Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Oxygen Desorption by Graphene-Based Carbon Films Obtained Through Sublimation

Author(s): Kovalchuk A. Anna, Rozhkova N. Natalia* and Prikhodko V. Alexander

Volume 19, Issue 1, 2023

Published on: 28 June, 2022

Page: [82 - 89] Pages: 8

DOI: 10.2174/1573413718666220428115303

Price: $65

Abstract

Background: Nanocarbon materials are known as highly sensitive gas sensors when compared to common solid-state sensors. This manuscript discusses graphene-based carbon films as materials for a gas sensor operating at near room temperature.

Methods: The structural characteristics of graphene-based carbon films on In2O3- and ITO- coated substrates were studied by confocal laser microscopy, SEM, and Raman spectroscopy. Microwave conductivity was measured by using a λ/4 coaxial resonator based on a symmetric two-wire line in the frequency range 0.65 - 1.2 GHz and the temperature range 290-360 K.

Results: The results obtained showed that films on In2O3 - and ITO-coated substrates desorb oxygen from the various structural levels of graphene-based carbon, such as crystalline contacts between globular nanoparticles and distorted graphene fragments. A correlation between the size of nanoparticles in films and the desorption temperature was also revealed.

Conclusion: Our studies have shown that thin films of natural graphene-based carbon are promising as gas sensors. The possibility of varying characteristic oxygen desorption temperatures on different substrates is discussed.

Keywords: Graphene-based carbon, thin film, microwave conductivity, sorption, sublimation, sensor.

« Previous
Graphical Abstract

[1]
Capone, S.; Forleo, A.; Francioso, L.; Rella, R.; Siciliano, P.; Spadavecchia, J.; Presicce, D.S.; Taurino, A.M. Solid state gas sensors: State of the art and future activities. J. Optoelectron. Adv. Mater., 2003, 5, 1335-1348.
[2]
Liu, Y.; Parisi, J.; Sun, X.; Lei, Y. Solid-state gas sensors for high temperature applications – a review. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(26), 9919-9943.
[http://dx.doi.org/10.1039/C3TA15008A]
[3]
Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453), 622-625.
[http://dx.doi.org/10.1126/science.287.5453.622] [PMID: 10649989]
[4]
Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287(5459), 1801-1804.
[http://dx.doi.org/10.1126/science.287.5459.1801] [PMID: 10710305]
[5]
Rajavel, K.; Lalitha, M.; Radhakrishnan, J.K.; Senthilkumar, L.; Rajendra Kumar, R.T.; Kumar, R. Multiwalled carbon nanotube oxygen sensor: Enhanced oxygen sensitivity at room temperature and mechanism of sensing. ACS Appl. Mater. Interfaces, 2015, 7(43), 23857-23865.
[http://dx.doi.org/10.1021/acsami.5b04869] [PMID: 26488419]
[6]
Afify, A.S.; Ahmad, S.; Khushnood, R.A.; Jagdale, P.; Tulliani, J.M. Elaboration and characterization of novel humidity sensor based on micro-carbonized bamboo particles. Sens. Actuators B Chem., 2017, 239, 1251-1256.
[http://dx.doi.org/10.1016/j.snb.2016.09.130]
[7]
Mendes, R.; Wrobel, P.; Bachmatiuk, A.; Sun, J.; Gemming, T.; Liu, Z.; Rümmeli, M. Carbon nanostructures as a multi-functional platform for sensing applications. Chemosensors (Basel), 2018, 6(60), 1-28.
[http://dx.doi.org/10.3390/chemosensors6040060]
[8]
Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem., 2015, 218, 160-183.
[http://dx.doi.org/10.1016/j.snb.2015.04.062]
[9]
Zhou, Y.; Jiang, Y.; Tai, H.; Xie, G. A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens. Actuators B Chem., 2014, 203, 135-142.
[http://dx.doi.org/10.1016/j.snb.2014.06.105]
[10]
Comini, E.; Baratto, C.; Concina, I.; Faglia, G.; Falasconi, M.; Ferroni, M.; Galstyan, V.; Gobbi, E.; Ponzoni, A.; Vomiero, A.; Zappa, D.; Sberveglieri, V.; Sberveglieri, G. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators B Chem., 2013, 179, 3-20.
[http://dx.doi.org/10.1016/j.snb.2012.10.027]
[11]
Fang, Z.; Li, L.; Dixon, D.A.; Fushimi, R.R.; Dufek, E.J. Nature of oxygen adsorption on defective carbonaceous materials. J. Phys. Chem. C, 2021, 125, 20686-20696.
[http://dx.doi.org/10.1021/acs.jpcc.1c06741]
[12]
Horprathum, M.; Limwichean, K.; Wisitsoraat, A.; Eiamchai, P.; Aiempanakit, K.; Limnonthakul, P.; Nuntawong, N.; Pattantsetakul, V.; Tuantranont, A.; Chindaudom, P. NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering. Sens. Actuat. Biol. Chem., 2013, 176, 685-691.
[http://dx.doi.org/10.1016/j.snb.2012.09.077]
[13]
Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007, 6(9), 652-655.
[http://dx.doi.org/10.1038/nmat1967] [PMID: 17660825]
[14]
Hayasaka, T.; Lin, A.; Copa, V.C.; Lopez, L.P., Jr; Loberternos, R.A.; Ballesteros, L.I.M.; Kubota, Y.; Liu, Y.; Salvador, A.A.; Lin, L. An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsyst. Nanoeng., 2020, 6(50), 50.
[http://dx.doi.org/10.1038/s41378-020-0161-3] [PMID: 34567662]
[15]
De Souza, C.B.; Duque, M.E.M.; Ferreira, A.; de Arruda, M.N.; Almeida, D.A.; Fontana, L.C.; Miyakawa, W.; Goncalves, E.S. Poly-(fluoro isopropyl butyl metacrylate)/graphene-based sensitive oxygen nanocomposite: Electrical measurements and chemical interaction in variable pressure. Mater. Today Commun., 2020, 25, 101685.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101685]
[16]
Wu, Z.; Ambrozova, N.; Eftekhari, E.; Aravindakshan, N.; Wang, W.; Wang, Q.; Zhang, S.; Kocl, K.; Li, Q. Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light. Emerg. Mater., 2019, 2, 303-311.
[http://dx.doi.org/10.1007/s42247-019-00029-5]
[17]
Mosin, O.V.; Ignatov, I.I. Composition and structural properties of natural fullerene-containing mineral shungite mined in Russia. Nanoengineering, 2012, 6, 17-23.
[18]
Rozhkova, N.N.; Emelyanova, G.I.; Gorlenko, L.E.; Lunin, V.V. Shungite carbon and its modification. Rus. Chem. J., 2004, 68(5), 107-115.
[19]
Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene Oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem., 2014, 202, 272-278.
[http://dx.doi.org/10.1016/j.snb.2014.05.086]
[20]
Mendoza, F.; Hernandez, D.M.; Makarov, V.; Febus, E.; Weiner, B.R.; Morell, G. Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films. Sens. Actuators B Chem., 2014, 190, 227-233.
[http://dx.doi.org/10.1016/j.snb.2013.08.050]
[21]
Golubev, Y.A.; Rozhkova, N.N.; Kabachkov, E.N.; Shul’ga, Y.M. Natkaniec-Hołderna, K.; Natkaniec, I.; Antonets, I.V.; Makeev, B.A.; Popova, N.A.; Popova, V.A.; Sheka, E.F. sp2 amorphous carbons in view of multianalytical consideration: Normal, expected and new. J. Non-Cryst. Solids, 2019, 524, 119608.
[http://dx.doi.org/10.1016/j.jnoncrysol.2019.119608]
[22]
Sheka, E.F.; Rozhkova, N.N. Shungite as the natural pantry of nanoscale reduced graphene oxide. Int. J. Smart Nano Mater., 2014, 5(1), 1-16.
[http://dx.doi.org/10.1080/19475411.2014.885913]
[23]
Koval’chuk, A.A.; Prikhod’ko, A.V. The conductivity of the graphene-like carbon films: Anomaly in the 80-120 K temperature range. J. Physics and Mathematics, 2018, 11, 14-21.
[24]
Chou, N.H.; Pierce, N.; Lei, Yu.; Perea-Lopez, N.; Fujisawa, K.; Subramanian, S.; Robinson, J.A.; Chen, G.G.; Omichi, K.; Rozhkov, S.S.; Rozhkova, N.N.; Terrones, M.; Harutyunyan, A.R. Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes. Carbon, 2018, 130, 105-111.
[http://dx.doi.org/10.1016/j.carbon.2017.12.109]
[25]
Kamanina, N.; Toikka, A.; Gladysheva, I. ITO conducting coatings properties improvement via nanotechnology approach. Nano Express, 2021, 2, 010006.
[http://dx.doi.org/10.1088/2632-959X/abd90c]
[26]
Razbirin, B.S.; Rozhkova, N.N.; Sheka, E.F.; Nelson, D.K.; Starukhin, A.N. Fractals of graphene quantum dots in photoluminescence of shungite. Sov. Phys. JETP, 2014, 145(5), 838-850.
[27]
Volkova, Y.B.; Rezchikova, E.V.; Shakhnov, V.A. Methods of obtaining and results of studying the properties of graphene. Eng. J.: Sci. and Innovation., 2013. Available from: http://engjournal.ru/catalog/nano/hidden/807.html
[28]
Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2004, 362(1824), 2477-2512.
[http://dx.doi.org/10.1098/rsta.2004.1452] [PMID: 15482988]
[29]
Filippov, M.M. Shungite-bearing rocks of the Onega structure. Lithol. Miner. Resour., 2002, 54(2), 145-158.
[30]
Kalinin, Y.K.; Kalinin, A.I.; Skorobogatov, G.A. Shungite of Karelia - for new building materials, in chemical synthesis, gas purification, in water treatment and medicine; VVM: St. Petersburg, 2008.
[31]
Krainyukova, N.V.; Zubarev, E.N. Carbon honeycomb high capacity storage for gaseous and liquid species. Phys. Rev. Lett., 2016, 116(5), 055501.
[http://dx.doi.org/10.1103/PhysRevLett.116.055501] [PMID: 26894716]
[32]
Loskutov, A.I.; Khlopov, M.N. Interaction of hydrogen sulfide and carbon disulfide with carbon adsorbents. Adsorp. Adsorb., 1982, 10, 28-32.
[33]
Golub, S.L.; Ulyanov, A.V.; Buryak, A.K.; Lugovskaya, I.G.; Anufrieva, S.I.; Dubinchuk, V.T. Composition and sorption properties of shungite material. Sorp. Chromatogr. Proces., 2006, 6(5), 748-763.
[34]
Krylova, I.V. Electronic properties of shungite surface according to exoemission data. J. Phys. Chem., 2004, 78(5), 917-922.
[35]
Prikhodko, A.V.; Konkov, O.I.V.F. Masterov’s school and fullerene research at the department of experimental physics. Semiconductors, 2002, 36(11), 1204-1208.
[http://dx.doi.org/10.1134/1.1521216]
[36]
Ding, G.; Li, X.; Zhang, J.; Li, W.; Li, R.; Yang, Z.; Gong, N. Effects of agitation intensity and sunlight on the generation and properties of aqu/nC60. J. Nanopart. Res., 2018, 20, 245.
[http://dx.doi.org/10.1007/s11051-018-4351-y]
[37]
Hossain, M.Z.; Johns, J.E.; Bevan, K.H.; Karmel, H.J.; Liang, Y.T.; Yoshimoto, S.; Mukai, K.; Koitaya, T.; Yoshinobu, J.; Kawai, M.; Lear, A.M.; Kesmodel, L.L.; Tait, S.L.; Hersam, M.C. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat. Chem., 2012, 4(4), 305-309.
[http://dx.doi.org/10.1038/nchem.1269] [PMID: 22437716]
[38]
Galdicas, A.; Mironas, A.; Setkus, A.; Dapkus, L.; Kazlauskiene, V.; Miskinis, J.; Prikhodko, A.V.; Ivanov-Omskii, V.I. Gas sensing properties of CuxO-based thin films. Lith. J. Phys., 1995, 95(4), 314-320.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy