Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Role of Bone Morphogenetic Protein 4 in Lung Diseases

Author(s): Xiaoxiao Dong, Yimin Mao* and Pengfei Gao*

Volume 23, Issue 4, 2023

Published on: 24 June, 2022

Page: [324 - 331] Pages: 8

DOI: 10.2174/1566524022666220428110906

Price: $65

Abstract

Bone morphogenetic protein 4 (BMP4) is a multifunctional secretory protein that belongs to the transforming growth factor β superfamily. BMPs transduce their signaling to the cytoplasm by binding to membrane receptors of the serine/threonine kinase family, including BMP type I and type II receptors. BMP4 participates in various biological processes, such as embryonic development, epithelial-mesenchymal transition, and maintenance of tissue homeostasis. The interaction between BMP4 and the corresponding endogenous antagonists plays a key role in the precise regulation of BMP4 signaling. In this paper, we review the pathogenesis of BMP4-related lung diseases and the foundation on which BMP4 endogenous antagonists have been developed as potential targets.

Keywords: Bone morphogenetic protein 4, congenital pulmonary airway malformation, pulmonary artery hypertension, pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, non-small cell lung cancer, endogenous antagonists.

[1]
Rol N, Kurakula KB, Happé C, Bogaard HJ, Goumans MJ. TGF-β and BMPR2 signaling in PAH: Two black sheep in one family. Int J Mol Sci 2018; 19(9): E2585.
[http://dx.doi.org/10.3390/ijms19092585] [PMID: 30200294]
[2]
Todd GM, Gao Z, Hyvönen M, Brazil DP, Ten Dijke P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020; 137: 115455.
[http://dx.doi.org/10.1016/j.bone.2020.115455] [PMID: 32473315]
[3]
Magni P, Dozio E, Galliera E, Ruscica M, Corsi MM. Molecular aspects of adipokine-bone interactions. Curr Mol Med 2010; 10(6): 522-32.
[PMID: 20642443]
[4]
Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P. BMPs: From bone to body morphogenetic proteins. Sci Signal 2010; 3(107): mr1.
[PMID: 20124549]
[5]
Heldin C-H, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol 2016; 8(8): a022053.
[http://dx.doi.org/10.1101/cshperspect.a022053] [PMID: 27481709]
[6]
van den Wijngaard A, Weghuis DO, Boersma CJ, van Zoelen EJ, Geurts van Kessel A, Olijve W. Fine mapping of the human bone morphogenetic protein-4 gene (BMP4) to chromosome 14q22-q23 by in situ hybridization. Genomics 1995; 27(3): 559-60.
[http://dx.doi.org/10.1006/geno.1995.1096] [PMID: 7558046]
[7]
Aono A, Hazama M, Notoya K, et al. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem Biophys Res Commun 1995; 210(3): 670-7.
[http://dx.doi.org/10.1006/bbrc.1995.1712] [PMID: 7763240]
[8]
Lawson KA, Dunn NR, Roelen BA, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999; 13(4): 424-36.
[http://dx.doi.org/10.1101/gad.13.4.424] [PMID: 10049358]
[9]
Jolly MK, Ward C, Eapen MS, et al. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2018; 247(3): 346-58.
[http://dx.doi.org/10.1002/dvdy.24541] [PMID: 28646553]
[10]
Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan BL. Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development 1999; 126(18): 4005-15.
[http://dx.doi.org/10.1242/dev.126.18.4005] [PMID: 10457010]
[11]
Weaver M, Dunn NR, Hogan BL. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 2000; 127(12): 2695-704.
[http://dx.doi.org/10.1242/dev.127.12.2695] [PMID: 10821767]
[12]
Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Li QY. Bronchial variation: Anatomical abnormality may predispose chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2021; 16: 423-31.
[http://dx.doi.org/10.2147/COPD.S297777] [PMID: 33654392]
[13]
Hrycaj SM, Dye BR, Baker NC, et al. Hox5 genes regulate the Wnt2/2b-Bmp4-signaling axis during lung development. Cell Rep 2015; 12(6): 903-12.
[http://dx.doi.org/10.1016/j.celrep.2015.07.020] [PMID: 26235626]
[14]
Jiang Y, Luo Y, Tang Y, et al. Alteration of cystic airway mesenchyme in congenital pulmonary airway malformation. Sci Rep 2019; 9(1): 5296.
[http://dx.doi.org/10.1038/s41598-019-41777-y] [PMID: 30923323]
[15]
Zhu H, Liu D, Jia H. Analysis of Wnt7B and BMP4 expression patterns in congenital pulmonary airway malformation. Pediatr Pulmonol 2020; 55(3): 765-70.
[http://dx.doi.org/10.1002/ppul.24651] [PMID: 31962011]
[16]
Bottasso-Arias N, Leesman L, Burra K, et al. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322(2): L224-42.
[http://dx.doi.org/10.1152/ajplung.00255.2021] [PMID: 34851738]
[17]
Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43(12) (Suppl. S): 13S-24S.
[http://dx.doi.org/10.1016/j.jacc.2004.02.029] [PMID: 15194174]
[18]
Frank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 2005; 97(5): 496-504.
[http://dx.doi.org/10.1161/01.RES.0000181152.65534.07] [PMID: 16100039]
[19]
Wu J, Yu Z, Su D. BMP4 protects rat pulmonary arterial smooth muscle cells from apoptosis by PI3K/AKT/Smad1/5/8 signaling. Int J Mol Sci 2014; 15(8): 13738-54.
[http://dx.doi.org/10.3390/ijms150813738] [PMID: 25110865]
[20]
Evans JDW, Girerd B, Montani D, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: An individual participant data meta-analysis. Lancet Respir Med 2016; 4(2): 129-37.
[http://dx.doi.org/10.1016/S2213-2600(15)00544-5] [PMID: 26795434]
[21]
Zhang Y, Wang Y, Yang K, et al. BMP4 increases the expression of TRPC and basal Ca2+ via the p38MAPK and ERK1/2 pathways independent of BMPRII in PASMCs. PLoS One 2014; 9(12): e112695.
[http://dx.doi.org/10.1371/journal.pone.0112695] [PMID: 25461595]
[22]
Yang X, Long L, Southwood M, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 2005; 96(10): 1053-63.
[http://dx.doi.org/10.1161/01.RES.0000166926.54293.68] [PMID: 15845886]
[23]
Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: From targeting to biomarkers. Proc Am Thorac Soc 2012; 9(3): 111-6.
[http://dx.doi.org/10.1513/pats.201203-023AW] [PMID: 22802283]
[24]
Koli K, Myllärniemi M, Vuorinen K, et al. Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis. Am J Pathol 2006; 169(1): 61-71.
[http://dx.doi.org/10.2353/ajpath.2006.051263] [PMID: 16816361]
[25]
Farkas L, Farkas D, Gauldie J, Warburton D, Shi W, Kolb M. Transient overexpression of Gremlin results in epithelial activation and reversible fibrosis in rat lungs. Am J Respir Cell Mol Biol 2011; 44(6): 870-8.
[http://dx.doi.org/10.1165/rcmb.2010-0070OC] [PMID: 20705941]
[26]
Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 2000; 105(2 Pt 1): 193-204.
[http://dx.doi.org/10.1016/S0091-6749(00)90066-6] [PMID: 10669837]
[27]
Pegorier S, Campbell GA, Kay AB, Lloyd CM. Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-beta1 in normal human lung fibroblasts (NHLF). Respir Res 2010; 11(1): 85.
[http://dx.doi.org/10.1186/1465-9921-11-85] [PMID: 20573231]
[28]
Rosendahl A, Pardali E, Speletas M, Ten Dijke P, Heldin CH, Sideras P. Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation. Am J Respir Cell Mol Biol 2002; 27(2): 160-9.
[http://dx.doi.org/10.1165/ajrcmb.27.2.4779] [PMID: 12151307]
[29]
Kariyawasam HH, Xanthou G, Barkans J, Aizen M, Kay AB, Robinson DS. Basal expression of bone morphogenetic protein receptor is reduced in mild asthma. Am J Respir Crit Care Med 2008; 177(10): 1074-81.
[http://dx.doi.org/10.1164/rccm.200709-1376OC] [PMID: 18292470]
[30]
Lynn TM, Molloy EL, Masterson JC, et al. SMAD Signaling in the airways of healthy rhesus macaques versus rhesus macaques with asthma highlights a relationship between inflammation and bone morphogenetic proteins. Am J Respir Cell Mol Biol 2016; 54(4): 562-73.
[http://dx.doi.org/10.1165/rcmb.2015-0210OC] [PMID: 26414797]
[31]
Fishman AP. One hundred years of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 171(9): 941-8.
[http://dx.doi.org/10.1164/rccm.200412-1685OC] [PMID: 15849329]
[32]
Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350(26): 2645-53.
[http://dx.doi.org/10.1056/NEJMoa032158] [PMID: 15215480]
[33]
Zuo W-L, Yang J, Strulovici-Barel Y, et al. Exaggerated BMP4 signalling alters human airway basal progenitor cell differentiation to cigarette smoking-related phenotypes. Eur Respir J 2019; 53(5): 1702553.
[http://dx.doi.org/10.1183/13993003.02553-2017] [PMID: 30705127]
[34]
Shirai YT, Ehata S, Yashiro M, Yanagihara K, Hirakawa K, Miyazono K. Bone morphogenetic protein-2 and -4 play tumor suppressive roles in human diffuse-type gastric carcinoma. Am J Pathol 2011; 179(6): 2920-30.
[http://dx.doi.org/10.1016/j.ajpath.2011.08.022] [PMID: 21996676]
[35]
Hjertner O, Hjorth-Hansen H, Börset M, Seidel C, Waage A, Sundan A. Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells. Blood 2001; 97(2): 516-22.
[http://dx.doi.org/10.1182/blood.V97.2.516] [PMID: 11154231]
[36]
Shon S-K, Kim A, Kim JY, Kim KI, Yang Y, Lim JS. Bone morphogenetic protein-4 induced by NDRG2 expression inhibits MMP-9 activity in breast cancer cells. Biochem Biophys Res Commun 2009; 385(2): 198-203.
[http://dx.doi.org/10.1016/j.bbrc.2009.05.038] [PMID: 19450561]
[37]
Kosacka M, Dyła T, Chaszczewska-Markowska M, Bogunia-Kubik K, Brzecka A. Decreased thrombospondin-1 and bone morphogenetic protein-4 serum levels as potential indices of advanced stage lung cancer. J Clin Med 2021; 10(17): 3859.
[http://dx.doi.org/10.3390/jcm10173859] [PMID: 34501309]
[38]
Chiou J, Su C-Y, Jan Y-H, et al. Decrease of FSTL1-BMP4-Smad signaling predicts poor prognosis in lung adenocarcinoma but not in squamous cell carcinoma. Sci Rep 2017; 7(1): 9830.
[http://dx.doi.org/10.1038/s41598-017-10366-2] [PMID: 28852126]
[39]
Fang W-T, Fan C-C, Li S-M, et al. Downregulation of a putative tumor suppressor BMP4 by SOX2 promotes growth of lung squamous cell carcinoma. Int J Cancer 2014; 135(4): 809-19.
[http://dx.doi.org/10.1002/ijc.28734] [PMID: 24477565]
[40]
Buckley S, Shi W, Driscoll B, Ferrario A, Anderson K, Warburton D. BMP4 signaling induces senescence and modulates the oncogenic phenotype of A549 lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 2004; 286(1): L81-6.
[http://dx.doi.org/10.1152/ajplung.00160.2003] [PMID: 12959928]
[41]
Mihajlović J, Diehl LAM, Hochhaus A, Clement JH. Inhibition of bone morphogenetic protein signaling reduces viability, growth and migratory potential of non-small cell lung carcinoma cells. J Cancer Res Clin Oncol 2019; 145(11): 2675-87.
[http://dx.doi.org/10.1007/s00432-019-03026-7] [PMID: 31531741]
[42]
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: Agony and antagony in the family. Trends Cell Biol 2015; 25(5): 249-64.
[http://dx.doi.org/10.1016/j.tcb.2014.12.004] [PMID: 25592806]
[43]
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75(13): 2339-54.
[http://dx.doi.org/10.1007/s00018-018-2805-0] [PMID: 29594389]
[44]
Sylva M, Li VSW, Buffing AAA, et al. The BMP antagonist follistatin-like 1 is required for skeletal and lung organogenesis. PLoS One 2011; 6(8): e22616.
[http://dx.doi.org/10.1371/journal.pone.0022616] [PMID: 21826198]
[45]
Zhang W, Wang W, Liu J, et al. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice. Sci Rep 2017; 7(1): 45820.
[http://dx.doi.org/10.1038/srep45820] [PMID: 28361925]
[46]
Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 1992; 70(5): 829-40.
[http://dx.doi.org/10.1016/0092-8674(92)90316-5] [PMID: 1339313]
[47]
Song K, Krause C, Shi S, et al. Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity. J Biol Chem 2010; 285(16): 12169-80.
[http://dx.doi.org/10.1074/jbc.M109.087197] [PMID: 20048150]
[48]
Bonaguidi MA, Peng C-Y, McGuire T, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci 2008; 28(37): 9194-204.
[http://dx.doi.org/10.1523/JNEUROSCI.3314-07.2008] [PMID: 18784300]
[49]
Yang K, Lu W, Jia J, et al. Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels. Am J Physiol Cell Physiol 2015; 308(11): C869-78.
[http://dx.doi.org/10.1152/ajpcell.00349.2014] [PMID: 25740156]
[50]
Topol LZ, Marx M, Laugier D, et al. Identification of drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture. Mol Cell Biol 1997; 17(8): 4801-10.
[http://dx.doi.org/10.1128/MCB.17.8.4801] [PMID: 9234736]
[51]
Sun J, Zhuang F-F, Mullersman JE, et al. BMP4 activation and secretion are negatively regulated by an intracellular gremlin-BMP4 interaction. J Biol Chem 2006; 281(39): 29349-56.
[http://dx.doi.org/10.1074/jbc.M603833200] [PMID: 16880207]
[52]
Ciuclan L, Sheppard K, Dong L, et al. Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice. Am J Pathol 2013; 183(5): 1461-73.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.017] [PMID: 24160323]
[53]
Maresz K. Proper calcium use: Vitamin K2 as a promoter of bone and cardiovascular health. Integr Med (Encinitas) 2015; 14(1): 34-9.
[PMID: 26770129]
[54]
Bjørklund G, Svanberg E, Dadar M, et al. The role of matrix gla protein (MGP) in vascular calcification. Curr Med Chem 2020; 27(10): 1647-60.
[http://dx.doi.org/10.2174/0929867325666180716104159] [PMID: 30009696]
[55]
Ketteler M, Wanner C, Metzger T, et al. Deficiencies of calcium-regulatory proteins in dialysis patients: A novel concept of cardiovascular calcification in uremia. Kidney Int Suppl 2003; 63(84): S84-7.
[http://dx.doi.org/10.1046/j.1523-1755.63.s84.21.x] [PMID: 12694317]
[56]
Zebboudj AF, Imura M, Boström K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 2002; 277(6): 4388-94.
[http://dx.doi.org/10.1074/jbc.M109683200] [PMID: 11741887]
[57]
Yao Y, Shahbazian A, Boström KI. Proline and gamma-carboxylated glutamate residues in matrix Gla protein are critical for binding of bone morphogenetic protein-4. Circ Res 2008; 102(9): 1065-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.166124] [PMID: 18369157]
[58]
Yao Y, Zebboudj AF, Shao E, Perez M, Boström K. Regulation of bone morphogenetic protein-4 by matrix GLA protein in vascular endothelial cells involves activin-like kinase receptor 1. J Biol Chem 2006; 281(45): 33921-30.
[http://dx.doi.org/10.1074/jbc.M604239200] [PMID: 16950789]
[59]
Yao Y, Jumabay M, Wang A, Boström KI. Matrix Gla protein deficiency causes arteriovenous malformations in mice. J Clin Invest 2011; 121(8): 2993-3004.
[http://dx.doi.org/10.1172/JCI57567] [PMID: 21765215]
[60]
Garcia Abreu J, Coffinier C, Larraín J, Oelgeschläger M, De Robertis EM. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene 2002; 287(1-2): 39-47.
[http://dx.doi.org/10.1016/S0378-1119(01)00827-7] [PMID: 11992721]
[61]
Troilo H, Zuk AV, Tunnicliffe RB, et al. Nanoscale structure of the BMP antagonist chordin supports cooperative BMP binding. Proc Natl Acad Sci USA 2014; 111(36): 13063-8.
[http://dx.doi.org/10.1073/pnas.1404166111] [PMID: 25157165]
[62]
Liu T, Li B, Zheng X-F, et al. Chordin-like 1 improves osteogenesis of bone marrow mesenchymal stem cells through enhancing BMP4-SMAD pathway. Front Endocrinol (Lausanne) 2019; 10: 360.
[http://dx.doi.org/10.3389/fendo.2019.00360] [PMID: 31249554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy