Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Myrica esculenta Buch.-Ham. (ex D. Don): A Review on its Phytochemistry, Pharmacology and Nutritional Potential

Author(s): Gazanfar Ahmad, Sameer Ullah Khan, Sameer Ahmad Mir, Mir Javid Iqbal, Faheem Hyder Pottoo, Neerupma Dhiman*, Fayaz Malik and Asif Ali

Volume 25, Issue 14, 2022

Published on: 27 August, 2022

Page: [2372 - 2386] Pages: 15

DOI: 10.2174/1386207325666220428105255

Price: $65

Abstract

Myrica esculenta is an important ethnomedicinal plant used in the traditional system of medicine and as an important nutraceutical. Several studies on the plant justify its use in alternative systems of medicine and establish a scientific rationale for its possible therapeutic application. The plant contains a range of biologically active classes of compounds, particularly diarylheptanoids, flavonoids, terpenes, tannins, and glycosides. The nutraceutical potential of the plant can be particularly attributed to its fruit, and several studies have demonstrated the presence of carbohydrates, proteins, fats, fiber content, and minerals like sodium, potassium, calcium, manganese, iron, copper, and zinc, in it. The current review aims to provide complete insight into the phytochemistry, pharmacological potential, and nutritional potential of the plant, which would not only serve as a comprehensive source of information but also will highlight the scope of isolation and evaluation of these molecules for various disease conditions.

Keywords: Myrica esculenta, diarylheptanoids, myricanol, anti-cancer, neuroprotective, anti-ulcer, antiallergic, anxiolytic, muscle relaxant.

Graphical Abstract

[1]
Mukherjee, P.K.; Wahile, A. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. J. Ethnopharmacol., 2006, 103(1), 25-35.
[http://dx.doi.org/10.1016/j.jep.2005.09.024] [PMID: 16271286]
[2]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[3]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[4]
Sood, P.; Shri, R. A review on ethnomedicinal, phytochemical and pharmacological aspects of Myrica esculenta. Indian J. Pharm. Sci., 2018, 80(1), 2-13.
[5]
Gusain, Y.S.; Khanduri, V.P. Myrica esculenta wild edible fruit of Indian Himalaya: Need a sustainable approach for indigenous utilization. Eco Env Cons, 2016, 22, S267-S270.
[6]
Kabra, A.; Martins, N.; Sharma, R.; Kabra, R.; Baghel, U.S. Myrica esculenta Buch.-Ham. ex D. Don: A natural source for health promotion and disease prevention. Plants, 2019, 8(6), 149.
[http://dx.doi.org/10.3390/plants8060149] [PMID: 31159283]
[7]
Sharma, A.; Bhardwaj, J. Myrica nagi (Kaphal: A wild fruit of Himalaya). Faslnamah-i Giyahan-i Daruyi, 2019, 7(1), 30-32.
[8]
Shankhwar, R.; Bhandari, M.S.; Meena, R.K.; Shekhar, C.; Pandey, V.V.; Saxena, J.; Kant, R.; Barthwal, S.; Naithani, H.B.; Pandey, S.; Pandey, A.; Ginwal, H.S. Potential eco-distribution mapping of Myrica esculenta in northwestern Himalayas. Ecol. Eng., 2019, 128, 98-111.
[http://dx.doi.org/10.1016/j.ecoleng.2019.01.003]
[9]
Bhatt, I.D.; Rawal, R.S.; Dhar, U. Improvement in seed germination of Myrica esculenta Buch.-Ham. ex D. Don-a high value tree species of Kumaun Himalaya, India. Seed Sci. Technol., 2000, 28(3), 597-605.
[10]
Jeeva, S.; Lyndem, F.G.; Sawian, J.T.; Laloo, R.C.; Mishra, B.P. Myrica esculenta Buch.--Ham. ex D. Don.-a potential ethnomedicinal species in a subtropical forest of Meghalaya, northeast India. Asian Pac. J. Trop. Biomed., 2011, 1(2), S174-S177.
[http://dx.doi.org/10.1016/S2221-1691(11)60150-0]
[11]
Kumar, M.; Sharma, C.M. Fuelwood consumption pattern at different altitudes in rural areas of Garhwal Himalaya. Biomass Bioenergy, 2009, 33(10), 1413-1418.
[http://dx.doi.org/10.1016/j.biombioe.2009.06.003]
[12]
API. The ayurvedic pharmacopoeia of INDIA. Government of india ministry of health and family welfare department of ism & H., 2001, III, 90-93.
[13]
Shah, S.; Tewari, A.; Tewari, B.; Singh, R.P. Seed maturity indicators in Myrica esculenta, Buch-Ham. Ex. D. Don.: A multipurpose tree species of subtropical-temperate Himalayan region. New For., 2010, 40(1), 9-18.
[http://dx.doi.org/10.1007/s11056-009-9179-y]
[14]
Kabra, A.; Sharma, R.; Singla, S.; Kabra, R.; Baghel, U.S. Pharmacognostic characterization of Myrica esculenta leaves. J. Ayurveda Integr. Med., 2019, 10(1), 18-24.
[http://dx.doi.org/10.1016/j.jaim.2017.07.012] [PMID: 29544902]
[15]
Kumar, A.; Rana, A.C. Pharmacognostic and pharmacological profile of traditional medicinal plant: Myrica nagi Int. Res. J. Pharm., 2012, 3(12), 32-37.
[16]
Khare, C.P. Indian medicinal plants: An illustrated dictionary; Springer Science & Business Media, 2008.
[17]
Alberti, Á.; Riethmüller, E.; Béni, S. Characterization of diarylheptanoids: An emerging class of bioactive natural products. J. Pharm. Biomed. Anal., 2018, 147, 13-34.
[http://dx.doi.org/10.1016/j.jpba.2017.08.051] [PMID: 28958734]
[18]
Sun, D-J.; Zhu, L.J.; Zhao, Y.Q.; Zhen, Y.Q.; Zhang, L.; Lin, C.C.; Chen, L.X. Diarylheptanoid: A privileged structure in drug discovery. Fitoterapia, 2020, 142, 104490.
[http://dx.doi.org/10.1016/j.fitote.2020.104490] [PMID: 32017968]
[19]
Dawang, S.; Zuchun, Z.; Wong, H.; Lai, Y.F. Tannins and other phenolics from Myrica esculenta bark. Phytochemistry, 1988, 27(2), 579-583.
[http://dx.doi.org/10.1016/0031-9422(88)83145-5]
[20]
Yang, W.; Tang, C.; Li, X.; Zhou; Wang, L.; LI, L. Study on the chemical constituents of Myrica esculenta. J. Yunnan Univ. Natural Sci. Ed., 2011, 33, 453-457.
[21]
Nguyen, X.N.; Phan, V.K.; Chau, V.M.; Bui, H.T.; Nguyen, X.C.; Vu, K.T.; Hoang, T.A.; Jo, S.H.; Jang, H.D.; Kwon, Y.I.; Kim, Y.H. A new monoterpenoid glycoside from Myrica esculenta and the inhibition of angiotensin I-converting enzyme. Chem. Pharm. Bull. (Tokyo), 2010, 58(10), 1408-1410.
[http://dx.doi.org/10.1248/cpb.58.1408] [PMID: 20930414]
[22]
Middha, S.K.; Goyal, A.K.; Bhardwaj, A.; Kamal, R.; Lokesh, P.; Prashanth, H.P.; Wadhwa, G.; Usha, T. In silico exploration of cyclooxygenase inhibitory activity of natural compounds found in Myrica nagi using LC-MS. Symbiosis, 2016, 70(1–3), 169-178.
[http://dx.doi.org/10.1007/s13199-016-0417-8]
[23]
Kabra, A.; Sharma, R.; Hano, C.; Kabra, R.; Martins, N.; Baghel, U.S. Phytochemical composition, antioxidant, and antimicrobial attributes of different solvent extracts from. Myrica esculenta Buch.-Ham. ex. D. Don Leaves. Biomolecules, 2019, 9(8), 357.
[http://dx.doi.org/10.3390/biom9080357] [PMID: 31405047]
[24]
Malterud, K.E.; Anthonsen, T. 13-oxomyricanol, a new [7.0]-metacyclophane from Myrica nagi. Phytochemistry, 1980, 19(4), 705-707.
[http://dx.doi.org/10.1016/0031-9422(80)87049-X]
[25]
Jangwan, J.S.; Sati, S.C.; Dobhal, M. Optimization of dyeing processes by compounds isolated from bark of Myrica esculenta and their spectroscopy identification. Environ. Conserv. J., 2007, 8(3), 59-62.
[26]
Bamola, A.; Semwal, D.K.; Semwal, S.; Rawat, U. Flavonoid glycosides from Myrica esculenta leaves. J. Indian Chem. Soc., 2009, 86(5), 535-536.
[27]
Wakode, S.; Ali, M. Triterpenoids from the stem bark of Myrica esculenta Buch Ham. World J. Pharm. Pharm. Sci., 2016, 5(4), 1319-1327.
[28]
Agnihotri, S.; Wakode, S.; Ali, M. Essential oil of Myrica esculenta Buch. Ham.: Composition, antimicrobial and topical anti-inflammatory activities. Nat. Prod. Res., 2012, 26(23), 2266-2269.
[http://dx.doi.org/10.1080/14786419.2011.652959] [PMID: 22260222]
[29]
Dai, G.H.; Meng, G.M.; Tong, Y.L.; Chen, X.; Ren, Z.M.; Wang, K.; Yang, F. Growth-inhibiting and apoptosis-inducing activities of Myricanol from the bark of Myrica rubra in human lung adenocarcinoma A549 cells. Phytomedicine, 2014, 21(11), 1490-1496.
[http://dx.doi.org/10.1016/j.phymed.2014.04.025] [PMID: 24939078]
[30]
Dai, G.; Tong, Y.; Chen, X.; Ren, Z.; Ying, X.; Yang, F.; Chai, K. Myricanol induces apoptotic cell death and anti-tumor activity in non-small cell lung carcinoma in vivo. Int. J. Mol. Sci., 2015, 16(2), 2717-2731.
[http://dx.doi.org/10.3390/ijms16022717] [PMID: 25629230]
[31]
Dai, G.H.; Fan, C.J.; Ren, Z.M.; Chen, X.; Tong, Y.L.; Li, Z.H.; Nie, X.J.; Chai, K.Q. The mechanistic antitumor study of myricanol 5-fluorobenzyloxy ether in human leukemic cell HL-60. Future Med. Chem., 2017, 9(18), 2117-2127.
[http://dx.doi.org/10.4155/fmc-2017-0165] [PMID: 28819994]
[32]
Ahmad, G.; Mir, S.A.; Anand, L.K.; Pottoo, F.H.; Dhiman, N.; Malik, F.; Ali, A. Myricanol-9-acetate, a novel naturally occurring derivative of myricanol, induces ROS-dependent mitochondrial-mediated Apoptosis in MCF-7 cancer cells. Curr. Top. Med. Chem., 2021, 21(15), 1418-1427.
[http://dx.doi.org/10.2174/1568026621666210615151358] [PMID: 34132183]
[33]
Dai, G.; Tong, Y.; Chen, X.; Ren, Z.; Yang, F. In vitro anticancer activity of myricanone in human lung adenocarcinoma A549 cells. Chemotherapy, 2014, 60(2), 81-87.
[http://dx.doi.org/10.1159/000371738] [PMID: 25720464]
[34]
Ishida, J.; Kozuka, M.; Wang, H.; Konoshima, T.; Tokuda, H.; Okuda, M.; Yang Mou, X.; Nishino, H.; Sakurai, N.; Lee, K.H.; Nagai, M. Antitumor-promoting effects of cyclic diarylheptanoids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett., 2000, 159(2), 135-140.
[http://dx.doi.org/10.1016/S0304-3835(00)00538-3] [PMID: 10996724]
[35]
Mann, S.; Satpathy, G.; Gupta, R.K. In vitro evaluation of bio-protective properties of underutilized Myrica esculenta Buch.-Ham. ex D. Don fruit of Meghalaya. Indian J. Nat. Prod. Resour., 2015, 56047378.
[36]
Saini, R.; Garg, V.; Dangwal, K. Effect of extraction solvents on polyphenolic composition and antioxidant, antiproliferative activities of Himalyan bayberry (Myrica esculenta). Food Sci. Biotechnol., 2013, 22(4), 887-894.
[http://dx.doi.org/10.1007/s10068-013-0160-3]
[37]
Guo, R.X.; Fu, X.; Chen, J.; Zhou, L.; Chen, G. Preparation and characterization of microemulsions of myricetin for improving its antiproliferative and antioxidative activities and oral bioavailability. J. Agric. Food Chem., 2016, 64(32), 6286-6294.
[http://dx.doi.org/10.1021/acs.jafc.6b02184] [PMID: 27455843]
[38]
Subramaniam, S.; Selvaduray, K.R.; Radhakrishnan, A.K. Bioactive compounds: Natural defense against cancer? Biomolecules, 2019, 9(12), 758.
[http://dx.doi.org/10.3390/biom9120758] [PMID: 31766399]
[39]
Devi, K.P.; Rajavel, T.; Habtemariam, S.; Nabavi, S.F.; Nabavi, S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci., 2015, 142, 19-25.
[http://dx.doi.org/10.1016/j.lfs.2015.10.004] [PMID: 26455550]
[40]
Jones, J.R.; Lebar, M.D.; Jinwal, U.K.; Abisambra, J.F.; Koren, J., III; Blair, L.; O’Leary, J.C.; Davey, Z.; Trotter, J.; Johnson, A.G.; Weeber, E.; Eckman, C.B.; Baker, B.J.; Dickey, C.A. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau. J. Nat. Prod., 2011, 74(1), 38-44.
[http://dx.doi.org/10.1021/np100572z] [PMID: 21141876]
[41]
Martin, M.D.; Calcul, L.; Smith, C.; Jinwal, U.K.; Fontaine, S.N.; Darling, A.; Seeley, K.; Wojtas, L.; Narayan, M.; Gestwicki, J.E.; Smith, G.R.; Reitz, A.B.; Baker, B.J.; Dickey, C.A. Synthesis, stereochemical analysis, and derivatization of myricanol provide new probes that promote autophagic tau clearance. ACS Chem. Biol., 2015, 10(4), 1099-1109.
[http://dx.doi.org/10.1021/cb501013w] [PMID: 25588114]
[42]
Chen, P.; Lin, X.; Yang, C.H.; Tang, X.; Chang, Y.W.; Zheng, W.; Luo, L.; Xu, C.; Chen, Y.H. Study on chemical profile and neuroprotective activity of Myrica rubra leaf extract. Molecules, 2017, 22(7), 1226.
[http://dx.doi.org/10.3390/molecules22071226] [PMID: 28737731]
[43]
Shen, S.; Zhao, M.; Li, C.; Chang, Q.; Liu, X.; Liao, Y.; Pan, R. Study on the material basis of neuroprotection of Myrica rubra bark. Molecules, 2019, 24(16), 2993.
[http://dx.doi.org/10.3390/molecules24162993] [PMID: 31426594]
[44]
Dickey, C.; Jinwal, U.; Calcul, L.; Baker, B.J.; Lebar, M. Myricanol derivatives and uses thereof for treatment of neurodegenerative diseases. In: Google Patents; , 2019.
[45]
Dickey, C.; Lebar, M.; Baker, B.J.; Jones, J. Materials and methods for reduction of protein tau and treatment of neurodegenerative diseases; Google Patents, 2015.
[46]
Kumar, P.; Gupta, A.; Singh, A. Pharmacognostic evaluation and determination of secondary plant metabolites by HPTLC and its antioxidant activity in Myrica esculenta. Pharmacogn. J., 2017, 9(6s), s103-s106.
[http://dx.doi.org/10.5530/pj.2017.6s.165]
[47]
Goyal, A.K.; Mishra, T.; Bhattacharya, M.; Kar, P.; Sen, A. Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India. J. Biosci., 2013, 38(4), 797-803.
[http://dx.doi.org/10.1007/s12038-013-9363-2] [PMID: 24287659]
[48]
Krishna, H.; Attri, B.L. "Health beverages from bayberry and yellow Himalayan raspberry", Int. J. Minor Fruits. Med. Aromat. Plants, 2016, 2(1), 15-18.
[49]
Bhatt, I.D.; Rawat, S.; Badhani, A.; Rawal, R.S. Nutraceutical potential of selected wild edible fruits of the Indian Himalayan region. Food Chem., 2017, 215, 84-91.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.143] [PMID: 27542453]
[50]
Kar, P.; Chakraborty, A.K.; Dutta, S.; Bhattacharya, M.; Chaudhuri, T.K.; Sen, A. Fruit juice of silverberry (Elaeagnus) and bayberry (Myrica) may help in combating against kidney dysfunctions. Clin. Phytoscience, 2019, 5(1), 22.
[http://dx.doi.org/10.1186/s40816-019-0117-z]
[51]
Sendri, N.; Bhandari, P. Polyphenolic composition and antioxidant potential of underutilized Himalayan wild edible berries by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. J. Sep. Sci., 2021, 44(23), 4237-4254.
[http://dx.doi.org/10.1002/jssc.202100455] [PMID: 34633763]
[52]
Shan, B.; Cai, Y-Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol., 2007, 117(1), 112-119.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.003] [PMID: 17449125]
[53]
Alam, A.; Iqbal, M.; Saleem, M.; Ahmed, S.; Sultana, S. Myrica nagi attenuates cumene hydroperoxide-induced cutaneous oxidative stress and toxicity in Swiss albino mice. Pharmacol. Toxicol., 2000, 86(5), 209-214.
[http://dx.doi.org/10.1034/j.1600-0773.2000.d01-37.x] [PMID: 10862502]
[54]
Surveswaran, S.; Cai, Y-Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem., 2007, 102(3), 938-953.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.033]
[55]
Ting, Y-C.; Ko, H.H.; Wang, H.C.; Peng, C.F.; Chang, H.S.; Hsieh, P.C.; Chen, I.S. Biological evaluation of secondary metabolites from the roots of Myrica adenophora. Phytochemistry, 2014, 103, 89-98.
[http://dx.doi.org/10.1016/j.phytochem.2014.04.003] [PMID: 24810013]
[56]
Swathi, D.; Prasad, K. Antioxidant and antiulcer potential of ethanolic extract of bark of Myrica esculenta in pyloric ligation ulcer model. Int. J. Pharm. Pharm. Sci., 2015, 7, 195-198.
[57]
Xu, M.; Wang, Y.; Zhang, L.; Wu, D.; Chen, J. Comparison of the antioxidant activity of the bark extracts of Myrica esculenta, Phyllanthus emblica and Larix gmelinii. Linchan Huaxue Yu Gongye, 2011, (6), 8.
[58]
Spínola, V.; Llorent-Martínez, E.J.; Gouveia, S.; Castilho, P.C. Myrica faya: A new source of antioxidant phytochemicals. J. Agric. Food Chem., 2014, 62(40), 9722-9735.
[http://dx.doi.org/10.1021/jf503540s] [PMID: 25266067]
[59]
Chen, J.; Wang, Y.; Wu, D.; Wu, Z. Preliminary study on antioxidative and radical-scavenging activities of extracts from Myrica esculenta Buch.-Ham. bark. Chem. Ind. Prod., 2007, 1-7.
[60]
Xiaoqin, F. Y. W. Antioxidant effect of polyphenol extracted from Myrica rubra branches. J. Chinese Cereal. Oils Assoc., 2009, 11.
[61]
Ahmad, G.; Hassan, R.; Dhiman, N.; Ali, A. “Anti-inflammatory assessment of 3-Acetylmyricadiol in LPS-Stimulated Raw 264.7 Macrophages.,” Comb. Chem. \&. High Throughput Screen., 2021, 25(1), 204-210.
[http://dx.doi.org/10.2174/1386207324666210319122650]
[62]
Middha, S.K.; Usha, T.; Babu, D.; Misra, A.K.; Lokesh, P.; Goyal, A.K. Evaluation of antioxidative, analgesic and anti-inflammatory activities of methanolic extract of Myrica nagi leaves-an animal model approach. Symbiosis, 2016, 70(1-3), 179-184.
[http://dx.doi.org/10.1007/s13199-016-0422-y]
[63]
Patel, T.; Dudhpejiya, A.; Sheath, N. Anti inflammatory activity of Myrica nagi Linn. Bark. Anc. Sci. Life, 2011, 30(4), 100-103.
[PMID: 22557437]
[64]
Pundir, S.; Tomar, S.; Upadhyay, N.; Sharma, V. Antioxidant, anti-inflammatory and analgesic activity of bioactive fraction of leaves of Myrica esculenta Buch.-Ham along with its pharmacognostic and chromatographic evaluation. Int. J. Biol. Pharm. Allied Sci., 2015, 4, 6509-6524.
[65]
Wang, J.; Dong, S.; Wang, Y.; Lu, Q.; Zhong, H.; Du, G.; Zhang, L.; Cheng, Y. Cyclic diarylheptanoids from Myrica nana inhibiting nitric oxide release. Bioorg. Med. Chem., 2008, 16(18), 8510-8515.
[http://dx.doi.org/10.1016/j.bmc.2008.08.020] [PMID: 18723353]
[66]
Wang, M.; Jiang, J.; Tian, J.; Chen, S.; Ye, X.; Hu, Y.; Chen, J. Inhibitory mechanism of novel allosteric inhibitor, Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves proanthocyanidins against $α$-glucosidase. J. Funct. Foods, 2019, 56, 286-294.
[http://dx.doi.org/10.1016/j.jff.2019.03.026]
[67]
Zhang, X.; Huang, H.; Zhao, X.; Lv, Q.; Sun, C.; Li, X.; Chen, K. Effects of flavonoids-rich Chinese bayberry (Myrica rubra Sieb. et Zucc.) pulp extracts on glucose consumption in human HepG2 cells. J. Funct. Foods, 2015, 14, 144-153.
[http://dx.doi.org/10.1016/j.jff.2015.01.030]
[68]
Shen, S.; Liao, Q.; Feng, Y.; Liu, J.; Pan, R.; Lee, S.M.; Lin, L. Myricanol mitigates lipid accumulation in 3T3-L1 adipocytes and high fat diet-fed zebrafish via activating AMP-activated protein kinase. Food Chem., 2019, 270, 305-314.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.117] [PMID: 30174051]
[69]
Prashar, Y.; Patel, N.J. An in vitro approach to evaluate the anti-adipogenic effect of Myrica nagi Thunb. fruit extract on 3T3-L1 adipocyte cell line. Obes. Med., 2020, 18, 100228.
[http://dx.doi.org/10.1016/j.obmed.2020.100228]
[70]
Zhou, X.; Chen, S.; Ye, X. The anti-obesity properties of the proanthocyanidin extract from the leaves of Chinese bayberry (Myrica rubra Sieb.et Zucc.). Food Funct., 2017, 8(9), 3259-3270.
[http://dx.doi.org/10.1039/C7FO00816C] [PMID: 28828418]
[71]
Agnihotri, S.; Wakode, S.; Agnihotri, A. Formulation and evaluation of herbal antiacne gel of Myrica esculenta. Asian J. Pharm. Clin. Res., 2016, 9(4), 358-361.
[72]
Ray, P.G.; Majumdar, S.K. Antimicrobial activity of some Indian plants. Econ. Bot., 1976, 30(4), 317-320.
[http://dx.doi.org/10.1007/BF02904653]
[73]
Paudel, P.N.; Gyawali, R. Phytochemical screening and antimicrobial activities of some selected medicinal plants of Nepal. Int. J. Pharm. Biol. Arch., 2014, 5, 84-92.
[74]
Nayak, B.K.; Deka, P.; Eloziia, N. Assessment of phytochemical & pharmacological activities of the ethanol leaves extracts of Myrica esculenta Buch. Ham. J. Pharm. Res, 2017, 11, 444-449.
[75]
Patil, S.P.; Pardeshi, M.L.; Ghongane, B.B. Screening for anti-allergic and anti-histaminic activity of extract of momordica dioica, Myrica esculenta and euphorbia hirta in animal models. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(3), 21-28.
[76]
Matsuda, H.; Morikawa, T.; Tao, J.; Ueda, K.; Yoshikawa, M. Bioactive constituents of Chinese natural medicines. VII. Inhibitors of degranulation in RBL-2H3 cells and absolute stereostructures of three new diarylheptanoid glycosides from the bark of Myrica rubra. Chem. Pharm. Bull. (Tokyo), 2002, 50(2), 208-215.
[http://dx.doi.org/10.1248/cpb.50.208] [PMID: 11848211]
[77]
Rana, R.K.; Patel, R.K. Pharmacological evaluation of antiasthmatic activity of Myrica nagi bark extracts. Anti-inflamm. Anti-Allergy Agents Med. Chem., 2016, 15(2), 145-152.
[78]
Qin, M.; Luo, Y.; Meng, X.B.; Wang, M.; Wang, H.W.; Song, S.Y.; Ye, J.X.; Pan, R.L.; Yao, F.; Wu, P.; Sun, G.B.; Sun, X.B. Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways. Vascul. Pharmacol., 2015, 70, 23-34.
[http://dx.doi.org/10.1016/j.vph.2015.03.002] [PMID: 25849952]
[79]
Khan, Y.; Sagrawat, H.; Upmanyu, N.; Siddique, S. Anxiolytic properties of Myrica nagi bark extract. Pharm. Biol., 2008, 46(10-11), 757-761.
[http://dx.doi.org/10.1080/13880200802315436]
[80]
Shen, S.; Liao, Q.; Liu, J.; Pan, R.; Lee, S.M-Y.; Lin, L. Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J. Cachexia Sarcopenia Muscle, 2019, 10(2), 429-444.
[http://dx.doi.org/10.1002/jcsm.12393] [PMID: 30793539]
[81]
Ohguchi, K.; Ozaki, R. Effects of Myrica esculenta bark extracts on melanin biosynthesis. J. Herb. Med. Res., 2017, 15(2), 1-6.
[82]
Jain, V.K.; Jain, B. Antihelmintic activity of ethanolic extract of bark of Myrica esculenta. Int. J. Pharm. Sci. Res., 2010, 1(11), 129.
[83]
Patel, R.K.; De, L.C. Soh-phie (Myrica species)-An unexploited fruit of the future for Meghalaya. ENVIS Bull. Himal. Ecol. Dev., 2006, 14, 34-37.
[84]
Kabra, A.; Baghel, U.S. Nutritional value and elemental analysis of katphala (Myrica esculenta Buch-Ham). J. Biol. Chem. Chron., 2018, 4(2), 19-25.
[85]
Seal, T. Nutritional composition of wild edible fruits in Meghalaya state of India and their ethno-botanical importance. J. Bot. (Faisalabad), 2011, 6(2), 58-67.
[http://dx.doi.org/10.3923/rjb.2011.58.67]
[86]
Saklani, S.; Chandra, S.; Mishra, A.P.; Badoni, P.P. Nutritional evaluation, antimicrobial activity and phytochemical screening of wild edible fruit of Myrica nagi pulp. Int. J. Pharm. Pharm. Sci., 2012, 4(3), 407-411.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy