org/10.1016/j.jff.2018.05.065]
[149]
Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tertbutylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 2004; 24(5): 1101-12.
[http://dx.doi.org/10.1523/JNEUROSCI.3817-03.2004] [PMID: 14762128]
[150]
Bent S, Lawton B, Warren T, et al. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol Autism 2018; 9(1): 35.
[http://dx.doi.org/10.1186/s13229-018-0218-4] [PMID: 29854372]
[151]
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019; 8(2): 35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[152]
Kwon EY, Kim SY, Choi MS. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients 2018; 10(8): 979.
[http://dx.doi.org/10.3390/nu10080979] [PMID: 30060507]
[153]
Higdon JV, Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 2003; 43(1): 89-143.
[http://dx.doi.org/10.1080/10408690390826464] [PMID: 12587987]
[154]
Ko YH, Kwon SH, Ma SX, et al. The memory-enhancing effects of 7,8,4′-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res Bull 2018; 142: 197-206.
[http://dx.doi.org/10.1016/j.brainresbull.2018.07.012] [PMID: 30031818]
[155]
López P, Sánchez M, Perez-Cruz C, et al. Long-term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high-fat diet. Mol Nutr Food Res 2018; 62(16): e1800313.
[http://dx.doi.org/10.1002/mnfr.201800313] [PMID: 29979819]
[156]
Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid Med Cell Longev 2018; 2018: 6241017.
[http://dx.doi.org/10.1155/2018/6241017] [PMID: 30050657]
[157]
Fontes-Dutra M, Santos-Terra J, Deckmann I, et al. Resveratrol prevents cellular and behavioral sensory alterations in the animal model of autism induced by valproic acid. Front Synaptic Neurosci 2018; 10: 9.
[http://dx.doi.org/10.3389/fnsyn.2018.00009] [PMID: 29872390]
[158]
Poulose SM, Miller MG, Scott T, Shukitt-Hale B. Nutritional factors affecting adult neurogenesis and cognitive function. Adv Nutr 2017; 8(6): 804-11.
[http://dx.doi.org/10.3945/an.117.016261] [PMID: 29141966]
[159]
Pragnya B, Kameshwari JS, Veeresh B. Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/C mice. Behav Brain Res 2014; 270: 86-94.
[http://dx.doi.org/10.1016/j.bbr.2014.04.045] [PMID: 24803211]
[160]
Sandhya T, Sowjanya J, Veeresh B. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem Res 2012; 37(5): 1121-31.
[http://dx.doi.org/10.1007/s11064-012-0717-1] [PMID: 22322665]
[161]
Hasanzadeh E, Mohammadi MR, Ghanizadeh A, et al. A double-blind placebo controlled trial of Ginkgo biloba added to risperidone in patients with autistic disorders. Child Psychiatry Hum Dev 2012; 43(5): 674-82.
[http://dx.doi.org/10.1007/s10578-012-0292-3] [PMID: 22392415]
[162]
Habib SS, Al-Regaiey K, Bashir S, Iqbal M. Role of endocannabinoids on neuroinflammation in autism spectrum disorder prevention. J Clin Diagn Res 2017; 11(6): CE01-3.
[http://dx.doi.org/10.7860/JCDR/2017/23862.9969] [PMID: 28764155]
[163]
Al-Amin MM, Rahman MM, Khan FR, Zaman F, Mahmud Reza H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res 2015; 286: 112-21.
[http://dx.doi.org/10.1016/j.bbr.2015.02.041] [PMID: 25732953]
[164]
Madore C, Leyrolle Q, Lacabanne C, et al. Neuroinflammation in autism: Plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast 2016; 2016: 3597209.
[http://dx.doi.org/10.1155/2016/3597209] [PMID: 27840741]
[165]
Aryal S, Hussain S, Drevon CA, et al. Omega-3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses. Eur J Neurosci 2019; 49(1): 40-50.
[http://dx.doi.org/10.1111/ejn.14224] [PMID: 30367533]
[166]
Karvat G, Kimchi T. Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology 2014; 39(4): 831-40.
[http://dx.doi.org/10.1038/npp.2013.274] [PMID: 24096295]
[167]
Carlson GC. Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders. Pharmacol Biochem Behav 2012; 100(4): 850-4.
[http://dx.doi.org/10.1016/j.pbb.2011.02.003] [PMID: 21315104]
[168]
Charlton CG, Miller RL, Crawley JN, Handelmann GE, O’Donohue TL. Secretin modulation of behavioral and physiological functions in the rat. Peptides 1983; 4(5): 739-42.
[http://dx.doi.org/10.1016/0196-9781(83)90029-3] [PMID: 6657519]
[169]
Symons FJ, Thompson A, Rodriguez MC. Self-injurious behavior and the efficacy of naltrexone treatment: A quantitative synthesis. Ment Retard Dev Disabil Res Rev 2004; 10(3): 193-200.
[http://dx.doi.org/10.1002/mrdd.20031] [PMID: 15611982]
[170]
Bakermans-Kranenburg MJ, van Ijzendoorn MH. A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatr Genet 2014; 24(2): 45-51.
[http://dx.doi.org/10.1097/YPG.0b013e3283643684] [PMID: 23921259]
[171]
Villagonzalo KA, Dodd S, Dean O, Gray K, Tonge B, Berk M. Oxidative pathways as a drug target for the treatment of autism. Expert Opin Ther Targets 2010; 14(12): 1301-10.
[http://dx.doi.org/10.1517/14728222.2010.528394] [PMID: 20954799]
[172]
Naviaux RK, Zolkipli Z, Wang L, et al. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS One 2013; 8(3): e57380.
[http://dx.doi.org/10.1371/journal.pone.0057380] [PMID: 23516405]
[173]
Tsai PT, Hull C, Chu Y, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012; 488(7413): 647-51.
[http://dx.doi.org/10.1038/nature11310] [PMID: 22763451]
[174]
Boosani CS, Agrawal DK. PTEN modulators: A patent review. Expert Opin Ther Pat 2013; 23(5): 569-80.
[http://dx.doi.org/10.1517/13543776.2013.768985] [PMID: 23379765]
[175]
Kumar B, Prakash A, Sewal RK, Medhi B, Modi M. Drug therapy in autism: A present and future perspective. Pharmacol Rep 2012; 64(6): 1291-304.
[http://dx.doi.org/10.1016/S1734-1140(12)70927-1] [PMID: 23406740]
[176]
Morgan JT, Chana G, Pardo CA, et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 2010; 68(4): 368-76.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.024] [PMID: 20674603]
[177]
Suzuki K, Sugihara G, Ouchi Y, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 2013; 70(1): 49-58.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.272] [PMID: 23404112]
[178]
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57(1): 67-81.
[http://dx.doi.org/10.1002/ana.20315] [PMID: 15546155]
[179]
Chang YC, Quan J, Wood JJ. Effects of anxiety disorder severity on social functioning in children with autism spectrum disorders. J Dev Phys Disabil 2012; 24(3): 235-45.
[http://dx.doi.org/10.1007/s10882-012-9268-2]
[180]
Simonoff E, Jones CR, Baird G, Pickles A, Happé F, Charman T. The persistence and stability of psychiatric problems in adolescents with autism spectrum disorders. J Child Psychol Psychiatry 2013; 54(2): 186-94.
[http://dx.doi.org/10.1111/j.1469-7610.2012.02606.x] [PMID: 22934711]
[181]
Kose LK, Fox L, Storch EA. Effectiveness of cognitive behavioral therapy for individuals with autism spectrum disorders and comorbid obsessive-compulsive disorder: A review of the research. J Dev Phys Disabil 2018; 30(1): 69-87.
[http://dx.doi.org/10.1007/s10882-017-9559-8] [PMID: 29568212]
[182]
Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology 2006; 13(3): 171-81.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.007] [PMID: 16766163]
[183]
Ranjan S, Nasser JA. Nutritional status of individuals with autism spectrum disorders: Do we know enough? Adv Nutr 2015; 6(4): 397-407.
[http://dx.doi.org/10.3945/an.114.007914] [PMID: 26178024]
[184]
Abdellatif B, McVeigh C, Bendriss G, Chaari A. The promising role of probiotics in managing the altered gut in autism spectrum disorders. Int J Mol Sci 2020; 21(11): 4159.
[http://dx.doi.org/10.3390/ijms21114159] [PMID: 32532137]
[185]
Anderson G, Maes M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr Top Med Chem 2020; 20(7): 524-39.
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]

© 2024 Bentham Science Publishers | Privacy Policy