Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Fungal Endophytes: A Storehouse of Bioactive Compounds

Author(s): Suraj Kumar Shah, Yadu Nandan Dey, Yasasve Madhavan and Arindam Maity*

Volume 23, Issue 9, 2023

Published on: 02 September, 2022

Page: [978 - 991] Pages: 14

DOI: 10.2174/1389557522999220422133020

Price: $65

Abstract

Fungal endophytes are the microbial adaptations that usually enter the plant tissues during their life cycle without harming the host plants. They are found everywhere on earth and generally depend on the hosts by developing various symbiotic relationships, like mutualism, hostility, and parasitism on rare occasions, leading to the growth and rise in the nutrient content of the hosts. Endophytes can develop tolerance in host organisms against the stresses induced by either living or non-living agents. They may protect them from insects or pests by building resistance. Interestingly, endophytes can synthesize many phytohormones, natural medicinal compounds and several essential enzymes beneficial for biotechnological perspectives that can be obtained by culturing plant tissue in a suitable medium. These endophytes are a reservoir of many new active phytoconstituents, like alkaloids, phenolics, steroids, quinones, tannins, saponins, etc., which exhibit anticancer, antiinsecticidal, antioxidant, antibacterial, antiviral, antifungal, and many more properties. Exploring the new bioactive chemical entities from the endophytes may supply potent lead compounds for drug discovery to combat numerous disease conditions. Hence, the present review was carried out to explore the significance of the fungal endophytes and their medicinal, food, and cosmetic use.

Keywords: Endophytes, bioactive compounds, phytohormones, secondary metabolites, drug discovery, fungal endophytes.

« Previous
Graphical Abstract

[1]
Subbulakshmi, G.K.; Thalavaipandian, A.; Bagyalakshmi, R.V.; Rajendran, A. Bioactive endophytic fungal isolates of Biotaorientalis(L) Endl., Pinus excels Wall. and Thujaoccidentalis L. Int. J. Adv. Life Sci., 2012, 4, 9-15.
[2]
Weyens, N.; van der Lelie, D.; Artois, T.; Smeets, K.; Taghavi, S.; Newman, L.; Carleer, R.; Vangronsveld, J. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ. Sci. Technol., 2009, 43(24), 9413-9418.
[http://dx.doi.org/10.1021/es901997z] [PMID: 20000537]
[3]
Nair, D.N.; Padmavathy, S. Impact of endophytic microorganisms on plants, environment and humans. ScientificWorldJournal, 2014, 2014, 250693.
[http://dx.doi.org/10.1155/2014/250693] [PMID: 24587715]
[4]
Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Del Rio, T.G.; Edgar, R.C.; Eickhorst, T.; Ley, R.E.; Hugenholtz, P.; Tringe, S.G.; Dangl, J.L. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488(7409), 86-90.
[http://dx.doi.org/10.1038/nature11237] [PMID: 22859206]
[5]
Joseph, B.; Priya, R.M. Bioactive compounds from endophytes and their potential in pharmaceutical effect: A review. Am. J. Biochem. Mol. Biol., 2011, 1(3), 291-309.
[http://dx.doi.org/10.3923/ajbmb.2011.291.309]
[6]
Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 2003, 67(4), 491-502.
[http://dx.doi.org/10.1128/MMBR.67.4.491-502.2003] [PMID: 14665674]
[7]
Hata, K.; Sone, K. Isolation of endophytes from leaves of Neolitsea sericea in broad leaf and conifer stands. Mycoscience, 2008, 49(4), 229-232.
[http://dx.doi.org/10.1007/S10267-008-0411-Y]
[8]
Specian, V.; Sarragiotto, M.H.; Pamphile, J.A.; Clemente, E. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz. J. Microbiol., 2012, 43(3), 1174-1182.
[http://dx.doi.org/10.1590/S1517-83822012000300045] [PMID: 24031942]
[9]
Stępniewska, Z.; Kuźniar, A. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases. Appl. Microbiol. Biotechnol., 2013, 97(22), 9589-9596.
[http://dx.doi.org/10.1007/s00253-013-5235-9] [PMID: 24048641]
[10]
Dudeja, S.S.; Giri, R. Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legume and non-legume. Afr. J. Microbiol. Res., 2014, 8(15), 1562-1572.
[http://dx.doi.org/10.5897/AJMR2013.6541]
[11]
Lam, K.S. New aspects of natural products in drug discovery. Trends Microbiol., 2007, 15(6), 279-289.
[http://dx.doi.org/10.1016/j.tim.2007.04.001] [PMID: 17433686]
[12]
Andreote, F.D.; Gumiere, T.; Durrer, A. Exploring interactions of plant microbiomes. Sci. Agric., 2014, 71(6), 528-539.
[http://dx.doi.org/10.1590/0103-9016-2014-0195]
[13]
Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol., 2013, 11(11), 789-799.
[http://dx.doi.org/10.1038/nrmicro3109] [PMID: 24056930]
[14]
Oldroyd, G.E.D.; Murray, J.D.; Poole, P.S.; Downie, J.A. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet., 2011, 45(1), 119-144.
[http://dx.doi.org/10.1146/annurev-genet-110410-132549] [PMID: 21838550]
[15]
Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. Genome Biol., 2013, 14(6), 209.
[http://dx.doi.org/10.1186/gb-2013-14-6-209] [PMID: 23805896]
[16]
De Bary, A. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten; Hofmeister’s Handbook of Physiological Botany: Leipzig, 1866, p. 2.
[17]
Wilson, D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 1995, 73(2), 274-276.
[http://dx.doi.org/10.2307/3545919]
[18]
Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W.F.; Kloepper, J.W. Bacterial endophytes in agricultural crops. Can. J. Microbiol., 1997, 43(10), 895-914.
[http://dx.doi.org/10.1139/m97-131]
[19]
Bacon, C.W.; White, J.F. Microbial Endophytes, 1st Ed; Marcel Dekker Inc. CRC Press: New York, NY, 2000.
[http://dx.doi.org/10.1201/9781482277302]
[20]
Petrini, O. Fungal endophytes of tree leaves. In: Microbial Ecology of Leaves; Andrews, J.H.; Hirano, S.S., Eds.; Springer-Verlag: New York, NY, 1991; pp. 179-197.
[http://dx.doi.org/10.1007/978-1-4612-3168-4_9]
[21]
Rosenblueth, M.; Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact., 2006, 19(8), 827-837.
[http://dx.doi.org/10.1094/MPMI-19-0827] [PMID: 16903349]
[22]
Hardoim, P.R.; van Overbeek, L.S.; Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol., 2008, 16(10), 463-471.
[http://dx.doi.org/10.1016/j.tim.2008.07.008] [PMID: 18789693]
[23]
Abreu-Tarazi, M.F.; Navarrete, A.A.; Andreote, F.D.; Almeida, C.V.; Tsai, S.M.; Almeida, M. Endophytic bacteria in long-term in-vitro cultivated axenic pineapple micro-plants revealed by PCRDGGE. World J. Microbiol. Biotechnol., 2010, 26(3), 555-560.
[http://dx.doi.org/10.1007/s11274-009-0191-3]
[24]
Dini-Andreote, F.; Andreote, F.D.; Araújo, W.L.; Trevors, J.T.; van Elsas, J.D. Bacterial genomes: Habitat specificity and uncharted organisms. Microb. Ecol., 2012, 64(1), 1-7.
[http://dx.doi.org/10.1007/s00248-012-0017-y] [PMID: 22395783]
[25]
Mitter, B.; Petric, A.; Shin, M.W.; Chain, P.S.G.; Hauberg-Lotte, L.; Reinhold-Hurek, B.; Nowak, J.; Sessitsch, A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci., 2013, 4, 120.
[http://dx.doi.org/10.3389/fpls.2013.00120] [PMID: 23641251]
[26]
(a) Sun, H.; He, Y.; Xiao, Q.; Ye, R.; Tian, Y. Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr. J. Microbiol. Res., 2013, 7(16), 1496-1504.
[http://dx.doi.org/10.5897/AJMR12.899];
(b) Mishra, Y.; Singh, A.; Batra, A.; Sharma, M.M. Understanding the biodiversity and biological applications of endophytic fungi: A review. J. Microb. Biochem. Technol., 2014, S8, 4.
[27]
Bérdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. (Tokyo), 2012, 65(8), 385-395.
[http://dx.doi.org/10.1038/ja.2012.27] [PMID: 22511224]
[28]
Dayle, E.S.; Polans, N.O.; Paul, D.S.; Melvin, R.D. Angiosperm DNA contamination by endophytic fungi: Detection and methods of avoidance. Plant Mol. Biol. Report., 2001, 19(3), 249-260.
[http://dx.doi.org/10.1007/BF02772897]
[29]
Jalgaonwala, R.E.; Mohite, B.V.; Mahajan, R.T. Natural products from plant associated endophytic fungi. J. Microbiol. Biotechnol. Res., 2011, 1, 21-32.
[30]
Bhardwaj, A.; Agrawal, P. A review fungal endophyte: As a store house of bioactive compound. World J. Pharm. Pharm. Sci., 2014, 3, 228-237.
[31]
(a) Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites. Nat. Prod. Rep., 2001, 18(4), 448-459.
[http://dx.doi.org/10.1039/b100918o] [PMID: 11548053];
(b) Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genet. Biol., 2011, 48(1), 15-22.
[http://dx.doi.org/10.1016/j.fgb.2010.04.004] [PMID: 20433937];
(c) Brakhage, A.A.; Schuemann, J.; Bergmann, S.; Scherlach, K.; Schroeckh, V.; Hertweck, C. Activation of fungal silent gene clusters: A new avenue to drug discovery. Prog. Drug Res., 2008, 66, 1-12.
[http://dx.doi.org/10.1007/978-3-7643-8595-8_1]
[32]
Wang, L.W.; Zhang, Y.L.; Lin, F.C.; Hu, Y.Z.; Zhang, C.L. Natural products with antitumor activity from endophytic fungi. Mini Rev. Med. Chem., 2011, 11(12), 1056-1074.
[http://dx.doi.org/10.2174/138955711797247716] [PMID: 21861806]
[33]
(a) Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem., 2011, 11(2), 159-168.
[http://dx.doi.org/10.2174/138955711794519492] [PMID: 21222580];
(b) Wankhede, D.P.; Biswas, D.K.; Rajkumar, S.; Sinha, A.K. Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Protoplasma, 2013, 250(6), 1239-1249.
[http://dx.doi.org/10.1007/s00709-013-0505-z] [PMID: 23653238]
[34]
Deshmukh, S.K.; Verekar, S.A.; Bhave, S.V. Endophytic fungi: A reservoir of antibacterials. Front. Microbiol., 2015, 5, 715.
[http://dx.doi.org/10.3389/fmicb.2014.00715] [PMID: 25620957]
[35]
Vasundhara, M.; Baranwal, M.; Kumar, A. Fusarium tricinctum, and endophytic fungus exhibits cell growth inhibition and antioxidant activity. Indian J. Microbiol., 2016, 56(4), 433-438.
[http://dx.doi.org/10.1007/s12088-016-0600-x] [PMID: 27784939]
[36]
Bouzouina, M.; Kouadria, R.; Lotmani, B. Fungal endophytes alleviate salt stress in wheat in terms of growth, ion homeostasis and osmoregulation. J. Appl. Microbiol., 2021, 130(3), 913-925.
[http://dx.doi.org/10.1111/jam.14804] [PMID: 32743928]
[37]
Vázquez de Aldana, B.R.; Arellano, J.B.; Cuesta, M.J.; Mellado-Ortega, E.; González, V.; Zabalgogeazcoa, I. Screening fungal endophytes from a wild grass for growth promotion in tritordeum, an agricultural cereal. Plant Sci., 2021, 303, 110762.
[http://dx.doi.org/10.1016/j.plantsci.2020.110762] [PMID: 33487346]
[38]
Ruiz Mostacero, N.; Castelli, M.V.; Barolo, M.I.; Amigot, S.L.; Fulgueira, C.L.; López, S.N. Fungal endophytes in Peperomia obtusifolia and their potential as inhibitors of chickpea fungal pathogens. World J. Microbiol. Biotechnol., 2021, 37(1), 14.
[http://dx.doi.org/10.1007/s11274-020-02954-8] [PMID: 33394165]
[39]
Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105), 214-216.
[http://dx.doi.org/10.1126/science.8097061] [PMID: 8097061]
[40]
Zhou, G.B.; Kang, H.; Wang, L.; Gao, L.; Liu, P.; Xie, J.; Zhang, F.X.; Weng, X.Q.; Shen, Z.X.; Chen, J.; Gu, L.J.; Yan, M.; Zhang, D.E.; Chen, S.J.; Wang, Z.Y.; Chen, Z. Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 2007, 109(8), 3441-3450.
[http://dx.doi.org/10.1182/blood-2006-06-032250] [PMID: 17197433]
[41]
Bedair, M.; Sumner, L.W. Current and emerging mass-spectrometry technologies for metabolomics. Trends Analyt. Chem., 2008, 27(3), 238-250.
[http://dx.doi.org/10.1016/j.trac.2008.01.006]
[42]
Aly, A.H.; Debbab, A.; Kjer, J.; Proksch, P. Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products. Fungal Divers., 2010, 41(1), 1-16.
[http://dx.doi.org/10.1007/s13225-010-0034-4]
[43]
Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog., 2015, 82, 50-59.
[http://dx.doi.org/10.1016/j.micpath.2015.04.001] [PMID: 25865953]
[44]
Garyali, S.; Kumar, A.; Reddy, M.S. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J. Microbiol. Biotechnol., 2013, 23(10), 1372-1380.
[http://dx.doi.org/10.4014/jmb.1305.05070] [PMID: 23801250]
[45]
Roopa, G.; Madhusudhan, M.C.; Sunil, K.C.R.; Lisa, N.; Calvin, R.; Poornima, R.; Zeinab, N.; Kini, K.R.; Prakash, H.S.; Geetha, N. Identification of Taxol-producing endophytic fungi isolated from Salacia oblonga through genomic mining approach. J. Genet. Eng. Biotechnol., 2015, 13(2), 119-127.
[http://dx.doi.org/10.1016/j.jgeb.2015.09.002] [PMID: 30647575]
[46]
Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; Mandal, R.; Sinelnikov, I.; Xia, J.; Jia, L.; Cruz, J.A.; Lim, E.; Sobsey, C.A.; Shrivastava, S.; Huang, P.; Liu, P.; Fang, L.; Peng, J.; Fradette, R.; Cheng, D.; Tzur, D.; Clements, M.; Lewis, A.; De Souza, A.; Zuniga, A.; Dawe, M.; Xiong, Y.; Clive, D.; Greiner, R.; Nazyrova, A.; Shaykhutdinov, R.; Li, L.; Vogel, H.J.; Forsythe, I. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res., 2009, 37(Database issue), D603-D610.
[http://dx.doi.org/10.1093/nar/gkn810] [PMID: 18953024]
[47]
Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit., 2005, 27(6), 747-751.
[http://dx.doi.org/10.1097/01.ftd.0000179845.53213.39] [PMID: 16404815]
[48]
Cui, Q.; Lewis, I.A.; Hegeman, A.D.; Anderson, M.E.; Li, J.; Schulte, C.F.; Westler, W.M.; Eghbalnia, H.R.; Sussman, M.R.; Markley, J.L. Metabolite identification via the Madison metabolomics consortium database. Nat. Biotechnol., 2008, 26(2), 162-164.
[http://dx.doi.org/10.1038/nbt0208-162] [PMID: 18259166]
[49]
Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 2007, 27, 8-105.
[http://dx.doi.org/10.1186/1471-2105-8-105]
[50]
Böcker, S.; Letzel, M.C.; Lipták, Z.; Pervukhin, A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics, 2009, 25(2), 218-224.
[http://dx.doi.org/10.1093/bioinformatics/btn603] [PMID: 19015140]
[51]
Sawada, Y.; Hirai, M.Y. Integrated LC-MS/MS system for plant metabolomics. Comput. Struct. Biotechnol. J., 2013, 4(5), e201301011.
[http://dx.doi.org/10.5936/csbj.201301011] [PMID: 24688692]
[52]
Castro, A.; Moco, S.; Coll, J.; Vervoort, J. LC-MS-SPE-NMR for the isolation and characterization of neo-clerodane diterpenoids from Teucrium luteum subsp. flavovirens (perpendicular). J. Nat. Prod., 2010, 73(5), 962-965.
[http://dx.doi.org/10.1021/np9005025] [PMID: 20507180]
[53]
van der Hooft, J.J.; Mihaleva, V.; de Vos, R.C.; Bino, R.J.; Vervoort, J. A strategy for fast structural elucidation of metabolites in small volume plant extracts using automated MS-guided LC-MS-SPE-NMR. Magn. Reson. Chem., 2011, 49(Suppl. 1), S55-S60.
[http://dx.doi.org/10.1002/mrc.2833] [PMID: 22290710]
[54]
Van Lanen, S.G.; Shen, B. Microbial genomics for the improvement of natural product discovery. Curr. Opin. Microbiol., 2006, 9(3), 252-260.
[http://dx.doi.org/10.1016/j.mib.2006.04.002] [PMID: 16651020]
[55]
(a) Osbourn, A. Secondary metabolic gene clusters: Evolutionary toolkits for chemical innovation. Trends Genet., 2010, 26(10), 449-457.
[http://dx.doi.org/10.1016/j.tig.2010.07.001] [PMID: 20739089];
(b) Rank, C.; Larsen, T.O.; Frisvad, J.C. Functional systems biology of Aspergillus. In: Aspergillus. Molecular Biology and Genomics; Caister Academic Press; Machida, M.; Gomi, K., Eds.; NSU: Norfolk, 2010; pp. 173-198.
[56]
Kusari, S.; Spiteller, M. Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat. Prod. Rep., 2011, 28(7), 1203-1207.
[http://dx.doi.org/10.1039/c1np00030f] [PMID: 21629952]
[57]
(a) Kusari, S.; Pandey, S.P.; Spiteller, M. Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry, 2013, 91, 81-87.
[http://dx.doi.org/10.1016/j.phytochem.2012.07.021] [PMID: 22954732];
(b) Xiong, Z.Q.; Yang, Y.Y.; Zhao, N.; Wang, Y. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol., 2013, 13(1), 71.
[http://dx.doi.org/10.1186/1471-2180-13-71] [PMID: 23537181]
[58]
Sun, X.; Guo, L.D. Endophytic fungal diversity: Review of traditional and molecular techniques. Mycology, 2012, 3(1), 65-76.
[59]
Pandey, A.K.; Reddy, M.S.; Suryanarayanan, T.S. ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycol. Res., 2003, 107(Pt 4), 439-444.
[http://dx.doi.org/10.1017/S0953756203007494] [PMID: 12825516]
[60]
Sun, X.; Guo, L.D.; Hyde, K.D. Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers., 2011, 47(1), 85-95.
[http://dx.doi.org/10.1007/s13225-010-0086-5]
[61]
Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod., 2004, 67(2), 257-268.
[http://dx.doi.org/10.1021/np030397v] [PMID: 14987067]
[62]
Pimentel, M.R.; Molina, G.; Dionísio, A.P.; Maróstica, Junior, M.R.; Pastore, G.M. The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol. Res. Int., 2011, 2011, 576286.
[http://dx.doi.org/10.4061/2011/576286] [PMID: 21350663]
[63]
Vinayarani, G.; Prakash, H.S. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J. Microbiol. Biotechnol., 2018, 34(3), 49.
[http://dx.doi.org/10.1007/s11274-018-2431-x] [PMID: 29541936]
[64]
Katoch, M.; Phull, S.; Vaid, S.; Singh, S. Diversity, Phylogeny, anticancer and antimicrobial potential of fungal endophytes associated with Monarda citriodora L. BMC Microbiol., 2017, 17(1), 44.
[http://dx.doi.org/10.1186/s12866-017-0961-2] [PMID: 28264654]
[65]
Tapfuma, K.I.; Uche-Okereafor, N.; Sebola, T.E.; Hussan, R.; Mekuto, L.; Makatini, M.M.; Green, E.; Mavumengwana, V. Cytotoxic activity of crude extracts from Datura stramonium’s fungal endophytes against A549 lung carcinoma and UMG87 glioblastoma cell lines and LC-QTOF-MS/MS based metabolite profiling. BMC Complement. Altern. Med., 2019, 19(1), 330.
[http://dx.doi.org/10.1186/s12906-019-2752-9] [PMID: 31752824]
[66]
Firáková, S.; Šturdíková, M. Múčková, M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia (Bratisl.), 2007, 62(3), 251-257.
[http://dx.doi.org/10.2478/s11756-007-0044-1]
[67]
Zhang, P.; Zhou, P.P.; Jiang, C.; Yu, H.; Yu, L.J. Screening of Taxol-producing fungi based on PCR amplification from Taxus. Biotechnol. Lett., 2008, 30(12), 2119-2123.
[http://dx.doi.org/10.1007/s10529-008-9801-7] [PMID: 18709488]
[68]
Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod., 2009, 72(1), 2-7.
[http://dx.doi.org/10.1021/np800455b] [PMID: 19119919]
[69]
Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod., 2005, 68(12), 1717-1719.
[http://dx.doi.org/10.1021/np0502802] [PMID: 16378360]
[70]
Rehman, S.; Shawl, A.S.; Verma, V.; Kour, A.; Athar, M.; Andrabi, R.; Sultan, P.; Qazi, G.N. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl. Biokhim. Mikrobiol., 2008, 44(2), 225-231.
[PMID: 18669267]
[71]
Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Uma Shaanker, R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 2010, 71(1), 117-122.
[http://dx.doi.org/10.1016/j.phytochem.2009.09.030] [PMID: 19863979]
[72]
(a) Jew, S.; Kim, H.J.; Kim, M.G.; Roh, E.Y.; Hong, C.I.; Kim, J.K.; Lee, J.H.; Lee, H.; Park, H. Synthesis and in vitro cytotoxicity of hexacyclic camptothecin analogues. Bioorg. Med. Chem. Lett., 1999, 9(22), 3203-3206.
[http://dx.doi.org/10.1016/S0960-894X(99)00555-7] [PMID: 10576688];
(b) Lau, W.; Sattely, E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science, 2015, 349(6253), 1224-1228.
[http://dx.doi.org/10.1126/science.aac7202] [PMID: 26359402]
[73]
Deshmukh, S.K.; Mishra, P.D.; Kulkarni-Almeida, A.; Verekar, S.; Sahoo, M.R.; Periyasamy, G.; Goswami, H.; Khanna, A.; Balakrishnan, A.; Vishwakarma, R. Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem. Biodivers., 2009, 6(5), 784-789.
[http://dx.doi.org/10.1002/cbdv.200800103] [PMID: 19479845]
[74]
Zhang, J.Y.; Tao, L.Y.; Liang, Y.J.; Yan, Y.Y.; Dai, C.L.; Xia, X.K.; She, Z.G.; Lin, Y.C.; Fu, L.W. Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G(1) with involvement of GSK-3beta/beta-catenin/c-Myc pathway. Cell Cycle, 2009, 8(15), 2444-2450.
[http://dx.doi.org/10.4161/cc.8.15.9170] [PMID: 19571678]
[75]
Fernandes, M.D.R.V.; Silva, T.A.C.; Pfenning, L.H.; Costa-Neto, C.M.; Heinrich, T.A.; Alencar, S.M.; Lima, M.A.; Ikegaki, M. Costa-Neto, C.M.; Heinrich, T.A.; de Alencar, S.M.; de Lima, M.A.; Ikegaki, M. Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L. Braz. J. Pharm. Sci., 2009, 45(4), 677-685.
[http://dx.doi.org/10.1590/S1984-82502009000400010]
[76]
(a) Li, J.; Zhao, G.Z.; Chen, H.H.; Wang, H.B.; Qin, S.; Zhu, W.Y.; Xu, L.H.; Jiang, C.L.; Li, W.J. Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett. Appl. Microbiol., 2008, 47(6), 574-580.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02470.x] [PMID: 19120929];
(b) Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Zhou, J. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol., 2008, 78(2), 241-247.
[http://dx.doi.org/10.1007/s00253-007-1305-1] [PMID: 18092158]
[77]
Pandey, P.K.; Singh, S.; Yadav, R.N.S.; Singh, A.K.; Singh, M. Ck. Fungal Endophytes: Promising tools for pharmaceutical science. Int. J. Pharm. Sci. Rev. Res., 2014, 25(2), 128-138.
[78]
Ibrahim, M.; Oyebanji, E.; Fowora, M.; Aiyeolemi, A.; Orabuchi, C.; Akinnawo, B.; Adekunle, A.A. Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complement. Med. Ther, 2021, 21(1), 98.
[http://dx.doi.org/10.1186/s12906-021-03269-3] [PMID: 33743702]
[79]
Zhao, J.; Zhou, L.; Wang, J.; Shan, T.; Zhong, L.; Liu, X.; Gao, X.; Mendez Vilas, A. Endophytic fungi for producing bioactive compounds originally from their host plants.Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Mendez-Vilas, A., Ed.; FORMATEX: Badajoz, Spain, 2010, pp. 567-576.
[80]
Schulzt, B.; Boyle, C.; Draeger, S.; Rommert, A-K.; Krohn, K. Endophytic fungi: A source of novel metabolites. British Mycological Society, International Symposium Proceedings on Bioactive fungal metabolites –Impact and Exploitation; 2001 Apr 22-27; University of Wales,
[81]
Song, J.H. What’s new on the antimicrobial horizon? Int. J. Antimicrob. Agents, 2008, 32(Suppl. 4), S207-S213.
[http://dx.doi.org/10.1016/S0924-8579(09)70004-4] [PMID: 19134521]
[82]
Yu, H.; Zhang, L.; Li, L.; Zheng, C.; Guo, L.; Li, W.; Sun, P.; Qin, L. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res., 2010, 165(6), 437-449.
[http://dx.doi.org/10.1016/j.micres.2009.11.009] [PMID: 20116229]
[83]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[84]
Cars, O.; Högberg, L.D.; Murray, M.; Nordberg, O.; Sivaraman, S.; Lundborg, C.S.; So, A.D.; Tomson, G. Meeting the challenge of antibiotic resistance. BMJ, 2008, 337(37), a1438.
[http://dx.doi.org/10.1136/bmj.a1438] [PMID: 18801866]
[85]
Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the infectious diseases society of America. Clin. Infect. Dis., 2008, 46(2), 155-164.
[http://dx.doi.org/10.1086/524891] [PMID: 18171244]
[86]
Hamad, B. The antibiotics market. Nat. Rev. Drug Discov., 2010, 9(9), 675-676.
[http://dx.doi.org/10.1038/nrd3267] [PMID: 20811374]
[87]
Global Tuberculosis Control. W.H.O. Report; W.H.O. Press: Geneva, Switzerland, 2011, pp. 1-246.
[88]
Wijeratne, E.M.; He, H.; Franzblau, S.G.; Hoffman, A.M.; Gunatilaka, A.A. Phomapyrrolidones A-C, antitubercular alkaloids from the endophytic fungus Phoma sp. NRRL 46751. J. Nat. Prod., 2013, 76(10), 1860-1865.
[http://dx.doi.org/10.1021/np400391p] [PMID: 24079882]
[89]
Xia, G.; Li, J.; Li, H.; Long, Y.; Lin, S.; Lu, Y.; He, L.; Lin, Y.; Liu, L.; She, Z. Alterporriol-type dimers from the mangrove endophytic fungus, Alternaria sp. (SK11), and their MptpB inhibitions. Mar. Drugs, 2014, 12(5), 2953-2969.
[http://dx.doi.org/10.3390/md12052953] [PMID: 24840716]
[90]
Wu, M.D.; Cheng, M.J.; Chen, I.S.; Su, Y.S.; Hsieh, S.Y.; Chang, H.S.; Chang, C.W.; Yuan, G.F. Phytochemical investigation of Annulohypoxylon ilanense, an endophytic fungus derived from Cinnamomum species. Chem. Biodivers., 2013, 10(3), 493-505.
[http://dx.doi.org/10.1002/cbdv.201200418] [PMID: 23495165]
[91]
Khalil, A.M.A.; Abdelaziz, A.M.; Khaleil, M.M.; Hashem, A.H. Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett. Appl. Microbiol., 2021, 72(3), 263-274.
[http://dx.doi.org/10.1111/lam.13414] [PMID: 33063859]
[92]
Singh, S.; Verma, S.; Yadav, D.K.; Kumar, A.; Tyagi, R.; Gupta, P.; Bawankule, D.U.; Darokar, M.P.; Srivastava, S.K.; Kalra, A. The bioactive potential of culturable fungal endophytes isolated from the leaf of Catharanthus roseus (L.) G. Curr. Top. Med. Chem., 2021, 21(10), 895-907.
[http://dx.doi.org/10.2174/1568026621666210426123437] [PMID: 33902419]
[93]
Alhadrami, H.A.; Sayed, A.M.; El-Gendy, A.O.; Shamikh, Y.I.; Gaber, Y.; Bakeer, W.; Sheirf, N.H.; Attia, E.Z.; Shaban, G.M.; Khalifa, B.A.; Ngwa, C.J.; Pradel, G.; Rateb, M.E.; Hassan, H.M.; Alkhalifah, D.H.M.; Abdelmohsen, U.R.; Hozzein, W.N. A metabolomic approach to target antimalarial metabolites in the Artemisia annua fungal endophytes. Sci. Rep., 2021, 11(1), 2770.
[http://dx.doi.org/10.1038/s41598-021-82201-8] [PMID: 33531542]
[94]
Zhang, X.; Xu, Z.; Ma, J.; Zhou, D.; Xu, J. Phylogenetic diversity, antimicrobial and antioxidant potential and identification of bioactive compounds from culturable endophytic fungi associated with mangrove Bruguiera sexangula (Lour.). Poir. Curr. Microbiol., 2021, 78(2), 479-489.
[http://dx.doi.org/10.1007/s00284-020-02314-7] [PMID: 33386937]
[95]
Nischitha, R.; Shivanna, M.B. Antimicrobial activity and metabolite profiling of endophytic fungi in Digitaria bicornis (Lam) Roem. and Schult. and Paspalidium flavidum (Retz.) A. Camus. 3 Biotech, 2021, 11(2), 53.
[96]
(a) Charria-Girón, E.; Espinosa, M.C.; Zapata-Montoya, A.; Méndez, M.J.; Caicedo, J.P.; Dávalos, A.F.; Ferro, B.E.; Vasco-Palacios, A.M.; Caicedo, N.H. Evaluation of the antibacterial activity of crude extracts obtained from cultivation of native endophytic fungi belonging to a tropical montane rainforest in Colombia. Front. Microbiol., 2021, 12, 716523.
[http://dx.doi.org/10.3389/fmicb.2021.716523] [PMID: 34603244];
(b) Bara, R.; Aly, A.H.; Pretsch, A.; Wray, V.; Wang, B.; Proksch, P.; Debbab, A. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J. Antibiot. (Tokyo), 2013, 66(8), 491-493.
[http://dx.doi.org/10.1038/ja.2013.28] [PMID: 23677029];
(c) Bara, R.; Aly, A.H.; Wray, V.; Lin, W.H.; Proksch, P.; Debbab, A. Talaromins A and B, new cyclic peptides from the endophytic fungus Talaromyces wortmannii. Tetrahedron Lett., 2013, 54(13), 1686-1689.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.064];
(d) Janeš, D.; Kreft, S.; Jurc, M.; Seme, K.; Štrukelj, B. Antibacterial activity in higher fungi (Mushrooms) and endophytic fungi from Slovenia. Pharm. Biol., 2007, 45(9), 700-706.
[http://dx.doi.org/10.1080/13880200701575189]
[97]
Pittayakhajonwut, P.; Suvannakad, R.; Thienhirun, S.; Prabpai, S.; Kongsaeree, P.; Tanticharoen, M. An anti-herpes simplex virus-type 1 agent from Xylaria mellisii (BCC 1005). Tetrahedron Lett., 2005, 46(8), 1341-1344.
[http://dx.doi.org/10.1016/j.tetlet.2004.12.110]
[98]
Boonphong, S.; Kittakoop, P.; Isaka, M.; Pittayakhajonwut, D.; Tanticharoen, M.; Thebtaranonth, Y. Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J. Nat. Prod., 2001, 64(7), 965-967.
[http://dx.doi.org/10.1021/np000291p] [PMID: 11473437]
[99]
Park, J.H.; Choi, G.J.; Lee, H.B.; Kim, K.; Jung, H.S. JANG, K.S.; Cho, K.Y.; Kim, J.C. Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J. Microbiol. Biotechnol., 2005, 15(1), 112-117.
[100]
Khalil, A.M.A.; Hassan, S.E.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.; Azab, E.; Gobouri, A.A.; Elkelish, A.; Fouda, A. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules, 2021, 11(2), 140.
[101]
d’Errico, G.; Aloj, V.; Flematti, G.R.; Sivasithamparam, K.; Worth, C.M.; Lombardi, N.; Ritieni, A.; Marra, R.; Lorito, M.; Vinale, F. Metabolites of a Drechslera sp. endophyte with potential as biocontrol and bioremediation agent. Nat. Prod. Res., 2021, 35(22), 4508-4516.
[http://dx.doi.org/10.1080/14786419.2020.1737058] [PMID: 32159387]
[102]
Bashyal, B.P.; Wellensiek, B.P.; Ramakrishnan, R.; Faeth, S.H.; Ahmad, N.; Gunatilaka, A.A. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorg. Med. Chem., 2014, 22(21), 6112-6116.
[http://dx.doi.org/10.1016/j.bmc.2014.08.039] [PMID: 25260957]
[103]
Wellensiek, B.P.; Ramakrishnan, R.; Bashyal, B.P.; Eason, Y.; Gunatilaka, A.A.; Ahmad, N. Inhibition of HIV-1 replication by secondary metabolites from endophytic fungi of desert plants. Open Virol. J., 2013, 7, 72-80.
[http://dx.doi.org/10.2174/1874357920130624002] [PMID: 23961302]
[104]
Zhang, G.; Sun, S.; Zhu, T.; Lin, Z.; Gu, J.; Li, D.; Gu, Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry, 2011, 72(11-12), 1436-1442.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.014] [PMID: 21601895]
[105]
Govindappa, C.M. First report of anticancer agent, lapachol producing endophyte Aspergillus niger of Tabebuia argentea and its in vitro cytotoxicity assays. Bangladesh J. Pharmacol., 2014, 9, 129-139.
[106]
Wiyakrutta, S.; Sriubolmas, N.; Panphut, W.; Thongon, N.; Danwisetkanjana, K.; Ruangrungsi, N.; Meevootisom, V. Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J. Microbiol. Biotechnol., 2004, 20(3), 265-272.
[http://dx.doi.org/10.1023/B:WIBI.0000023832.27679.a8]
[107]
Phongpaichit, S.; Nikom, J.; Rungjindamai, N.; Sakayaroj, J.; Hutadilok-Towatana, N.; Rukachaisirikul, V.; Kirtikara, K. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunol. Med. Microbiol., 2007, 51(3), 517-525.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00331.x] [PMID: 17888010]
[108]
Vora, J.; Velhal, S.; Sinha, S.; Patel, V.; Shrivastava, N. Bioactive phytocompound mulberroside C and endophytes of Morus alba as potential inhibitors of HIV-1 replication: a mechanistic evaluation. HIV Med., 2021, 22(8), 690-704.
[http://dx.doi.org/10.1111/hiv.13116] [PMID: 33987901]
[109]
Borges, K.B.; Borges, W.S.; Pupo, M.T.; Bonato, P.S. Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Appl. Microbiol. Biotechnol., 2007, 77(3), 669-674.
[http://dx.doi.org/10.1007/s00253-007-1171-x] [PMID: 17876580]
[110]
Biotransformations and Bioprocesses; Doble, M.; Kruthiventi, A.K.; Gaikar, V.G., Eds.; Marcel Dekker: New York, NY, USA, 2004.
[http://dx.doi.org/10.1201/9780203026373]
[111]
Verza, M.; Arakawa, N.S.; Lopes, N.P.; Kato, M.J.; Pupo, M.T.; Said, S.; Carvalho, I. Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis sp. J. Braz. Chem. Soc., 2009, 20(1), 195-200.
[http://dx.doi.org/10.1590/S0103-50532009000100029]
[112]
Zikmundová, M.; Drandarov, K.; Bigler, L.; Hesse, M.; Werner, C. Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl. Environ. Microbiol., 2002, 68(10), 4863-4870.
[http://dx.doi.org/10.1128/AEM.68.10.4863-4870.2002] [PMID: 12324332]
[113]
Mazumder, K.; Ruma, Y.N.; Akter, R.; Aktar, A.; Hossain, M.M.; Shahina, Z.; Mazumdar, S.; Kerr, P.G. Identification of bioactive metabolites and evaluation of in vitro anti-inflammatory and in vivo antinociceptive and antiarthritic activities of endophyte fungi isolated from Elaeocarpus floribundus blume. J. Ethnopharmacol., 2021, 273, 113975.
[http://dx.doi.org/10.1016/j.jep.2021.113975] [PMID: 33652111]
[114]
Nishad, J.H.; Singh, A.; Gautam, V.S.; Kumari, P.; Kumar, J.; Yadav, M.; Kharwar, R.N. Bioactive potential evaluation and purification of compounds from an endophytic fungus Diaporthe longicolla, a resident of Saraca asoca (Roxb.). Willd. Arch. Microbiol., 2021, 203(7), 4179-4188.
[http://dx.doi.org/10.1007/s00203-021-02390-8] [PMID: 34076738]
[115]
Calado, M.D.L.; Silva, J.; Alves, C.; Susano, P.; Santos, D.; Alves, J.; Martins, A.; Gaspar, H.; Pedrosa, R.; Campos, M.J. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One, 2021, 16(5), e0250954.
[http://dx.doi.org/10.1371/journal.pone.0250954] [PMID: 33983974]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy