Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Phytofabricated Nanoparticle Formulation for Cancer Treatment: A Comprehensive Review

Author(s): Mahima Verma, Shireen Fatima and Irfan Ahmad Ansari*

Volume 23, Issue 10, 2022

Published on: 17 August, 2022

Page: [818 - 826] Pages: 9

DOI: 10.2174/1389200223666220427101427

Price: $65

Abstract

In recent times, nanotechnology has made significant advances in the field of cancer. The majority of chemotherapeutic drugs do not selectively target cancer cells, and they might cause side effects and damage to healthy cells, resulting in a variety of adverse effects. Having a thorough understanding of nanoparticles may improve drug targeting and administration. The nano-engineering of pharmacological and natural compounds can improve the diagnosis and treatment. Polymeric micelles, liposomes, and dendrimers are examples of innovative cancer therapeutic nano-formulations. It has been demonstrated that quantum dots, nano-suspensions, and gold nanoparticles can improve drug delivery. Nanomedicines may be delivered more effectively, focusing on cancerous cells instead of healthy tissues, which minimizes undesirable side effects and drug resistance to chemotherapeutic agents. However, limited water solubility, low stability, poor absorption, and quick metabolism limit their therapeutic effectiveness. Nanotechnology has generated unique formulations to optimise the potential use of phytochemicals in anticancer therapy. Nanocomposites can improve phytochemical solubility and bioavailability, extend their half-life in circulation, and even transport phytochemicals to specific locations. The progress in using phytochemical-based nanoparticles in cancer treatment is summarized in this paper.

Keywords: Anti-cancerous, phytochemical, multidrug resistance, nanotechnology, nanoparticles, nanomedicines.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[3]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[4]
Granja, A.; Pinheiro, M.; Reis, S. Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients, 2016, 8(5), 307.
[http://dx.doi.org/10.3390/nu8050307] [PMID: 27213442]
[5]
Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Front. Pharmacol., 2018, 8, 1002.
[http://dx.doi.org/10.3389/fphar.2017.01002] [PMID: 29479316]
[6]
Dhupal, M.; Chowdhury, D. Phytochemical-based nanomedicine for advanced cancer theranostics: Perspectives on clinical trials to clinical use. Int. J. Nanomedicine, 2020, 15, 9125-9157.
[http://dx.doi.org/10.2147/IJN.S259628] [PMID: 33244231]
[7]
Wang, Q.; Wei, Q.; Yang, Q.; Cao, X.; Li, Q.; Shi, F.; Tong, S.S.; Feng, C.; Yu, Q.; Yu, J.; Xu, X. A novel formulation of [6]-gingerol: Prolipo-somes with enhanced oral bioavailability and antitumor effect. Int. J. Pharm., 2018, 535(1-2), 308-315.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.006] [PMID: 29126908]
[8]
Behroozeh, A.; Mazloumi Tabrizi, M.; Kazemi, S.M.; Choupani, E.; Kabiri, N.; Ilbeigi, D.; Heidari Nasab, A.; Akbarzadeh Khiyavi, A.; Seif Kurdi, A. Evaluation the anti-cancer effect of pegylated nano- niosomal gingerol, on breast cancer cell lines (T47D), in-vitro. Asian Pac. J. Cancer Prev., 2018, 19(3), 645-648.
[PMID: 29580033]
[9]
Wu, W.; Zu, Y.; Wang, L.; Wang, L.; Wang, H.; Li, Y.; Wu, M.; Zhao, X.; Fu, Y. Preparation, characterization and antitumor activity evalua-tion of apigenin nanoparticles by the liquid antisolvent precipitation technique. Drug Deliv., 2017, 24(1), 1713-1720.
[http://dx.doi.org/10.1080/10717544.2017.1399302] [PMID: 29115900]
[10]
Zhang, D.; Zhang, J.; Zeng, J.; Li, Z.; Zuo, H.; Huang, C.; Zhao, X. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J. Biomed. Nanotechnol., 2019, 15(2), 288-300.
[http://dx.doi.org/10.1166/jbn.2019.2682] [PMID: 30596551]
[11]
Jhaveri, A.; Deshpande, P.; Pattni, B.; Torchilin, V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J. Control. Release, 2018, 277, 89-101.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.006] [PMID: 29522834]
[12]
Nassir, A. M.; Shahzad, N.; Ibrahim, I. A.; Ahmad, I.; Md, S.; Ain, M. R. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells., 2018, 26(6), 876-885.
[13]
Kazi, J.; Sen, R.; Ganguly, S.; Jha, T.; Ganguly, S.; Chatterjee Debnath, M. Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. Int. J. Pharm., 2020, 585, 119449.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119449] [PMID: 32464231]
[14]
Li, K.; Xiao, G.; Richardson, J.J.; Tardy, B.L.; Ejima, H.; Huang, W.; Guo, J.; Liao, X.; Shi, B. Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin. Adv. Sci. (Weinh.), 2019, 6(5), 1801688.
[http://dx.doi.org/10.1002/advs.201801688] [PMID: 30886799]
[15]
Arya, G.; Das, M.; Sahoo, S.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreat-ic cancer. Biomed. Pharmacother., 2018, 102, 555-566.
[http://dx.doi.org/10.1016/j.biopha.2018.03.101] [PMID: 29597089]
[16]
More, M.P.; Pardeshi, S.R.; Pardeshi, C.; Sonawane, G.A.; Shinde, M.N.; Deshmukh, P.K.; Naik, J.B.; Kulkarni, A.D. Recent advances in phytochemical based Nano-formulation for drug resistant cancer. Med. Drug Discov., 2021, 10, 100082.
[http://dx.doi.org/10.1016/j.medidd.2021.100082]
[17]
Singh, N.; Sachdev, A.; Gopinath, P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol., 2018, 18(3), 1534-1541.
[http://dx.doi.org/10.1166/jnn.2018.14222] [PMID: 29448627]
[18]
Tabassam, Q.; Mehmood, T.; Raza, A.R.; Ullah, A.; Saeed, F.; Anjum, F.M. Synthesis, characterization and anti-cancer therapeutic potential of withanolide-A with 20nm sAuNPs conjugates against SKBR3 breast cancer cell line. Int. J. Nanomedicine, 2020, 15, 6649-6658.
[http://dx.doi.org/10.2147/IJN.S258528] [PMID: 32982224]
[19]
Manatunga, D.C.; de Silva, R.M.; de Silva, K.M.N.; Wijeratne, D.T.; Malavige, G.N.; Williams, G. Fabrication of 6-gingerol, doxorubicin and alginate hydroxyapatite into a bio-compatible formulation: Enhanced anti-proliferative effect on breast and liver cancer cells. Chem. Cent. J., 2018, 12(1), 119.
[http://dx.doi.org/10.1186/s13065-018-0482-6] [PMID: 30470922]
[20]
Siddiqui, I.A.; Adhami, V.M.; Ahmad, N.; Mukhtar, H. Nanochemoprevention: Sustained release of bioactive food components for cancer prevention. Nutr. Cancer, 2010, 62(7), 883-890.
[http://dx.doi.org/10.1080/01635581.2010.509537] [PMID: 20924964]
[21]
Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant ac-tivity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766.
[http://dx.doi.org/10.1080/10837450.2020.1740933] [PMID: 32192406]
[22]
Ghalehkhondabi, V.; Soleymani, M.; Fazlali, A. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy. J. Drug Deliv. Sci. Technol., 2021, 61, 102157.
[http://dx.doi.org/10.1016/j.jddst.2020.102157]
[23]
Halder, A.; Jethwa, M.; Mukherjee, P.; Ghosh, S.; Das, S.; Helal Uddin, A.B.M.; Mukherjee, A.; Chatterji, U.; Roy, P. Lactoferrin-tethered betulinic acid nanoparticles promote rapid delivery and cell death in triple negative breast and laryngeal cancer cells. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1362-1371.
[http://dx.doi.org/10.1080/21691401.2020.1850465] [PMID: 33284038]
[24]
Ge, P.; Niu, B.; Wu, Y.; Xu, W.; Li, M.; Sun, H.; Zhou, H.; Zhang, H.; Xie, J. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem. Eng. J., 2020, 383, 123228.
[http://dx.doi.org/10.1016/j.cej.2019.123228]
[25]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[26]
Nasirizadeh, S.; Jaafari, M.R.; Iranshahi, M.; Golmohammadzadeh, S.; Mahmoudi, A.; Ansari, L. The effect of efflux pump inhibitors on in vitro and in vivo efficacy of solid lipid nanoparticles containing SN38. J. Drug Deliv. Sci. Technol., 2020, 60, 101969.
[http://dx.doi.org/10.1016/j.jddst.2020.101969]
[27]
Nafee, N.; Gaber, D.M.; Elzoghby, A.O.; Helmy, M.W.; Abdallah, O.Y. Promoted antitumor activity of Myricetin against lung carcinoma via nanoencapsulated phospholipid complex in respirable microparticles. Pharm. Res., 2020, 37(4), 82.
[http://dx.doi.org/10.1007/s11095-020-02794-z] [PMID: 32291520]
[28]
Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Panda, P.K.; Jain, S.K. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol., 2020, 56, 101549.
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
[29]
Shu, Q.; Wu, J.; Chen, Q. Synthesis, characterization of liposomes modified with biosurfactant MEL-A loading betulinic acid and its anti-cancer effect in HepG2 cell. Molecules, 2019, 24(21), 3939.
[http://dx.doi.org/10.3390/molecules24213939] [PMID: 31683639]
[30]
Karimi, M.; Gheybi, F.; Zamani, P.; Mashreghi, M.; Golmohammadzadeh, S.; Darban, S.A.; Badiee, A.; Jaafari, M.R. Preparation and charac-terization of stable nanoliposomal formulations of curcumin with high loading efficacy: In vitro and in vivo anti-tumor study. Int. J. Pharm., 2020, 580, 119211.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119211] [PMID: 32156530]
[31]
Wei, Q.; Yang, Q.; Wang, Q.; Sun, C.; Zhu, Y.; Niu, Y.; Yu, J.; Xu, X. Formulation, characterization, and pharmacokinetic studies of 6-gingerol-loaded nanostructured lipid carriers. AAPS PharmSciTech, 2018, 19(8), 3661-3669.
[http://dx.doi.org/10.1208/s12249-018-1165-2] [PMID: 30324361]
[32]
Ige, P.P.; Pardeshi, S.R.; Sonawane, R.O. Development of pH-dependent nanospheres for nebulisation- in vitro diffusion, aerodynamic and cytotoxicity studies. Drug Res. (Stuttg.), 2018, 68(12), 680-686.
[http://dx.doi.org/10.1055/a-0595-7678] [PMID: 29665591]
[33]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[34]
Pillai, S.C.; Borah, A.; Jindal, A.; Jacob, E.M.; Yamamoto, Y.; Kumar, D.S. BioPerine encapsulated nanoformulation for overcoming drug-resistant breast cancers. Asian J. Pharm. Sci., 2020, 15(6), 701-712.
[http://dx.doi.org/10.1016/j.ajps.2020.04.001] [PMID: 33363626]
[35]
Gera, M.; Kim, N.; Ghosh, M.; Sharma, N.; Huynh, D.L.; Chandimali, N.; Koh, H.; Zhang, J.J.; Kang, T.Y.; Park, Y.H.; Kwon, T.; Jeong, D.K. Synthesis and evaluation of the antiproliferative efficacy of BRM270 phytocomposite nanoparticles against human hepatoma cancer cell lines. Mater. Sci. Eng. C, 2019, 97, 166-176.
[http://dx.doi.org/10.1016/j.msec.2018.11.055] [PMID: 30678901]
[36]
Jo, M.J.; Jin, I.S.; Park, C.W.; Hwang, B.Y.; Chung, Y.B.; Kim, J.S.; Shin, D.H. Revolutionizing technologies of nanomicelles for combinatori-al anticancer drug delivery. Arch. Pharm. Res., 2020, 43(1), 100-109.
[http://dx.doi.org/10.1007/s12272-020-01215-4] [PMID: 31989478]
[37]
Khonkarn, R.; Daowtak, K.; Okonogi, S. Chemotherapeutic efficacy enhancement in P-gp overexpressing cancer cells by flavonoid-loaded polymeric micelles. AAPS PharmSciTech, 2020, 21(4), 121.
[http://dx.doi.org/10.1208/s12249-020-01657-5] [PMID: 32337630]
[38]
Lu, Y.; Wen, Q.; Luo, J.; Xiong, K.; Wu, Z.; Wang, B.; Chen, Y.; Yang, B.; Fu, S. Self-assembled dihydroartemisinin nanoparticles as a plat-form for cervical cancer chemotherapy. Drug Deliv., 2020, 27(1), 876-887.
[http://dx.doi.org/10.1080/10717544.2020.1775725] [PMID: 32516033]
[39]
Wang, J.; Yang, H.; Li, Q.; Wu, X.; Di, G.; Fan, J.; Wei, D.; Guo, C. Novel nanomicelles based on rebaudioside A: A potential nanoplatform for oral delivery of honokiol with enhanced oral bioavailability and antitumor activity. Int. J. Pharm., 2020, 590, 119899.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119899] [PMID: 32971177]
[40]
Mardani, R.; Hamblin, M.R.; Taghizadeh, M.; Banafshe, H.R.; Nejati, M.; Mokhtari, M.; Borran, S.; Davoodvandi, A.; Khan, H.; Jaafari, M.R.; Mirzaei, H. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of mela-noma lung metastasis. Pathol. Res. Pract., 2020, 216(9), 153082.
[http://dx.doi.org/10.1016/j.prp.2020.153082] [PMID: 32825950]
[41]
Fathi Karkan, S.; Mohammadhosseini, M.; Panahi, Y.; Milani, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, E.; Hosseini, A.; Davaran, S. Mag-netic nanoparticles in cancer diagnosis and treatment: A review. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 1-5.
[http://dx.doi.org/10.3109/21691401.2016.1153483] [PMID: 27015806]
[42]
Tousi, M.S.; Sepehri, H.; Khoee, S.; Farimani, M.M.; Delphi, L.; Mansourizadeh, F. Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. J. Pharm. Anal., 2021, 11(1), 108-121.
[http://dx.doi.org/10.1016/j.jpha.2020.04.002] [PMID: 33717617]
[43]
Montazerabadi, A.; Beik, J.; Irajirad, R.; Attaran, N.; Khaledi, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Folate-modified and curcumin-loaded den-dritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 330-340.
[http://dx.doi.org/10.1080/21691401.2018.1557670] [PMID: 30688084]
[44]
More, M.P.; Deshmukh, P.K. Computational studies and biosensory applications of graphene-based nanomaterials: A state-of-the-art review. Nanotechnology, 2020, 31(43), 432001.
[http://dx.doi.org/10.1088/1361-6528/ab996e] [PMID: 32498048]
[45]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer] therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[46]
Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv., 2019, 26(1), 1017-1026.
[http://dx.doi.org/10.1080/10717544.2019.1672829] [PMID: 31578087]
[47]
Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57.
[http://dx.doi.org/10.1016/j.jcis.2017.08.097] [PMID: 28881205]
[48]
Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cyto-toxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105.
[http://dx.doi.org/10.1007/s11033-016-3942-x] [PMID: 26748999]
[49]
Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, reten-tion, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[50]
Singh, S.K.; Lillard, J.W., Jr; Singh, R. Reversal of drug resistance by Planetary Ball Milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Lett., 2018, 427, 49-62.
[http://dx.doi.org/10.1016/j.canlet.2018.04.017] [PMID: 29678549]
[51]
Zhang, J.; Li, J.; Shi, Z.; Yang, Y.; Xie, X.; Lee, S.M.; Wang, Y.; Leong, K.W.; Chen, M. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater., 2017, 58, 349-364.
[http://dx.doi.org/10.1016/j.actbio.2017.04.029] [PMID: 28455219]
[52]
Yongvongsoontorn, N.; Chung, J.E.; Gao, S.J.; Bae, K.H.; Yamashita, A.; Tan, M.H.; Ying, J.Y.; Kurisawa, M. Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery. ACS Nano, 2019, 13(7), 7591-7602.
[http://dx.doi.org/10.1021/acsnano.9b00467] [PMID: 31262169]
[53]
Narayanan, A.; Sethuraman, S.; Krishnan, U.M. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed Res. Int., 2014, 424239.
[54]
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 52, 55-64.
[http://dx.doi.org/10.1016/j.jddst.2019.04.025]
[55]
Gumireddy, A.; Christman, R.; Kumari, D.; Tiwari, A.; North, E.J.; Chauhan, H. Preparation, characterization, and in vitro evaluation of cur-cumin-and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2019, 20(4), 145.
[http://dx.doi.org/10.1208/s12249-019-1349-4] [PMID: 30887133]
[56]
Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem., 2013, 48(2), 317-324.
[http://dx.doi.org/10.1016/j.procbio.2012.12.013]
[57]
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep. (Amst.), 2014, 4, 42-49.
[http://dx.doi.org/10.1016/j.btre.2014.08.002] [PMID: 28626661]
[58]
Elangovan, K.; Elumalai, D.; Anupriya, S.; Shenbhagaraman, R.; Kaleena, P.K.; Murugesan, K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J. Photochem. Photobiol. B, 2015, 151, 118-124.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.015] [PMID: 26233711]
[59]
Rathi Sre, P.R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 1137-1144.
[http://dx.doi.org/10.1016/j.saa.2014.08.019] [PMID: 25189525]
[60]
Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. &. Arn. J. Trace Elem. Med. Biol., 2015, 30, 83-89.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.001] [PMID: 25432487]
[61]
Anand, K.; Gengan, R.M.; Phulukdaree, A.; Chuturgoon, A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem., 2015, 21, 1105-1111.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[62]
Arunachalam, K.D.; Arun, L.B.; Annamalai, S.K.; Arunachalam, A.M. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int. J. Nanomedicine, 2014, 10, 31-41.
[http://dx.doi.org/10.2147/IJN.S71182] [PMID: 25565802]
[63]
Joy, B.; Remani, P. Antitumor constituents from Annona squamosa fruit pericarp. Med. Chem. Res., 2008, 17(2), 345-355.
[http://dx.doi.org/10.1007/s00044-007-9070-3]
[64]
Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci. Nanosci. Nanotechnology, 2018, 9(1), 015008.
[http://dx.doi.org/10.1088/2043-6254/aaa6f1]
[65]
Sharmila, G.; Thirumarimurugan, M.; Muthukumaran, C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Char-acterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J., 2019, 145, 578-587.
[http://dx.doi.org/10.1016/j.microc.2018.11.022]
[66]
Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomedicine, 2016, 11, 3691-3701.
[http://dx.doi.org/10.2147/IJN.S97181] [PMID: 27570451]
[67]
Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1617-1627.
[http://dx.doi.org/10.1080/21691401.2019.1594862] [PMID: 31014134]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy