Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Antihyperglycemic and Antidyslipidemic Effects of Artemisia arborescens Aqueous Extract on Streptozotocin-induced Diabetic Rats

Author(s): Amine Azzane, Omar Farid and Mohamed Eddouks*

Volume 21, Issue 2, 2023

Published on: 03 October, 2022

Page: [120 - 138] Pages: 19

DOI: 10.2174/1871525720666220425094135

Price: $65

Abstract

Aims: This study aimed to investigate the antidiabetic activity of Artemisia arborescens.

Background: Artemisia arborescens is an aromatic, medicinal, and endemic plant mostly found in the Mediterranean region. This plant is widely used as alternative medicine.

Objective: The study was designed to examine the antihyperglycemic and antihyperlipidemic activities of Artemisia arborescens aqueous extract (AEAA) in normal and streptozotocin (STZ)- induced diabetic rats.

Methods: The effect of AEAA (40 mg/kg and 80 mg/kg) on plasma glucose levels and plasma lipid profile was investigated in normal and STZ-induced diabetic rats. The plasma glucose levels were determined after a single (6 hours) and subchronic oral administration (7 days), and plasma lipid profiles were evaluated after both acute and subchronic oral administration. Additionally, the glycogen content in the liver, extensor digitorum longus (EDL), and soleus muscles was measured using a standard method. Moreover, the aqueous extract was tested for its 1.1-diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging activity.

Results: In diabetic rats, AEAA oral administration (40 mg/kg and 80 mg/kg) produced a significant decrease in blood glucose levels after 7 days of oral administration (P<0.0001). Moreover, a significant decrease in plasma triglyceride levels was reported on the last day of treatment by AEAA (80 mg/kg) (P<0.05). Furthermore, a significant decrease in total cholesterol levels was observed after 7 days of AEAA oral administration in diabetic rats (P<0.01). Moreover, a significant increase in HDL-c concentration was noted after one week of AEAA (80 mg/kg) oral administration (P<0.001). In addition, AEAA oral administration (80 mg/kg) significantly increased the glycogen content in the liver and extensor digitorum longus (P<0.05). On the other hand, qualitative and quantitative phytochemical screenings revealed the presence of various compounds, such as polyphenols, flavonoids, and tannins.

Conclusion: In summary, the study demonstrates that Artemisia arborescens oral administration exhibited a significant antihyperglycemic effect on diabetic rats and revealed a significant amelioration in lipid profile and glycogen content.

Keywords: Antihyperglycemic, antihyperlipidemic, streptozotocin, Artemisia arborescens, medicinal plant, diabetes mellitus.

Graphical Abstract

[1]
Patience, O.O.; Estella, U.O.; Philip, F.U. The search for new hypoglycemic agents from plants. Afr. J. Pharm. Pharmacol., 2014, 8(11), 292-303.
[http://dx.doi.org/10.5897/AJPP2014.3933]
[2]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-173.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[3]
IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Res. Clin. Pract., 2015, 109(3), 461-465.
[http://dx.doi.org/10.1016/j.diabres.2015.05.037] [PMID: 26119773]
[4]
Vats, V.; Yadav, S.P.; Grover, J.K. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J. Ethnopharmacol., 2004, 90(1), 155-160.
[http://dx.doi.org/10.1016/j.jep.2003.09.034] [PMID: 14698524]
[5]
West, K.M.; Ahuja, M.M.S.; Bennett, P.H.; Czyzyk, A.; De Acosta, O.M.; Fuller, J.H.; Grab, B.; Grabauskas, V.; Jarrett, R.J.; Kosaka, K.; Keen, H.; Krolewski, A.S.; Miki, E.; Schliack, V.; Teuscher, A.; Watkins, P.J.; Stober, J.A. The role of circulating glucose and triglyceride concentrations and their interactions with other “risk factors” as determinants of arterial disease in nine diabetic population samples from the WHO multinational study. Diabetes Care, 1983, 6(4), 361-369.
[http://dx.doi.org/10.2337/diacare.6.4.361] [PMID: 6617413]
[6]
Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD). Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2012, 35(6), 1364-1379.
[http://dx.doi.org/10.2337/dc12-0413] [PMID: 22517736]
[7]
Sunil, N. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J. Clin. Endocrinol. Metab., 2010, 95(1), 34-42.
[http://dx.doi.org/10.1210/jc.2009-0473] [PMID: 19892839]
[8]
Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral hypoglycemic drugs: Pathophysiologicalbasis of their mechanism of action. Pharmaceut., 2010, 3(9), 3005-3020.
[http://dx.doi.org/10.3390/ph3093005]
[9]
World Health Organisation. Traditional and complementary medicine policy., 2012.
[10]
Sherif, A.; Hall, RG.; el-Amamy, M. Drugs, insecticides and other agents from Artemisia. Med. Hypotheses, 1987, 23, 187Y193.
[11]
Ballero, M.; Poli, F.; Sacchetti, G.; Loi, MC. Ethnobotanical research in the territory of Fluminimaggiore (south-western Sardinia). Fitoterapia, 2001, 72, 788Y81.
[12]
Dessí, M.A.; Deiana, M.; Rosa, A.; Piredda, M.; Cottiglia, F.; Bonsignore, L.; Deidda, D.; Pompei, R.; Corongiu, F.P. Antioxidant activity of extracts from plants growing in Sardinia. Phytother. Res., 2001, 15(6), 511-518.
[http://dx.doi.org/10.1002/ptr.799] [PMID: 11536381]
[13]
Sinico, C.; De Logu, A.; Lai, F.; Valenti, D.; Manconi, M.; Loy, G.; Bonsignore, L.; Fadda, A.M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm., 2005, 59(1), 161-168.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.005] [PMID: 15567314]
[14]
Al-Momani, W.; Abu-Basha, E.; Janakat, S.; Nicholas, R.A.J.; Ayling, R.D. in vitro antimycoplasmal activity of six Jordanian medicinal plants against three Mycoplasma species. Trop. Anim. Health Prod., 2007, 39(7), 515-519.
[http://dx.doi.org/10.1007/s11250-007-9033-1] [PMID: 17969714]
[15]
Militello, M.; Settanni, L.; Aleo, A.; Mammina, C.; Moschetti, G.; Giammanco, G.M.; Blàzquez, M.A.; Carrubba, A. Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Curr. Microbiol., 2011, 62(4), 1274-1281.
[http://dx.doi.org/10.1007/s00284-010-9855-3] [PMID: 21188586]
[16]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. improves Streptozotocin-induced Diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[17]
Vohnout, B.; Vachulová, A.; Blazícek, P.; Dukát, A.; Fodor, G.; Lietava, J. Evaluation of alternative calculation methods for determining LDL cholesterol. Vnitr. Lek., 2008, 54(10), 961-964.
[PMID: 19009762]
[18]
Brunzell, J.D.; Davidson, M.; Furberg, C.D.; Goldberg, R.B.; Howard, B.V.; Stein, J.H.; Witztum, J.L. Lipoprotein management in patients with cardiometabolic risk: Consensus conference report from the American Diabetes Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol., 2008, 51(15), 1512-1524.
[http://dx.doi.org/10.1016/j.jacc.2008.02.034] [PMID: 18402913]
[19]
Carroll, N.V.; Longley, R.W.; Roe, J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem., 1956, 220(2), 583-593.
[http://dx.doi.org/10.1016/S0021-9258(18)65284-6] [PMID: 13331917]
[20]
Chebli, B. AchouriM.IdrissiH M.HmamouchiM.Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol. Mediterr., 2003, 42, 251-256.
[21]
Ahmad, M.; Lim, C.P.; Akowuah, G.A.; Ismail, N.N.; Hashim, M.A.; Hor, S.Y.; Ang, L.F.; Yam, M.F.; Yam, M.F. Safety assessment of standardised methanol extract of Cinnamomum burmannii. Phytomedicine, 2013, 20(12), 1124-1130.
[http://dx.doi.org/10.1016/j.phymed.2013.05.005] [PMID: 23827665]
[22]
OECD guideline 425. Acute oral toxicity-up-and-down procedure. OECD Guidelines for the Testing of Chemicals; Organization for Economic Cooperation and Development: Paris, France, 2001, p. 2.
[23]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of Mentha suaveolens ehrh in normal and streptozotocin induced diabetic rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[24]
Chansriniyom, C.; Nooin, R.; Nuengchamnong, N.; Wongwanakul, R.; Petpiroon, N.; Srinuanchai, W.; Chantarasuwan, B.; Pitchakarn, P.; Temviriyanukul, P.; Nuchuchua, O. Tandem mass spectrometry of aqueous extract from Ficus dubia sap and its cell-based assessments for use as a skin antioxidant. Sci. Rep., 2021, 11(1), 16899.
[http://dx.doi.org/10.1038/s41598-021-96261-3]
[25]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[26]
Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric., 1978, 29(9), 788-794.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[27]
Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol., 2004, 92(2), 201-208.
[http://dx.doi.org/10.1016/j.biortech.2003.06.002] [PMID: 14693454]
[28]
Mamun-or-Rashid, A.; Hossain, MS.; Hassan, N.; Kumar, Dash BK.; Sapon, A.; Sen, MK. A review on medicinal plants with antidiabetic activity. J. Pharmacogn. Phytochem., 2014, 3(4), 149-159.
[29]
Kolterman, O.G.; Gray, R.S.; Shapiro, G.; Scarlett, J.A.; Griffin, J.; Olefsky, J.M. The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes, 1984, 33(4), 346-354.
[http://dx.doi.org/10.2337/diab.33.4.346] [PMID: 6423429]
[30]
Lebovitz, H.E.; Feinglos, M.N.; Bucholtz, H.K.; Lebovitz, F.L. Potentiation of insulin action: A probable mechanism for the anti-diabetic action of sulfonylurea drugs. J. Clin. Endocrinol. Metab., 1977, 45(3), 601-604.
[http://dx.doi.org/10.1210/jcem-45-3-601] [PMID: 903405]
[31]
Simonson, D.C.; Ferrannini, E.; Bevilacqua, S.; Smith, D.; Barrett, E.; Carlson, R.; DeFronzo, R.A. Mechanism of improvement in glucose metabolism after chronic glyburide therapy. Diabetes, 1984, 33(9), 838-845.
[http://dx.doi.org/10.2337/diab.33.9.838] [PMID: 6432610]
[32]
Ira, J.G. Diabetic Dyslipidemia: Causes and consequences. J. Clin. Endocrinol. Metab., 2001, 8(3)
[33]
Vyas, P.; Gonsai, R.; Meenakshi, C.; Nanavati, M. Coronary atherosclerosis in noncardiac deaths: An autopsy study. J Midlife Health, 2015, 6(1), 5-9.
[http://dx.doi.org/10.4103/0976-7800.153596] [PMID: 25861201]
[34]
Taskinen, M.R. Lipoprotein lipase in diabetes. Diabetes Metab. Rev., 1987, 3(2), 551-570.
[http://dx.doi.org/10.1002/dmr.5610030208] [PMID: 3552532]
[35]
Sattar, N.; Preiss, D.; Robinson, J.G.; Djedjos, C.S.; Elliott, M.; Somaratne, R.; Wasserman, S.M.; Raal, F.J. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: A meta-analysis of individual patient data. Lancet Diabetes Endocrinol., 2016, 4(5), 403-410.
[http://dx.doi.org/10.1016/S2213-8587(16)00003-6] [PMID: 26868195]
[36]
Strålfors, P.; Honnor, R.C. Insulin-induced dephosphorylation of hormone-sensitive lipase. Correlation with lipolysis and cAMP-dependent protein kinase activity. Eur. J. Biochem., 1989, 182(2), 379-385.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14842.x] [PMID: 2661229]
[37]
Jung, U.J.; Lee, M.K.; Park, Y.B.; Kang, M.A.; Choi, M.S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol., 2006, 38(7), 1134-1145.
[http://dx.doi.org/10.1016/j.biocel.2005.12.002] [PMID: 16427799]
[38]
Lee, J.H.; Seo, W.D.; Jeong, S.H.; Jeong, T.S.; Lee, W.S.; Park, K.H. Human acyl-CoA: Cholesterol acyltransferase inhibitory effect of flavonoids from roots of Glycine max(L.) Merr. Agric Chem Biotechnol, 2006, 49, 57-61.
[39]
Vats, V.; Yadav, S.P.; Grover, J.K. Effect of T. foenumgraecum on glycogen content of tissues and the key enzymes of carbohydrate metabolism. J. Ethnopharmacol., 2003, 85(2-3), 237-242.
[http://dx.doi.org/10.1016/S0378-8741(03)00022-9] [PMID: 12639747]
[40]
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595-1607.
[http://dx.doi.org/10.2337/diab.37.12.1595] [PMID: 3056758]
[41]
Maiti, R.; Jana, D.; Das, U.K.; Ghosh, D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2004, 92(1), 85-91.
[http://dx.doi.org/10.1016/j.jep.2004.02.002] [PMID: 15099853]
[42]
Ghosh, R.; Sharatchandra, Kh.; Rita, S.; Thokchom, I.S. Hypoglycemic activity of Ficus hispida (bark) in normal and (bark) in normal and (bark) in normal and (bark) in normal and (bark) in normal and diabetic albino ratsdiabetic albino rats diabetic albino rats diabetic albino rats diabetic albino rats. Indian J. Pharmacol., 2004, 36, 222-225.
[43]
Guimarães, P.R.; Galvão, A.M.P.; Batista, C.M.; Azevedo, G.S.; Oliveira, R.D.; Lamounier, R.P.; Freire, N.; Barros, A.M.D.; Sakurai, E.; Oliveira, J.P.; Vieira, E.C.; Alvarez-Leite, J.I. Eggplant (Solanum melongena) infusion has a modest and transitory effect on hypercholesterolemic subjects. Braz. J. Med. Biol. Res., 2000, 33(9), 1027-1036.
[http://dx.doi.org/10.1590/S0100-879X2000000900006] [PMID: 10973133]
[44]
Bonnefont-Rousselot, D.; Bastard, J.P.; Jaudon, M.C.; Delattre, J. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab., 2000, 26(3), 163-176.
[PMID: 10880889]
[45]
Telci, A.; Çakatay, U.; Salman, S.; Satman, İ.; Sivas, A. Oxidative protein damage in early stage Type 1 diabetic patients. Diabetes Res. Clin. Pract., 2000, 50(3), 213-223.
[http://dx.doi.org/10.1016/S0168-8227(00)00197-2] [PMID: 11106836]
[46]
Turk, H.M.; Sevinc, A.; Camci, C.; Cigli, A.; Buyukberber, S.; Savli, H.; Bayraktar, N. Plasma lipid peroxidation products and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Acta Diabetol., 2002, 39(3), 117-122.
[http://dx.doi.org/10.1007/s005920200029] [PMID: 12357295]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy