Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Molecular Mechanisms of miR-214 Involved in Cancer and Drug Resistance

Author(s): Elham Karimi, Aghdas Dehghani, Hanieh Azari, Mahboobeh Zarei, Mohammad Shekari and Pegah Mousavi*

Volume 23, Issue 7, 2023

Published on: 07 September, 2022

Page: [589 - 605] Pages: 17

DOI: 10.2174/1566524022666220428112744

Price: $65

Abstract

As a transcriptional regulation element, the microRNA plays a crucial role in many aspects of molecular biological processes, like cellular metabolism, cell division, cell death, cell movement, intracellular signaling, and immunity. Previous studies suggested that microRNA-214 (miR-214) is probably a valuable cancer marker. In this study, a brief updated overview of the vital dual role of miR-214 in cancer as a tumor suppressor or oncogene was provided. We also examined target genes and signaling pathways related to the dysregulation of miR-214 reported in previous experimental research on various human diseases. To highlight the critical function of miR-214 in the prognostic, diagnostic, and pathogenesis of cancer diseases, we focused on the probable clinical biomarker and drug resistance function of miR-214. The current research provides a comprehensive perspective of the regulatory mechanisms governed by miR-214 in human disease pathogenesis and a list of probable candidates for future study.

Keywords: microRNA, miR-214, target genes, cancer diseases, RNAs, miRNA

Next »
[1]
Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res 2007; 61(5 Pt 2): 24R-9R.
[http://dx.doi.org/10.1203/pdr.0b013e3180457684] [PMID: 17413852]
[2]
Asli NS, Pitulescu ME, Kessel M. MicroRNAs in organogenesis and disease. Curr Mol Med 2008; 8(8): 698-710.
[http://dx.doi.org/10.2174/156652408786733739] [PMID: 19075669]
[3]
Consortium EP. The ENCODE (ENCyclopedia of DNA elements) project. Science 2004; 306(5696): 636-40.
[http://dx.doi.org/10.1126/science.1105136] [PMID: 15499007]
[4]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. 2004; 116(2): 281-97.
[5]
Roberts TC. The microRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids 2014; 3: e188.
[http://dx.doi.org/10.1038/mtna.2014.40] [PMID: 25137140]
[6]
Felekkis K, Touvana E, Stefanou Ch, Deltas C. microRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia 2010; 14(4): 236-40.
[PMID: 21311629]
[7]
Nigita G, Acunzo M, Romano G, et al. microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic Acids Res 2016; 44(13): 6298-308.
[http://dx.doi.org/10.1093/nar/gkw532] [PMID: 27298257]
[8]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[9]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[10]
Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev 2011; 91(3): 827-87.
[http://dx.doi.org/10.1152/physrev.00006.2010] [PMID: 21742789]
[11]
Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: Small player, multiple functions. J Invest Dermatol 2015; 135(4): 960-9.
[http://dx.doi.org/10.1038/jid.2014.479] [PMID: 25501033]
[12]
Amin MMJ, Trevelyan CJ, Turner NA. MicroRNA-214 in Health and Disease. Cells 2021; 10(12): 3274.
[http://dx.doi.org/10.3390/cells10123274] [PMID: 34943783]
[13]
Che M, Shi T, Feng S, et al. The microRNA-199a/214 cluster targets E-cadherin and claudin-2 and promotes high glucose-induced peritoneal fibrosis. J Am Soc Nephrol 2017; 28(8): 2459-71.
[http://dx.doi.org/10.1681/ASN.2016060663] [PMID: 28428333]
[14]
Griffiths-Jones S. miRBase: the microRNA sequence database. MicroRNA Protocols 2006; 129-38.
[15]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[16]
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research. 2003; 31: pp. (13)3406-15.
[17]
Wang Z, Cai H, Lin L, Tang M, Cai H. Upregulated expression of microRNA-214 is linked to tumor progression and adverse prognosis in pediatric osteosarcoma. Pediatr Blood Cancer 2014; 61(2): 206-10.
[http://dx.doi.org/10.1002/pbc.24763] [PMID: 24038809]
[18]
Cai H, Miao M, Wang Z. miR-214-3p promotes the proliferation, migration and invasion of osteosarcoma cells by targeting CADM1. Oncol Lett 2018; 16(2): 2620-8.
[http://dx.doi.org/10.3892/ol.2018.8927] [PMID: 30013657]
[19]
Liu CJ, Yu KL, Liu GL, Tian DH. MiR 214 promotes osteosarcoma tumor growth and metastasis by decreasing the expression of PTEN. Mol Med Rep 2015; 12(4): 6261-6.
[http://dx.doi.org/10.3892/mmr.2015.4197] [PMID: 26252022]
[20]
Xu Z, Wang T. miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1. Biochem Biophys Res Commun 2014; 449(2): 190-5.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.140] [PMID: 24802407]
[21]
Zhang M, Wang D, Zhu T, Yin R. miR-214-5p targets ROCK1 and suppresses proliferation and invasion of human osteosarcoma cells. Oncol Res 2017; 25(1): 75-81.
[http://dx.doi.org/10.3727/096504016X14719078133401] [PMID: 28081735]
[22]
Mao X, Guo S, Gao L, Li G. Circ-XPR1 promotes osteosarcoma proliferation through regulating the miR-214-5p/DDX5 axis. Hum Cell 2021; 34(1): 122-31.
[http://dx.doi.org/10.1007/s13577-020-00412-z] [PMID: 32920730]
[23]
Cheng G, Xu D, Chu K, Cao Z, Sun X, Yang Y. The effects of MiR-214-3p and Irisin/FNDC5 on the biological behavior of osteosarcoma cells. Cancer Biother Radiopharm 2020; 35(2): 92-100.
[http://dx.doi.org/10.1089/cbr.2019.2933] [PMID: 32073886]
[24]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[25]
He GY, Hu JL, Zhou L, et al. The FOXD3/miR-214/MED19 axis suppresses tumour growth and metastasis in human colorectal cancer. Br J Cancer 2016; 115(11): 1367-78.
[http://dx.doi.org/10.1038/bjc.2016.362] [PMID: 27811858]
[26]
Shan H, Zhou X, Chen C. MicroRNA-214 suppresses the viability, migration and invasion of human colorectal carcinoma cells via targeting transglutaminase 2. Mol Med Rep 2019; 20(2): 1459-67.
[http://dx.doi.org/10.3892/mmr.2019.10325] [PMID: 31173203]
[27]
Chen DL, Wang ZQ, Zeng ZL, et al. Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology 2014; 60(2): 598-609.
[http://dx.doi.org/10.1002/hep.27118] [PMID: 24616020]
[28]
Xu M, Chen X, Lin K, et al. lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol 2019; 12(1): 3.
[http://dx.doi.org/10.1186/s13045-018-0690-5] [PMID: 30626446]
[29]
Wu K, Ma J, Zhan Y, et al. Down-regulation of microRNA-214 contributed to the enhanced mitochondrial transcription factor A and inhibited proliferation of colorectal cancer cells. Cell Physiol Biochem 2018; 49(2): 545-54.
[http://dx.doi.org/10.1159/000492992] [PMID: 30157478]
[30]
Long LM, He BF, Huang GQ, Guo YH, Liu YS, Huo JR. microRNA-214 functions as a tumor suppressor in human colon cancer via the suppression of ADP-ribosylation factor-like protein 2. Oncol Lett 2015; 9(2): 645-50.
[http://dx.doi.org/10.3892/ol.2014.2746] [PMID: 25621032]
[31]
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. miR-214 activates TP53 but suppresses the expression of RELA, CTNNB1, and STAT3 in human cervical and colorectal cancer cells. Cell Biochem Funct 2017; 35(7): 464-71.
[http://dx.doi.org/10.1002/cbf.3304] [PMID: 29023799]
[32]
Sun R, Liu Z, Han L, et al. miR-22 and miR-214 targeting BCL9L inhibit proliferation, metastasis, and epithelial-mesenchymal transition by down-regulating Wnt signaling in colon cancer. FASEB J 2019; 33(4): 5411-24.
[http://dx.doi.org/10.1096/fj.201801798RR] [PMID: 30698996]
[33]
Han B, Ge Y, Cui J, Liu B. Down-regulation of lncRNA DNAJC3-AS1 inhibits colon cancer via regulating miR-214-3p/LIVIN axis. Bioengineered 2020; 11(1): 524-35.
[http://dx.doi.org/10.1080/21655979.2020.1757224] [PMID: 32352854]
[34]
Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol 2019; 10(1): 10-27.
[http://dx.doi.org/10.14740/wjon1166] [PMID: 30834048]
[35]
Adamska A, Domenichini A, Falasca M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int J Mol Sci 2017; 18(7): 1338.
[http://dx.doi.org/10.3390/ijms18071338] [PMID: 28640192]
[36]
Rawat M, Kadian K, Gupta Y, et al. MicroRNA in pancreatic cancer: From biology to therapeutic potential. Genes 2019; 10(10): 752.
[http://dx.doi.org/10.3390/genes10100752] [PMID: 31557962]
[37]
Cao TH, Ling X, Chen C, Tang W, Hu DM, Yin GJ. Role of miR-214-5p in the migration and invasion of pancreatic cancer cells. Eur Rev Med Pharmacol Sci 2018; 22(21): 7214-21.
[PMID: 30468464]
[38]
Liu Y, Meng F, Wang J, et al. A novel oxoglutarate dehydrogenase-like mediated miR-214/TWIST1 negative feedback loop inhibits pancreatic cancer growth and metastasis. Clin Cancer Res 2019; 25(17): 5407-21.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4113] [PMID: 31175094]
[39]
Lyons K, Le LC, Pham YT, et al. Gastric cancer: Epidemiology, biology, and prevention: A mini review. Eur J Cancer Prev 2019; 28(5): 397-412.
[http://dx.doi.org/10.1097/CEJ.0000000000000480] [PMID: 31386635]
[40]
Yang TS, Yang XH, Wang XD, Wang YL, Zhou B, Song ZS. MiR-214 regulate gastric cancer cell proliferation, migration and invasion by targeting PTEN. Cancer Cell Int 2013; 13(1): 68.
[http://dx.doi.org/10.1186/1475-2867-13-68] [PMID: 23834902]
[41]
Guo J, Li Y, Duan H, Yuan L. LncRNA TUBA4B functions as a competitive endogenous RNA to inhibit gastric cancer progression by elevating PTEN via sponging miR-214 and miR-216a/b. Cancer Cell Int 2019; 19(1): 156.
[http://dx.doi.org/10.1186/s12935-019-0879-x] [PMID: 31198405]
[42]
Yang L, Zhang W, Wang Y, et al. Hypoxia-induced miR-214 expression promotes tumour cell proliferation and migration by enhancing the Warburg effect in gastric carcinoma cells. Cancer Lett 2018; 414: 44-56.
[http://dx.doi.org/10.1016/j.canlet.2017.11.007] [PMID: 29129783]
[43]
Wang M, Zhao C, Shi H, et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: Novel biomarkers and a mechanism for gastric cancer. Br J Cancer 2014; 110(5): 1199-210.
[http://dx.doi.org/10.1038/bjc.2014.14] [PMID: 24473397]
[44]
Porkholm M, Raunio A, Vainionpää R, et al. Molecular alterations in pediatric brainstem gliomas. Pediatr Blood Cancer 2018; 65(1): e26751.
[http://dx.doi.org/10.1002/pbc.26751] [PMID: 28792659]
[45]
Jiang L, Zhang L, Chen Q, et al. LncRNA HEIH promotes cell proliferation, migration and invasion by suppressing miR-214-3p in gastric carcinoma. J Biochem 2021; 169(5): 535-42.
[PMID: 33226411]
[46]
Then EO, Lopez M, Saleem S, et al. Esophageal cancer: An updated surveillance epidemiology and end results database analysis. World J Oncol 2020; 11(2): 55-64.
[http://dx.doi.org/10.14740/wjon1254] [PMID: 32284773]
[47]
Zhao H, Diao C, Wang X, et al. LncRNA BDNF-AS inhibits proliferation, migration, invasion and EMT in oesophageal cancer cells by targeting miR-214. J Cell Mol Med 2018; 22(8): 3729-39.
[http://dx.doi.org/10.1111/jcmm.13558] [PMID: 29896888]
[48]
Guanen Q, Junjie S, Baolin W, et al. MiR-214 promotes cell meastasis and inhibites apoptosis of esophageal squamous cell carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2018; 105: 350-61.
[http://dx.doi.org/10.1016/j.biopha.2018.05.149] [PMID: 29864623]
[49]
Wang M, Wang L, Zhang M, Li X, Zhu Z, Wang H. MiR-214 inhibits the proliferation and invasion of esophageal squamous cell carcinoma cells by targeting CDC25B. Biomed Pharmacother 2017; 95: 1678-83.
[http://dx.doi.org/10.1016/j.biopha.2017.09.048] [PMID: 28954387]
[50]
Li H, Jia J, Yang L, et al. LncRNA MIR205HG Drives Esophageal Squamous Cell Carcinoma Progression by Regulating miR-214/SOX4 Axis. OncoTargets Ther 2020; 13: 13097-109.
[http://dx.doi.org/10.2147/OTT.S286627] [PMID: 33376358]
[51]
Wang G, Zhao W, Gao X, et al. HNF1A-AS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR-214 to upregulate the expression of SOX-4. Int J Oncol 2017; 51(2): 657-67.
[52]
Fitzmaurice C, Abate D, Abbasi N, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol 2019; 5(12): 1749-68.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[53]
Fiorino S, Bacchi-Reggiani ML, Visani M, et al. MicroRNAs as possible biomarkers for diagnosis and prognosis of hepatitis B- and C-related-hepatocellular-carcinoma. World J Gastroenterol 2016; 22(15): 3907-36.
[http://dx.doi.org/10.3748/wjg.v22.i15.3907] [PMID: 27099435]
[54]
Xia H, Ooi LLP, Hui KM. MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One 2012; 7(9): e44206.
[http://dx.doi.org/10.1371/journal.pone.0044206] [PMID: 22962603]
[55]
Gou X, Zhao X, Wang Z. Long noncoding RNA PVT1 promotes hepatocellular carcinoma progression through regulating miR-214. Cancer Biomark 2017; 20(4): 511-9.
[http://dx.doi.org/10.3233/CBM-170331] [PMID: 28800314]
[56]
Huang X, Gao Y, Qin J, Lu S. lncRNA MIAT promotes proliferation and invasion of HCC cells via sponging miR-214. Am J Physiol Gastrointest Liver Physiol 2018; 314(5): G559-65.
[http://dx.doi.org/10.1152/ajpgi.00242.2017] [PMID: 29097358]
[57]
Wang J, Li J, Wang X, Zheng C, Ma W. Downregulation of microRNA-214 and overexpression of FGFR-1 contribute to hepatocellular carcinoma metastasis. Biochem Biophys Res Commun 2013; 439(1): 47-53.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.032] [PMID: 23962428]
[58]
Alsaleh M, Leftley Z, Barbera TA, et al. Cholangiocarcinoma: A guide for the nonspecialist. Int J Gen Med 2018; 12: 13-23.
[http://dx.doi.org/10.2147/IJGM.S186854] [PMID: 30588065]
[59]
Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J 2012; 279(13): 2393-8.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08618.x] [PMID: 22540680]
[60]
Li Y, Li Y, Chen Y, et al. MicroRNA-214-3p inhibits proliferation and cell cycle progression by targeting MELK in hepatocellular carcinoma and correlates cancer prognosis. Cancer Cell Int 2017; 17(1): 102.
[http://dx.doi.org/10.1186/s12935-017-0471-1] [PMID: 29151817]
[61]
Zhan M, He K, Xiao J, et al. LncRNA HOXA11-AS promotes hepatocellular carcinoma progression by repressing miR-214-3p. J Cell Mol Med 2018; 22(8): 3758-67.
[http://dx.doi.org/10.1111/jcmm.13633] [PMID: 29761918]
[62]
Hu M, Han Y, Zhang Y, Zhou Y, Ye L. Retracted Article: LncRNA TINCR sponges miR-214-5p to upregulate ROCK1 in hepatocellular carcinoma. BMC Med Genet 2020; 21(1): 2.
[http://dx.doi.org/10.1186/s12881-019-0940-6] [PMID: 31900116]
[63]
Pang J, Li Z, Wang G, Li N, Gao Y, Wang S. miR-214-5p targets KLF5 and suppresses proliferation of human hepatocellular carcinoma cells. J Cell Biochem 2018; 120(2): 1850-9.
[http://dx.doi.org/10.1002/jcb.27498] [PMID: 30206974]
[64]
Francies FZ, Hull R, Khanyile R, Dlamini Z. Breast cancer in low-middle income countries: Abnormality in splicing and lack of targeted treatment options. Am J Cancer Res 2020; 10(5): 1568-91.
[PMID: 32509398]
[65]
Liu B, Tian Y, Li F, et al. Tumor-suppressing roles of miR-214 and miR-218 in breast cancer. Oncol Rep 2016; 35(6): 3178-84.
[http://dx.doi.org/10.3892/or.2016.4749] [PMID: 27109339]
[66]
Derfoul A, Juan AH, Difilippantonio MJ, Palanisamy N, Ried T, Sartorelli V. Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis 2011; 32(11): 1607-14.
[http://dx.doi.org/10.1093/carcin/bgr184] [PMID: 21828058]
[67]
Guo H, Kang H, Tong H, et al. Microvascular characteristics of lower-grade diffuse gliomas: Investigating vessel size imaging for differentiating grades and subtypes. Eur Radiol 2019; 29(4): 1893-902.
[http://dx.doi.org/10.1007/s00330-018-5738-y] [PMID: 30276676]
[68]
Kalniete D, Nakazawa-Miklaševiča M, Štrumfa I, et al. High expression of miR-214 is associated with a worse disease-specific survival of the triple-negative breast cancer patients. Hered Cancer Clin Pract 2015; 13(1): 7.
[http://dx.doi.org/10.1186/s13053-015-0028-z] [PMID: 25705321]
[69]
Schwarzenbach H, Milde-Langosch K, Steinbach B, Müller V, Pantel K. Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat 2012; 134(3): 933-41.
[http://dx.doi.org/10.1007/s10549-012-1988-6] [PMID: 22350790]
[70]
Min L, Liu C, Kuang J, Wu X, Zhu L. miR-214 inhibits epithelial-mesenchymal transition of breast cancer cells via downregulation of RNF8. Acta Biochim Biophys Sin 2019; 51(8): 791-8.
[http://dx.doi.org/10.1093/abbs/gmz067] [PMID: 31294443]
[71]
Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob Health 2020; 8(2): e191-203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[72]
Qiang R, Wang F, Shi LY, et al. Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. Int J Biochem Cell Biol 2011; 43(4): 632-41.
[http://dx.doi.org/10.1016/j.biocel.2011.01.002] [PMID: 21216304]
[73]
Yang Y, Liu Y, Li G, Li L, Geng P, Song H. microRNA-214 suppresses the growth of cervical cancer cells by targeting EZH2. Oncol Lett 2018; 16(5): 5679-86.
[http://dx.doi.org/10.3892/ol.2018.9363] [PMID: 30344723]
[74]
Peng RQ, Wan HY, Li HF, Liu M, Li X, Tang H. MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-α-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem 2012; 287(17): 14301-9.
[http://dx.doi.org/10.1074/jbc.M111.337642] [PMID: 22399294]
[75]
Guo M, Lin B, Li G, Lin J, Jiang X. LncRNA TDRG1 promotes the proliferation, migration, and invasion of cervical cancer cells by sponging miR-214-5p to target SOX4. J Recept Signal Transduct 2020; 40(3): 281-93.
[http://dx.doi.org/10.1080/10799893.2020.1731537] [PMID: 32106739]
[76]
Peng R, Men J, Ma R, et al. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells. Biochem Biophys Res Commun 2017; 484(3): 623-30.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.152] [PMID: 28137590]
[77]
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells. Br J Cancer 2016; 115(6): 741-51.
[http://dx.doi.org/10.1038/bjc.2016.234] [PMID: 27537384]
[78]
Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68(4): 284-96.
[http://dx.doi.org/10.3322/caac.21456] [PMID: 29809280]
[79]
Mattiuzzi C, Lippi G. Cancer statistics: A comparison between World Health Organization (WHO) and Global Burden of Disease (GBD). Eur J Public Health 2020; 30(5): 1026-7.
[http://dx.doi.org/10.1093/eurpub/ckz216] [PMID: 31764976]
[80]
Liu Y, Lin J, Zhai S, et al. MicroRNA-214 suppresses ovarian cancer by targeting β-Catenin. Cell Physiol Biochem 2018; 45(4): 1654-62.
[http://dx.doi.org/10.1159/000487733] [PMID: 29486472]
[81]
Chen Y, Du H, Bao L, Liu W. LncRNA PVT1 promotes ovarian cancer progression by silencing miR-214. Cancer Biol Med 2018; 15(3): 238-50.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0174] [PMID: 30197791]
[82]
Huang P, Qi B, Yao H, Zhang L, Li Y, Li Q. Knockdown of DANCR suppressed the biological behaviors of ovarian cancer cells treated with Transforming Growth Factor-β (TGF-β) by sponging MiR-214. Med Sci Monit 2020; 26: e922760-1.
[http://dx.doi.org/10.12659/MSM.922760] [PMID: 32417846]
[83]
Srivastava A, Goldberger H, Dimtchev A, et al. MicroRNA profiling in prostate cancer--the diagnostic potential of urinary miR-205 and miR-214. PLoS One 2013; 8(10): e76994.
[http://dx.doi.org/10.1371/journal.pone.0076994] [PMID: 24167554]
[84]
Duan Y, et al. PC-3-derived exosomes inhibit osteoclast differentiation by downregulating miR-214 and blocking NF-κB signaling pathway. BioMed Res Int 2019 2019.
[85]
Zheng C, Guo K, Chen B, Wen Y, Xu Y. miR-214-5p inhibits human prostate cancer proliferation and migration through regulating CRMP5. Cancer Biomark 2019; 26(2): 193-202.
[http://dx.doi.org/10.3233/CBM-190128] [PMID: 31403941]
[86]
Cagle P, Niture S, Srivastava A, et al. MicroRNA-214 targets PTK6 to inhibit tumorigenic potential and increase drug sensitivity of prostate cancer cells. Sci Rep 2019; 9(1): 9776.
[http://dx.doi.org/10.1038/s41598-019-46170-3] [PMID: 31278310]
[87]
Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM. Malignant gliomas: Current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 2014; 6: 149-70.
[PMID: 24711712]
[88]
Wang S, Jiao B, Geng S, Ma S, Liang Z, Lu S. Combined aberrant expression of microRNA-214 and UBC9 is an independent unfavorable prognostic factor for patients with gliomas. Med Oncol 2014; 31(1): 767.
[http://dx.doi.org/10.1007/s12032-013-0767-5] [PMID: 24277415]
[89]
Zhang L, Xu Y, Sun J, et al. M2-like tumor-associated macrophages drive vasculogenic mimicry through amplification of IL-6 expression in glioma cells. Oncotarget 2017; 8(1): 819-32.
[http://dx.doi.org/10.18632/oncotarget.13661] [PMID: 27903982]
[90]
Jiang Z, Yao L, Ma H, et al. miRNA-214 inhibits cellular proliferation and migration in glioma cells targeting caspase 1 involved in pyroptosis. Oncol Res Featuring Preclin Clin Cancer Therapeut 2017; 25(6): 1009-19.
[http://dx.doi.org/10.3727/096504016X14813859905646] [PMID: 28244850]
[91]
Li F, Ma K, Sun M, Shi S. Identification of the tumor-suppressive function of circular RNA ITCH in glioma cells through sponging miR-214 and promoting linear ITCH expression. Am J Transl Res 2018; 10(5): 1373-86.
[PMID: 29887952]
[92]
Qiao J, Liu M, Tian Q, Liu X. Microarray analysis of circRNAs expression profile in gliomas reveals that circ_0037655 could promote glioma progression by regulating miR-214/PI3K signaling. Life Sci 2020; 245: 117363.
[http://dx.doi.org/10.1016/j.lfs.2020.117363] [PMID: 32001271]
[93]
Yang J-k, et al. Exosomal miR-214-5p Released from Glioblastoma Cells Modulates Inflammatory Response of Microglia after Lipopoly-saccharide stimulation through targeting CXCR5. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 2019; 18(1): 78-87.
[94]
Wang J, Che F, Zhang J, et al. Diagnostic and prognostic potential of serum cell-free microRNA-214 in glioma. World Neurosurg 2019; 125: e1217-25.
[http://dx.doi.org/10.1016/j.wneu.2019.02.009] [PMID: 30794970]
[95]
Cho HS, Han TS, Hur K, Ban HS. The roles of hypoxia-inducible factors and non-coding RNAs in gastrointestinal cancer. Genes (Basel) 2019; 10(12): 1008.
[http://dx.doi.org/10.3390/genes10121008] [PMID: 31817259]
[96]
Watson M, Holman DM, Maguire-Eisen M. Ultraviolet radiation exposure and its impact on skin cancer risk Seminars in oncology nursing. Elsevier 2016.
[http://dx.doi.org/10.1016/j.soncn.2016.05.005]
[97]
Streicher KL, Zhu W, Lehmann KP, et al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 2012; 31(12): 1558-70.
[http://dx.doi.org/10.1038/onc.2011.345] [PMID: 21860416]
[98]
Islami F, Siegel RL, Jemal A. The changing landscape of cancer in the USA - opportunities for advancing prevention and treatment. Nat Rev Clin Oncol 2020; 17(10): 631-49.
[http://dx.doi.org/10.1038/s41571-020-0378-y] [PMID: 32467620]
[99]
Penna E, Orso F, Cimino D, et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J 2011; 30(10): 1990-2007.
[http://dx.doi.org/10.1038/emboj.2011.102] [PMID: 21468029]
[100]
Segura MF, Belitskaya-Lévy I, Rose AE, et al. Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res 2010; 16(5): 1577-86.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2721] [PMID: 20179230]
[101]
Molnár V, et al. Changes in miRNA expression in solid tumors: An miRNA profiling in melanomas. Seminars in cancer biology. Elsevier 2008.
[http://dx.doi.org/10.1016/j.semcancer.2008.01.001]
[102]
Jukic DM, Rao UN, Kelly L, et al. Microrna profiling analysis of differences between the melanoma of young adults and older adults. J Transl Med 2010; 8(1): 27.
[http://dx.doi.org/10.1186/1479-5876-8-27] [PMID: 20302635]
[103]
Chan E, Patel R, Nallur S, et al. MicroRNA signatures differentiate melanoma subtypes. Cell Cycle 2011; 10(11): 1845-52.
[http://dx.doi.org/10.4161/cc.10.11.15777] [PMID: 21543894]
[104]
Wang SJ, Li WW, Wen CJ, Diao YL, Zhao TL. MicroRNA-214 promotes the EMT process in melanoma by downregulating CADM1 expression. Mol Med Rep 2020; 22(5): 3795-803.
[http://dx.doi.org/10.3892/mmr.2020.11446] [PMID: 33000202]
[105]
Rosmarin A. Leukemia, lymphoma, and myeloma. Cancer: Prevention, early detection, treatment and recovery. 2019; pp. 299-316.
[106]
Miller KD, Fidler-Benaoudia M, Keegan TH, Hipp HS, Jemal A, Siegel RL. Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin 2020; 70(6): 443-59.
[http://dx.doi.org/10.3322/caac.21637] [PMID: 32940362]
[107]
Wang C, Li M, Wang S, Jiang Z, Liu Y. LINC00665 promotes the progression of multiple myeloma by adsorbing miR-214-3p and positively regulating the expression of PSMD10 and ASF1B. OncoTargets Ther 2020; 13: 6511-22.
[http://dx.doi.org/10.2147/OTT.S241627] [PMID: 32764956]
[108]
He Z, Liao Z, Chen S, et al. Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2018; 14(5): e259-65.
[http://dx.doi.org/10.1111/ajco.12979] [PMID: 29749698]
[109]
Gao Y, Fang P, Li WJ, et al. LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7-H3 in multiple myeloma. Mol Immunol 2020; 117: 20-8.
[http://dx.doi.org/10.1016/j.molimm.2019.10.026] [PMID: 31731055]
[110]
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70(3): 145-64.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[111]
Li Y, Zhao L, Qi Y, Yang X. MicroRNA-214 upregulates HIF 1α and VEGF by targeting ING4 in lung cancer cells. Mol Med Rep 2019; 19(6): 4935-45.
[http://dx.doi.org/10.3892/mmr.2019.10170] [PMID: 31059086]
[112]
Zhang K, Zhang M, Jiang H, Liu F, Liu H, Li Y. Down-regulation of miR-214 inhibits proliferation and glycolysis in non-small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2. Biomed Pharmacother 2018; 105: 545-52.
[http://dx.doi.org/10.1016/j.biopha.2018.06.009] [PMID: 29886375]
[113]
Yang Y, Li Z, Yuan H, et al. Reciprocal regulatory mechanism between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer. Oncogenesis 2019; 8(9): 50.
[http://dx.doi.org/10.1038/s41389-019-0151-1] [PMID: 31492847]
[114]
Liu C, Luo J, Zhao YT, et al. TWIST1 upregulates miR-214 to promote epithelial-to-mesenchymal transition and metastasis in lung adenocarcinoma. Int J Mol Med 2018; 42(1): 461-70.
[http://dx.doi.org/10.3892/ijmm.2018.3630] [PMID: 29693173]
[115]
Ginn L, Shi L, Montagna M, Garofalo M. LncRNAs in non-small-cell lung cancer. Noncoding RNA 2020; 6(3): 25.
[http://dx.doi.org/10.3390/ncrna6030025] [PMID: 32629922]
[116]
Dandan W, Jianliang C, Haiyan H, Hang M, Xuedong L. Long noncoding RNA MIR31HG is activated by SP1 and promotes cell migration and invasion by sponging miR-214 in NSCLC. Gene 2019; 692: 223-30.
[http://dx.doi.org/10.1016/j.gene.2018.12.077] [PMID: 30659947]
[117]
Wu L, Li C, Pan L. Nasopharyngeal carcinoma: A review of current updates. Exp Ther Med 2018; 15(4): 3687-92.
[http://dx.doi.org/10.3892/etm.2018.5878] [PMID: 29556258]
[118]
Zhang ZC, Li YY, Wang HY, et al. Knockdown of miR-214 promotes apoptosis and inhibits cell proliferation in nasopharyngeal carcinoma. PLoS One 2014; 9(1): e86149.
[http://dx.doi.org/10.1371/journal.pone.0086149] [PMID: 24465927]
[119]
Han J-B, Huang ML, Li F, Yang R, Chen SM, Tao ZZ. MiR-214 mediates cell proliferation and apoptosis of nasopharyngeal carcinoma through targeting both WWOX and PTEN. Cancer Biother Radiopharm 2020; 35(8): 615-25.
[http://dx.doi.org/10.1089/cbr.2019.2978] [PMID: 32101017]
[120]
Wang J, Xu Y, Wang J, Ying H. Circulating miR-214-3p predicts nasopharyngeal carcinoma recurrence or metastasis. Clin Chim Acta 2020; 503: 54-60.
[http://dx.doi.org/10.1016/j.cca.2020.01.002] [PMID: 31926154]
[121]
Zhao J, Liu D, Yang H, Yu S, He H. Long noncoding RNAs in head and neck squamous cell carcinoma: Biological functions and mechanisms. Mol Biol Rep 2020; 47(10): 8075-90.
[http://dx.doi.org/10.1007/s11033-020-05777-w] [PMID: 32914266]
[122]
Li JH, Zhang SQ, Qiu XG, Zhang SJ, Zheng SH, Zhang DH. Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214. Int J Oncol 2017; 50(2): 708-16.
[http://dx.doi.org/10.3892/ijo.2016.3803] [PMID: 28000845]
[123]
Liu F, Lou K, Zhao X, et al. miR-214 regulates papillary thyroid carcinoma cell proliferation and metastasis by targeting PSMD10. Int J Mol Med 2018; 42(6): 3027-36.
[http://dx.doi.org/10.3892/ijmm.2018.3902] [PMID: 30272290]
[124]
Duan Y, Wang Z, Xu L, et al. lncRNA SNHG3 acts as a novel tumor suppressor and regulates tumor proliferation and metastasis via AKT/mTOR/ERK pathway in Papillary Thyroid Carcinoma. J Cancer 2020; 11(12): 3492-501.
[http://dx.doi.org/10.7150/jca.42070] [PMID: 32284745]
[125]
Pallagani L, Choudhary GR, Himanshu P, et al. Epidemiology and clinicopathological profile of renal cell carcinoma: A review from tertiary care referral centre. J Kidney Cancer VHL 2021; 8(1): 1-6.
[http://dx.doi.org/10.15586/jkcvhl.v8i1.154] [PMID: 33552876]
[126]
Mao Q, Zhuang Q, Shen J, et al. MiRNA-124 regulates the sensitivity of renal cancer cells to cisplatin-induced necroptosis by targeting the CAPN4-CNOT3 axis. Transl Androl Urol 2021; 10(9): 3669-83.
[http://dx.doi.org/10.21037/tau-21-777] [PMID: 34733662]
[127]
Wang P, Zhang LD, Sun MC, Gu WD, Geng HZ. Over-expression of mir-124 inhibits MMP-9 expression and decreases invasion of renal cell carcinoma cells. Eur Rev Med Pharmacol Sci 2018; 22(19): 6308-14.
[PMID: 30338828]
[128]
Butz H, Szabó PM, Khella HW, Nofech-Mozes R, Patocs A, Yousef GM. miRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget 2015; 6(14): 12543-57.
[http://dx.doi.org/10.18632/oncotarget.3815] [PMID: 26002553]
[129]
Zell S, Schmitt R, Witting S, Kreipe HH, Hussein K, Becker JU. Hypoxia induces mesenchymal gene expression in renal tubular epithelial cells: An in vitro model of kidney transplant fibrosis. Nephron Extra 2013; 3(1): 50-8.
[http://dx.doi.org/10.1159/000351046] [PMID: 23898346]
[130]
Wang J, Zhang X, Wang L, et al. MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer. PLoS One 2015; 10(2): e0118086.
[http://dx.doi.org/10.1371/journal.pone.0118086] [PMID: 25706919]
[131]
Raguz S, Yagüe E. Resistance to chemotherapy: New treatments and novel insights into an old problem. Br J Cancer 2008; 99(3): 387-91.
[http://dx.doi.org/10.1038/sj.bjc.6604510] [PMID: 18665178]
[132]
Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol Cancer 2020; 19(1): 79.
[http://dx.doi.org/10.1186/s12943-020-01197-3] [PMID: 32340605]
[133]
Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res 2016; 76(13): 3666-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0359] [PMID: 27325641]
[134]
Lenting K, van den Heuvel CNAM, van Ewijk A, et al. Mapping actionable pathways and mutations in brain tumors using targeted RNA next generation sequencing. Acta Neuropathol Commun 2019; 7(1): 185.
[http://dx.doi.org/10.1186/s40478-019-0826-z] [PMID: 31747973]
[135]
Shi J, Fu Q, Yang P, Yi Z, Liu S, Wang K. Long noncoding RNA PWRN1 is lowly expressed in osteosarcoma and modulates cancer proliferation and migration by targeting hsa-miR-214-5p. IUBMB Life 2020; 72(11): 2444-53.
[http://dx.doi.org/10.1002/iub.2370] [PMID: 32870579]
[136]
Zhang J, Su B, Gong C, Xi Q, Chao T. miR-214 promotes apoptosis and sensitizes breast cancer cells to doxorubicin by targeting the RFWD2-p53 cascade. Biochem Biophys Res Commun 2016; 478(1): 337-42.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.054] [PMID: 27422604]
[137]
Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: MiR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008; 68(2): 425-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2488] [PMID: 18199536]
[138]
Wen Z, Lei Z, Jin-An M, Xue-Zhen L, Xing-Nan Z, Xiu-Wen D. The inhibitory role of miR-214 in cervical cancer cells through directly targeting mitochondrial transcription factor A (TFAM). Eur J Gynaecol Oncol 2014; 35(6): 676-82.
[PMID: 25556274]
[139]
Zhang XJ, Ye H, Zeng CW, He B, Zhang H, Chen YQ. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol 2010; 3(1): 46.
[http://dx.doi.org/10.1186/1756-8722-3-46] [PMID: 21106054]
[140]
Yang Y, Bao Y, Yang GK, Wan J, Du LJ, Ma ZH. MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27. Cell Mol Biol Lett 2019; 24(1): 22.
[http://dx.doi.org/10.1186/s11658-019-0143-3] [PMID: 30915129]
[141]
Wang X, Zhang H, Bai M, et al. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 2018; 26(3): 774-83.
[http://dx.doi.org/10.1016/j.ymthe.2018.01.001] [PMID: 29456019]
[142]
Zhou Y, Hong L. Prediction value of miR-483 and miR-214 in prognosis and multidrug resistance of esophageal squamous cell carcinoma. Genet Test Mol Biomarkers 2013; 17(6): 470-4.
[http://dx.doi.org/10.1089/gtmb.2012.0518] [PMID: 23721345]
[143]
Liu J, Bi J, Li Z, Li Z, Liu X, Kong C. miR-214 reduces cisplatin resistance by targeting netrin-1 in bladder cancer cells. Int J Mol Med 2018; 41(3): 1765-73.
[http://dx.doi.org/10.3892/ijmm.2018.3374] [PMID: 29328435]
[144]
Ecke TH, Stier K, Weickmann S, et al. miR-199a-3p and miR-214-3p improve the overall survival prediction of muscle-invasive bladder cancer patients after radical cystectomy. Cancer Med 2017; 6(10): 2252-62.
[http://dx.doi.org/10.1002/cam4.1161] [PMID: 28879675]
[145]
Yang L, Zhang L, Lu L, Wang Y. miR-214-3p regulates multi-drug resistance and apoptosis in retinoblastoma cells by targeting ABCB1 and XIAP. OncoTargets Ther 2020; 13: 803-11.
[http://dx.doi.org/10.2147/OTT.S235862] [PMID: 32095078]
[146]
Xu H, Wu S, Shen X, et al. Methylation-mediated miR-214 regulates proliferation and drug sensitivity of renal cell carcinoma cells through targeting LIVIN. J Cell Mol Med 2020; 24(11): 6410-25.
[http://dx.doi.org/10.1111/jcmm.15287] [PMID: 32395888]
[147]
Zhang Y, Li M, Hu C. Exosomal transfer of miR-214 mediates gefitinib resistance in non-small cell lung cancer. Biochem Biophys Res Commun 2018; 507(1-4): 457-64.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.061] [PMID: 30458987]
[148]
Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280(5366): 1077-82.
[http://dx.doi.org/10.1126/science.280.5366.1077] [PMID: 9582121]
[149]
Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol 2017; 7(4): 170019.
[http://dx.doi.org/10.1098/rsob.170019] [PMID: 28381629]
[150]
Sun B, Liu C, Li H, et al. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett 2020; 19(1): 595-605.
[PMID: 31897175]
[151]
Chen Q, Qin R, Fang Y, Li H, Liu Y. A functional variant at the miR-214 binding site in the methylene tetrahydrofolate reductase gene alters susceptibility to gastric cancer in a Chinese Han population. Cell Physiol Biochem 2015; 36(2): 622-30.
[http://dx.doi.org/10.1159/000430125] [PMID: 25998065]
[152]
Wang ML, Liu JX. MALAT1 rs619586 polymorphism functions as a prognostic biomarker in the management of differentiated thyroid carcinoma. J Cell Physiol 2020; 235(2): 1700-10.
[http://dx.doi.org/10.1002/jcp.29089] [PMID: 31456244]
[153]
Liu C-J, et al. miRNASNP-v3: a comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets. Nucleic acids research. 2021; 49: pp. (D1)D1276-81.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy