Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Silk Derived Fe/N-Doping Porous Carbon Nanosheets for Chloramphenicol Electrochemical Detection

Author(s): Wenzhuo Chang, Yongxi Zhu, Yongjun Ma*, Zhixiang Zheng* and Chunming Wang

Volume 18, Issue 9, 2022

Published on: 12 September, 2022

Page: [1017 - 1028] Pages: 12

DOI: 10.2174/1573411018666220426123129

open access plus

Abstract

Background: The use of modified electrochemical sensors is essential for the detection of antibiotic drug abuse. The main objective of this article is to develop a silk-derived carbon material for the modification of pyrolytic graphite electrodes (PGE) for the sensitive detection of chloramphenicol (CAP).

Methods: We proposed a pyrolysis synthesis of porous carbon nanosheets (Fe-Silk PNC) using silk as a precursor. Properties of carbon nanosheets had been improved by the Fe-Nx atoms doping, which was attributed to the β-sheet structures and amino-group-rich chemical structures of silk fibroin, and this material has been used to modify the pyrolytic graphite electrode (PGE) for the electrochemical determination of CAP. Scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the morphology and properties of Fe-Silk PNC surface. In the electrochemical determination, cyclic voltammetry (CV) showed a superior current response while bare electrode performed an inferior result. In addition, different scan rate, pH, accumulation time and accumulation potential were carefully optimized, which proved that this material is appropriate for CAP detection. Finally, differential pulse voltammetry (DPV) method was used for quantitative measurements.

Results: In this study, DPV determination of CAP showed the linear relationship with increasing concentration ranged from 1 to 200 μM, and the low detection limit was 0.57 μM (S/N = 3). SEM and FT-IR results further demonstrated the N-doped carbon nanomaterials were successfully synthesized. With excellent sensing performance achieved, the practicability of the sensor has been evaluated to detect CAP in chicken, shrimps and fish.

Conclusion: In summary, a silk derived biomass porous carbon nanomaterial Fe-Silk PNC was simply fabricated and used as a novel electrode material. This kind of novel Fe-Silk PNC modified electrode exhibited excellent sensitivity, anti-interference ability, repeatability, wide linear rang, and was successfully used for determination of CAP in real samples. Therefore, the biomass derived nanomaterial is expected to be used in new sensing materials.

Keywords: Silk, biomass carbon nanostructures, chloramphenicol, surface modification, electrochemical analysis, severe aplastic anemia.

Graphical Abstract

[1]
Ma, P.; Guo, H.; Duan, N.; Ma, X.; Yue, L.; Gu, Q.; Wang, Z. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta, 2021, 230(1), 122349.
[http://dx.doi.org/10.1016/j.talanta.2021.122349] [PMID: 33934798]
[2]
Khoshbin, Z.; Verdian, A.; Housaindokht, M.R.; Izadyar, M.; Rouhbakhsh, Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens. Bioelectron., 2018, 122, 263-283.
[http://dx.doi.org/10.1016/j.bios.2018.09.060] [PMID: 30268964]
[3]
Li, P.; Yu, J.; Zhao, K.; Deng, A.; Li, J. Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol. Biosens. Bioelectron., 2020, 147(1), 111790.
[http://dx.doi.org/10.1016/j.bios.2019.111790] [PMID: 31669805]
[4]
Zhu, J.H.; Feng, Y.G.; Wang, A.J.; Mei, L.P.; Luo, X.; Feng, J.J. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens. Bioelectron., 2021, 181, 113158.
[http://dx.doi.org/10.1016/j.bios.2021.113158] [PMID: 33752026]
[5]
Shad, N.A.; Bajwa, S.Z.; Amin, N.; Taj, A.; Hameed, S.; Khan, Y.; Dai, Z.; Cao, C.; Khan, W.S. Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol. J. Hazard. Mater., 2019, 367, 205-214.
[http://dx.doi.org/10.1016/j.jhazmat.2018.12.072] [PMID: 30594721]
[6]
Ding, Z.; Quinn, B.M.; Haram, S.K.; Pell, L.E.; Korgel, B.A.; Bard, A.J. Electrochemistry and electrogenerated chemilumi-nescence from silicon nanocrystal quantum dots. Science, 2002, 296(5571), 1293-1297.
[http://dx.doi.org/10.1126/science.1069336] [PMID: 12016309]
[7]
Vuran, B.; Ulusoy, H.I.; Sarp, G.; Yilmaz, E.; Morgül, U.; Kabir, A.; Tartaglia, A.; Locatelli, M.; Soylak, M. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta, 2021, 230, 122307.
[http://dx.doi.org/10.1016/j.talanta.2021.122307] [PMID: 33934773]
[8]
Luo, L.; Gu, C.; Li, M.; Zheng, X.; Zheng, F. Determination of residual 4-nitrobenzaldehyde in chloramphenicol and its pharmaceutical formulation by HPLC with UV/Vis detection after derivatization with 3-nitrophenylhydrazine. J. Pharm. Biomed. Anal., 2018, 156, 307-312.
[http://dx.doi.org/10.1016/j.jpba.2018.04.024] [PMID: 29730340]
[9]
Chen, D.; Delmas, J.M.; Hurtaud-Pessel, D.; Verdon, E. Development of a multi-class method to determine nitroimidazoles, nitrofurans, pharmacologically active dyes and chloramphenicol in aquaculture products by liquid chromatographytandem mass spectrometry. Food Chem., 2020, 311, 125924.
[http://dx.doi.org/10.1016/j.foodchem.2019.125924] [PMID: 31865112]
[10]
Guidi, L.R.; Tette, P.A.S.; Gloria, M.B.A.; Fernandes, C. A simple and rapid LC-MS/MS method for the determination of amphenicols in Nile tilapia. Food Chem., 2018, 262, 235-241.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.087] [PMID: 29751915]
[11]
Tian, L.; Bayen, S.; Yaylayan, V. Thermal degradation of five veterinary and human pharmaceuticals using pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis, 2017, 127, 120-125.
[http://dx.doi.org/10.1016/j.jaap.2017.08.016]
[12]
Chang, G.R.; Chen, H.S.; Lin, F.Y. Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatographytandem mass spectrometry (LC/MS/MS) and gas chromatographytandem mass spectrometry (GC/MS/MS). Mar. Pollut. Bull., 2016, 113(1-2), 579-584.
[http://dx.doi.org/10.1016/j.marpolbul.2016.08.080] [PMID: 27612928]
[13]
Zhao, C.; Si, Y.; Pan, B.; Taha, A.Y.; Pan, T.; Sun, G. Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes. Talanta, 2020, 217, 121054.
[http://dx.doi.org/10.1016/j.talanta.2020.121054] [PMID: 32498843]
[14]
Talebizadehsardari, P.; Aramesh-Boroujeni, Z.; Foroughi, M.M.; Eyvazian, A.; Jahani, S.; Faramarzpour, H.R.; Borhani, F.; Ghazanfarabadi, M.; Shabani, M.; Nazari, A.H. Synthesis of carnation-like Ho3+/Co3O4 nanoflowers as a modifier for electrochemical determination of chloramphenicol in eye drop. Microchem. J., 2020, 159.
[http://dx.doi.org/10.1016/j.microc.2020.105535]
[15]
Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z.; Vakili Fathabadi, M.; Hashemipour Rafsanjani, H.; Rostaminasab Dolatabad, M. Template-free synthesis of ZnO/Fe3O4/Carbon magnetic nanocomposite: Nanotubes with hexagonal cross sections and their electrocatalytic property for simultaneous determination of oxymorphone and heroin. Microchem. J., 2021, 170, 106679.
[http://dx.doi.org/10.1016/j.microc.2021.106679]
[16]
Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z. Rostami-nasab Dolatabad, M.; Shahbazkhani, K. Synthesis of 3D cubic of Eu3+/Cu2O with clover-like faces nanostructures and their application as an electrochemical sensor for determination of antiretroviral drug nevirapine. Ceram. Int., 2021, 47(14), 19727-19736.
[http://dx.doi.org/10.1016/j.ceramint.2021.03.311]
[17]
Hajmalek, S.; Jahani, S.; Foroughi, M.M. Simultaneous voltammetric determination of tramadol and paracetamol exploiting glassy carbon electrode modified with FeNi3 nanoalloy in biological and pharmaceutical media. ChemistrySelect, 2021, 6(33), 8797-8808.
[http://dx.doi.org/10.1002/slct.202102341]
[18]
Li, X.; Ping, J.; Ying, Y. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt. Chem., 2019, 113, 1-12.
[http://dx.doi.org/10.1016/j.trac.2019.01.008]
[19]
Gao, S.; Zhang, Y.; Yang, Z.; Fei, T.; Liu, S.; Zhang, T. Electrochemical chloramphenicol sensors-based on trace MoS2 modified carbon nanomaterials: Insight into carbon supports. J. Alloys Compd., 2021, 872, 159687.
[http://dx.doi.org/10.1016/j.jallcom.2021.159687]
[20]
Magesa, F.; Wu, Y.; Tian, Y.; Vianney, J-M.; Buza, J.; He, Q.; Tan, Y. Graphene and graphene like 2D graphitic carbon nitride: Electrochemical detection of food colorants and toxic substances in environment. Trends Environ. Anal. Chem., 2019, 23.
[http://dx.doi.org/10.1016/j.teac.2019.e00064]
[21]
Asif, A.; Heiskanen, A.; Emnéus, J.; Keller, S.S. Pyrolytic carbon nanograss electrodes for electrochemical detection of dopamine. Electrochim. Acta, 2021, 379.
[http://dx.doi.org/10.1016/j.electacta.2021.138122]
[22]
McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev., 2008, 108(7), 2646-2687.
[http://dx.doi.org/10.1021/cr068076m] [PMID: 18557655]
[23]
Wang, Q.; Guo, R.; Wang, Z.; Shen, D.; Yu, R.; Luo, K.; Wu, C.; Gu, S. Progress in carbon-based electrocatalyst derived from biomass for the hydrogen evolution reaction. Fuel, 2021, 293, 24.
[http://dx.doi.org/10.1016/j.fuel.2021.120440]
[24]
Gao, J.; Wang, L.; Zhu, P.; Zhao, X.; Wang, G.; Liu, S. Exploiting encapsulated FeCo alloy decorated N-doped hierarchically porous carbon electrocatalysts in rechargeable Zn-air batteries. J. Alloys Compd., 2021, 870, 159417.
[http://dx.doi.org/10.1016/j.jallcom.2021.159417]
[25]
Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci., 2021, 116, 100717.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100717]
[26]
Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater., 2019, 31(9), e1801072.
[http://dx.doi.org/10.1002/adma.201801072] [PMID: 30300444]
[27]
Wang, C.; Zhang, M.; Xia, K.; Gong, X.; Wang, H.; Yin, Z.; Guan, B.; Zhang, Y. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl. Mater. Interfaces, 2017, 9(15), 13331-13338.
[http://dx.doi.org/10.1021/acsami.7b02985] [PMID: 28345872]
[28]
Zhang, S.; Wang, Y.; Li, D.; Kang, Z.; Dong, F.; Xie, H.; Liu, J. Ru-impregnated needle-like NiCo2O4 embedded in carbon textiles as O2 electrode for a flexible Li–O2 battery. J. Alloys Compd., 2020, 825, 154054.
[http://dx.doi.org/10.1016/j.jallcom.2020.154054]
[29]
Huang, L-B.; Zhao, L.; Zhang, Y.; Luo, H.; Zhang, X.; Zhang, J.; Pan, H.; Hu, J-S. Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chem. Eng. J., 2021, 418, 129409.
[http://dx.doi.org/10.1016/j.cej.2021.129409]
[30]
Chen, J.; Zhou, Y.; Islam, M.S.; Cheng, X.; Brown, S.A.; Han, Z.; Rider, A.; Wang, C.H. Carbon fiber reinforced Zn-MnO2 structural composite batteries. Compos. Sci. Technol., 2021, 209, 108787.
[http://dx.doi.org/10.1016/j.compscitech.2021.108787]
[31]
Chen, D.; Pan, L.; Pei, P.; Huang, S.; Ren, P.; Song, X. Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy, 2021, 224, 120142.
[http://dx.doi.org/10.1016/j.energy.2021.120142]
[32]
Rojas, M.C.; Nieva Lobos, M.L.; Para, M.L.; González Quijón, M.E.; Cámara, O.; Barraco, D.; Moyano, E.L.; Luque, G.L. Activated carbon from pyrolysis of peanut shells as cathode for lithium-sulfur batteries. Biomass Bioenergy, 2021, 146, 105971.
[http://dx.doi.org/10.1016/j.biombioe.2021.105971]
[33]
Yuan, X.; Zhu, B.; Feng, J.; Wang, C.; Cai, X.; Qin, R. Bio-mass bone-derived, N/P-doped hierarchical hard carbon for high-energy potassium-ion batteries. Mater. Res. Bull., 2021, 139, 111282.
[http://dx.doi.org/10.1016/j.materresbull.2021.111282]
[34]
Wang, P.; Gong, Z.; Ye, K.; Gao, Y.; Zhu, K.; Yan, J.; Wang, G.; Cao, D. N-rich biomass carbon derived from hemp as a full carbon-based potassium ion hybrid capacitor anode. Appl. Surf. Sci., 2021, 553, 149569.
[http://dx.doi.org/10.1016/j.apsusc.2021.149569]
[35]
Dan, R.; Chen, W.; Xiao, Z.; Li, P.; Liu, M.; Chen, Z.; Yu, F. N-Doped biomass carbon/reduced graphene oxide as a high-performance anode for sodium-ion batteries. Energy Fuels, 2020, 34(3), 3923-3930.
[http://dx.doi.org/10.1021/acs.energyfuels.0c00058]
[36]
Zhuang, X.; Liu, J.; Zhang, Q.; Wang, C.; Zhan, H.; Ma, L. A review on the utilization of industrial biowaste via hydrothermal carbonization. Renew. Sustain. Energy Rev., 2022, 154.
[http://dx.doi.org/10.1016/j.rser.2021.111877]
[37]
Kumar, R.; Kumar, V.B.; Gedanken, A. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason. Sonochem., 2020, 64, 105009.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105009] [PMID: 32106066]
[38]
Song, X-H.; Feng, L.; Deng, S-L.; Xie, S-Y.; Zheng, L-S. Simultaneous exfoliation and modification of graphitic carbon nitride nanosheets. Adv. Mater. Interfaces, 2017, 4(15), 1700339.
[http://dx.doi.org/10.1002/admi.201700339]
[39]
Omenetto, F.G.; Kaplan, D.L. New opportunities for an ancient material. Science, 2010, 329(5991), 528-531.
[http://dx.doi.org/10.1126/science.1188936] [PMID: 20671180]
[40]
Koh, L-D.; Cheng, Y.; Teng, C-P.; Khin, Y-W.; Loh, X-J.; Tee, S-Y.; Low, M.; Ye, E.; Yu, H-D.; Zhang, Y-W.; Han, M-Y. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci., 2015, 46, 86-110.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.02.001]
[41]
Nita, C.; Zhang, B.; Dentzer, J.; Matei Ghimbeu, C. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. J. Energy Chem, 2021, 58, 207-218.
[http://dx.doi.org/10.1016/j.jechem.2020.08.065]
[42]
Wu, K.; Hu, Y.; Cheng, Z.; Pan, P.; Jiang, L.; Mao, J.; Ni, C.; Gu, X.; Wang, Z. Carbonized regenerated silk nanofiber as multifunctional interlayer for high-performance lithium-sulfur batteries. J. Membr. Sci., 2019, 592, 117349.
[http://dx.doi.org/10.1016/j.memsci.2019.117349]
[43]
Rizzo, G.; Lo Presti, M.; Giannini, C.; Sibillano, T.; Milella, A.; Matzeu, G.; Musio, R.; Omenetto, F.G.; Farinola, G.M. Silk fibroin processing from CeCl3 aqueous solution: Fibers regeneration and doping with Ce(III). Macromol. Chem. Phys., 2020, 221(13)
[http://dx.doi.org/10.1002/macp.202000066]
[44]
Liu, J.; Wei, L.; Wang, H.; Lan, G.; Yang, H.; Shen, J. Silk gel-based N self-doped porous activated carbon as an efficient electrocatalyst in neutral, alkaline and acidic medium. Fuel, 2021, 287, 119485.
[http://dx.doi.org/10.1016/j.fuel.2020.119485]
[45]
McGill, M.; Holland, G.P.; Kaplan, D.L. Experimental methods for characterizing the secondary structure and thermal properties of silk proteins. Macromol. Rapid Commun., 2019, 40(1), e1800390.
[http://dx.doi.org/10.1002/marc.201800390] [PMID: 30073740]
[46]
Wang, C.; Chen, W.; Xia, K.; Xie, N.; Wang, H.; Zhang, Y. Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx -C sites for highly efficient oxygen reaction catalysts. Small, 2019, 15(7), e1804966.
[http://dx.doi.org/10.1002/smll.201804966] [PMID: 30673170]
[47]
Zhou, M.; Cheng, L.; Chen, Z.; Chen, L.; Ma, Y. CdSe QDs@MoS2 nanocomposites with enhanced photocatalytic activity towards ceftriaxone sodium degradation under visible-light irradiation. J. Alloys Compd., 2021, 869.
[http://dx.doi.org/10.1016/j.jallcom.2021.159322]
[48]
Cormac, O.L.; Sanjeev, M.; Abraham, K.M.; Edward, J.P.; Mary, A.H. Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J. Phys. Chem. C, 2009, 113, 20127-20134.
[http://dx.doi.org/10.1021/jp908090s]
[49]
Zhu, Y.; Li, X.; Xu, Y.; Wu, L.; Yu, A.; Lai, G.; Wei, Q.; Chi, H.; Jiang, N.; Fu, L.; Ye, C.; Lin, C.T. Intertwined carbon nanotubes and Ag nanowires constructed by simple solution blending as sensitive and stable chloramphenicol sensors. Sensors (Basel), 2021, 21(4), 1220.
[http://dx.doi.org/10.3390/s21041220] [PMID: 33572293]
[50]
Sebastian, N.; Yu, W-C.; Balram, D. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite. Inorg. Chem. Front., 2019, 6(1), 82-93.
[http://dx.doi.org/10.1039/C8QI01000E]
[51]
Vilian, A.T.E.; Oh, S.Y.; Rethinasabapathy, M.; Umapathi, R.; Hwang, S.K.; Oh, C.W.; Park, B.; Huh, Y.S.; Han, Y.K. Improved conductivity of flower-like MnWO4 on defect engi-neered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. J. Hazard. Mater., 2020, 399, 122868.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122868] [PMID: 32531674]
[52]
Umesh, N.; Sathiyan, A.; Wang, S-F.; Elanthamilan, E.; Merlin, J.P.; Jesila, J.A. A simple chemical approach for synthesis of Sr2Co2O5 nanoparticles and its application in the detection of chloramphenicol and in energy storage systems. J. Electroanal. Chem. (Lausanne), 2021, 880.
[http://dx.doi.org/10.1016/j.jelechem.2020.114911]
[53]
Yang, G.; Zhao, F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nano-tubes@molecularly imprinted polymer. Biosens. Bioelectron., 2015, 64, 416-422.
[http://dx.doi.org/10.1016/j.bios.2014.09.041] [PMID: 25280341]
[54]
Mao, Y.; Guo, L.; Ning, X.; Li, J.; Zheng, J. The signal amplification in electrochemical detection of chloramphenicol using sulfonated polyaniline-chitosan composite as redox capacitor. Electroanalysis, 2018, 30(9), 2085-2093.
[http://dx.doi.org/10.1002/elan.201800218]
[55]
Karthik, R.; Govindasamy, M.; Chen, S.M.; Mani, V.; Lou, B.S.; Devasenathipathy, R.; Hou, Y.S.; Elangovan, A. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J. Colloid Interface Sci., 2016, 475, 46-56.
[http://dx.doi.org/10.1016/j.jcis.2016.04.044] [PMID: 27153217]
[56]
Kaewnu, K.; Promsuwan, K.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. A simple and sensitive electrochemical sensor for chloramphenicol detection in pharmaceutical samples. J. Electrochem. Soc., 2020, 167(8), 087506.
[http://dx.doi.org/10.1149/1945-7111/ab8ce5]
[57]
Pham, T.N.; Van Cuong, N.; Dinh, N.X.; Van Tuan, H.; Phan, V.N.; Thi Lan, N.; Nam, M.H.; Thanh, T.D.; Lam, V.D.; Van Quy, N.; Huy, T.Q.; Phan, M-H.; Le, A-T. Roles of phase purity and crystallinity on chloramphenicol sensing performance of CuCo2O4/CuFe2O4-based electrochemical nanosensors. J. Electrochem. Soc., 2021, 168(2), 026506.
[http://dx.doi.org/10.1149/1945-7111/abde80]
[58]
Wang, K-P.; Zhang, Y-C.; Zhang, X.; Shen, L. Green preparation of chlorine-doped graphene and its application in electrochemical sensor for chloramphenicol detection. SN Applied Sciences., 2019, 1(2)
[http://dx.doi.org/10.1007/s42452-019-0174-4]

© 2024 Bentham Science Publishers | Privacy Policy