Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Recombinant Expression, Purification and PEGylation of DNA Ligases

Author(s): Lindiwe Khumbuzile Zuma, Nothando Lovedale Gasa, Xolani Mazibuko, Mthokozisi Blessing C. Simelane, Priyen Pillay, Lusisizwe Kwezi, Tsepo Tsekoa and Ofentse Jacob Pooe*

Volume 29, Issue 6, 2022

Published on: 15 July, 2022

Page: [505 - 513] Pages: 9

DOI: 10.2174/0929866529666220426122432

Price: $65

Abstract

Background: Reagent proteins such as DNA ligases play a central role in the global reagents market. DNA ligases are commonly used and are vital in academic and science research environments. Their major functions include sealing nicks by linking the 5’-phosphorylated end to a 3’-hydroxyl end on the phosphodiester backbone of DNA, utilizing ATP or NADP molecules as an energy source.

Objective: The current study sought to investigate the role of PEGylation on the biological activity of purified recombinant DNA ligases.

Methods: We produced two recombinant DNA ligases (Ligsv081 and LigpET30) using E. coli expression system and subsequently purified using affinity chromatography. The produced proteins wereconjugated to site specific PEGylation or non-specific PEGylation. FTIR and UV-VIS spectroscopy were used to analyze secondary structures of the PEG conjugated DNA ligases. Differential scanning fluorimetry was employed to assess the protein stability when subjected to various PEGylation conditions.

Results: In this study, both recombinant DNA ligases were successfully expressed and purified as homogenous proteins. Protein PEGylation enhanced ligation activity, increased transformation efficiency by 2-foldfor plasmid ligations and reduced the formation of protein aggregates.

Conclusion: Taken together, site-specific PEGylation can potentially be explored to enhance the biological activity and stability of reagent proteins such as ligases.

Keywords: DNA ligases, site-specific PEGylation, protein expression and purification, protein PEGylation, PEG conjugation, ligase, fluorimetry.

Graphical Abstract

[1]
Hjerde, E.; Maguren, A.; Rzoska-Smith, E.; Kirby, B. Williamson, A DNA ligases of Prochlorococcus marinus: An evolutionary exception to the rules of replication. BioRxiv, 2020, 2020, 089284.
[http://dx.doi.org/10.1101/2020.05.11.089284]
[2]
Samai, P.; Shuman, S. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase. J. Biol. Chem., 2011, 286(25), 22642-22652.
[http://dx.doi.org/10.1074/jbc.M111.245399] [PMID: 21527793]
[3]
Wilkinson, A.; Day, J.; Bowater, R. Bacterial DNA ligases. Mol. Microbiol., 2001, 40(6), 1241-1248.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02479.x] [PMID: 11442824]
[4]
Ramirez-Paz, J. Site-specific PEGylation crosslinking of L-asparaginase subunits to improve its therapeutic efficiency BioRxiv, 2018, 2018, 317040.
[http://dx.doi.org/10.1101/317040]
[5]
González-Valdez, J.; Rito-Palomares, M.; Benavides, J. Advances and trends in the design, analysis, and characterization of polymerprotein conjugates for ‘pEGylaided’ bioprocesses. Ana. Bioanal. Chem., 403(8), 2225-2235.,
[http://dx.doi.org/10.1007/s00216-012-5845-6]
[6]
Kusterle, M.; Jevševar, S.; Porekar, V.G. Size of pegylated protein conjugates studied by various methods. Acta Chim. Slov., 2008, 55(3), 594-601.
[7]
Zhao, W.; Liu, F.; Chen, Y.; Bai, J.; Gao, W. Synthesis of well-defined protein-polymer conjugates for biomedicine. Polymer (Guildf.), 2015, 66, A1-A10.
[http://dx.doi.org/10.1016/j.polymer.2015.03.054]
[8]
Kumari, M.; Sahni, G.; Datta, S. Development of site-specific pegylated granulocyte colony stimulating factor with prolonged biological activity. Front. Bioeng. Biotechnol., 2020, 8, 572077.
[http://dx.doi.org/10.3389/fbioe.2020.572077] [PMID: 33330413]
[9]
Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458.
[http://dx.doi.org/10.1016/S1359-6446(05)03575-0] [PMID: 16243265]
[10]
Sadiki, A.; Vaidya, S.R.; Abdollahi, M.; Bhardwaj, G.; Dolan, M.E.; Turna, H.; Arora, V.; Sanjeev, A.; Robinson, T.D.; Koid, A.; Amin, A.; Zhou, Z.S. Site-specific conjugation of native antibody. Antib. Ther., 2020, 3(4), 271-284.
[http://dx.doi.org/10.1093/abt/tbaa027] [PMID: 33644685]
[11]
Segobola, J.; Adriaenssens, E.; Tsekoa, T.; Rashamuse, K.; Cowan, D. Exploring viral diversity in a unique South African soil habitat. Sci. Rep., 2018, 8(1), 111.
[http://dx.doi.org/10.1038/s41598-017-18461-0] [PMID: 29311639]
[12]
Salomane, N.; Pooe, O.J.; Simelane, M.B.C. Iso-mukaadial acetate and ursolic acid acetate inhibit the chaperone activity of Plasmodium falciparum heat shock protein 70-1. Cell Stress Chaperones, 2021. Epub ahead of print
[http://dx.doi.org/10.1007/s12192-021-01212-6]
[13]
Pooe, O.J.; Köllisch, G.; Heine, H.; Shonhai, A. Plasmodium falciparum heat shock protein 70 lacks immune modulatory activity. Protein Pept. Lett., 2017, 24(6), 503-510.
[http://dx.doi.org/10.2174/0929866524666170214141909] [PMID: 28201964]
[14]
Opoku, F.; Govender, P.P.; Pooe, O.J.; Simelane, M.B.C. Evaluating iso-mukaadial acetate and ursolic acid acetate as Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase inhibitors. Biomolecules, 2019, 9(12), E861.
[http://dx.doi.org/10.3390/biom9120861] [PMID: 31835879]
[15]
Ndlela, S.S.; Friedrich, H.B.; Cele, M.N. Effects of modifying acidity and reducibility on the activity of NaY zeolite in the oxidative dehydrogenation of n-octane. Catalysts, 2020, 10(4)
[http://dx.doi.org/10.3390/catal10040363]
[16]
Singh, D.; Singh, M. Hepatocellular-targeted mrna delivery using functionalized selenium hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro. Pharmaceutics, 2021, 13(3), 298.
[17]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[18]
Fatima, S.; Khan, R.H. Effect of polyethylene glycols on the function and structure of thiol proteases. J. Biochem., 2007, 142(1), 65-72.
[http://dx.doi.org/10.1093/jb/mvm108] [PMID: 17507390]
[19]
Grigoryan, K.; Zatikyan, A.; Shilajyan, H. Effect of monovalent ions on the thermal stability of bovine serum albumin in dimethylsulfoxide aqueous solutions. Spectroscopic approach. J. Biomol. Struct. Dyn., 2020, 39(6), 2284-2288.
[20]
NEB. Why do I need to add PEG to my DNA ligation? 2022; https//www.neb.com/tools-and-resources/video-library/why-do-i-need-to-add-peg-to-my-dna-ligation

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy