Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Medicinal Attributes of Heterocyclic Compounds in Rheumatoid Arthritis: Recent Developments and SAR Studies

Author(s): Vikram J. Singh, Bharti Sharma and Pooja A. Chawla*

Volume 22, Issue 22, 2022

Published on: 31 May, 2022

Page: [1821 - 1846] Pages: 26

DOI: 10.2174/1568026622666220422092505

Price: $65

Abstract

Rheumatoid arthritis (RA) is an autoimmune disorder that can attack anyone at any age, but it is most common in those between the ages of 30 and 50. It can impact joints or cause joint stiffness, as well as affect the eyes, skin, and lungs. In the absence of a clear mechanism underlying the occurrence of rheumatoid arthritis in humans, scientists have successfully identified and marked some of the most commonly involved biological targets, such as enzymes or receptors, including human carbonic anhydrase, Janus kinase, Bruton kinase, protein kinase, etc. It is plausible to anticipate that any of the above-mentioned targets will provide a respite in the search for effective rheumatoid arthritis treatments. This article attempted to compile recent advances in this field over the last six years (2016-2021) and successfully documented the positive outcomes of each significant research project. Without prejudice to any remaining research on this topic, the current compilation should serve as a starting point for future research works in this field. The structure-activity relationships, mechanistic research, and molecular modelling of each class covered, as well as any clinical trial developments, have all been given special attention. This review discusses the design and development of numerous inhibitors for diverse targets, such as BTK, JAKs, MAPK-PDE4, SYK, NSAIDs-CAIs, PKC, and others.

Keywords: Rheumatoid arthritis, Anti-rheumatic agents, Novel targets, Structure-activity relationship, autoimmune, disorder, NSAID.

Graphical Abstract

[1]
American College of Rheumatology. Availabe from: https://www.rheumatology.org/I-Am-A/Patient-Caregiver/Diseases-Conditions/Rheumatoid-Arthritis (Accessed on 06 August 2020).
[2]
Singh, S.; Singh, T.G.; Mahajan, K.; Dhiman, S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J. Pharm. Pharmacol., 2020, 72(10), 1306-1327.
[http://dx.doi.org/10.1111/jphp.13326] [PMID: 32812250]
[3]
Hu, X.X.; Wu, Y.J.; Zhang, J.; Wei, W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int. Immunopharmacol., 2019, 70, 428-434.
[http://dx.doi.org/10.1016/j.intimp.2019.03.008] [PMID: 30856393]
[4]
Choy, E.H.; Panayi, G.S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med., 2001, 344(12), 907-916.
[http://dx.doi.org/10.1056/NEJM200103223441207] [PMID: 11259725]
[5]
Mateen, S.; Zafar, A.; Moin, S.; Khan, A.Q.; Zubair, S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta, 2016, 455, 161-171.
[http://dx.doi.org/10.1016/j.cca.2016.02.010] [PMID: 26883280]
[6]
Nimesh, S. Herbal drug is better than allopathic drug in the treatment of rheumatoid arthritis. Indian J. Pharmacol., 2018, 5, 539-545.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.IJP.5(9).539-45]
[7]
Moelants, E.A.; Mortier, A.; Van Damme, J.; Proost, P. Regulation of TNF-α with a focus on rheumatoid arthritis. Immunol. Cell Biol., 2013, 91(6), 393-401.
[http://dx.doi.org/10.1038/icb.2013.15] [PMID: 23628802]
[8]
Jeong, J.W.; Lee, H.H.; Lee, K.W.; Kim, K.Y.; Kim, S.G.; Hong, S.H.; Kim, G.Y.; Park, C.; Kim, H.K.; Choi, Y.W.; Choi, Y.H. Mori folium inhibits interleukin-1β-induced expression of matrix metalloproteinases and inflammatory mediators by suppressing the activation of NF-κB and p38 MAPK in SW1353 human chondrocytes. Int. J. Mol., 2016, 37(2), 452-460.
[http://dx.doi.org/10.3892/ijmm.2015.2443] [PMID: 26707272]
[9]
van der Linden, M.P.; van der Woude, D.; Ioan-Facsinay, A.; Levarht, E.W.; Stoeken-Rijsbergen, G.; Huizinga, T.W.; Toes, R.E.; van der Helm-van Mil, A.H. Value of anti-modified citrullinated vimentin and third-generation anti-cyclic citrullinated peptide compared with second-generation anti-cyclic citrullinated peptide and rheumatoid factor in predicting disease outcome in undifferentiated arthritis and rheumatoid arthritis. Arthritis Rheum., 2009, 60(8), 2232-2241.
[http://dx.doi.org/10.1002/art.24716] [PMID: 19644872]
[10]
Farzaei, M.H.; Farzaei, F.; Abdollahi, M.; Abbasabadi, Z.; Abdolghaffari, A.H.; Mehraban, B. A mechanistic review on medicinal plants used for rheumatoid arthritis in traditional Persian medicine. J. Pharm. Pharmacol., 2016, 68(10), 1233-1248.
[http://dx.doi.org/10.1111/jphp.12606] [PMID: 27417522]
[11]
Asif Amin, M.; Fox, D.A.; Ruth, J.H. Synovial cellular and molecular markers in rheumatoid arthritis. Semin. Immunopathol., 2017, 39(4), 385-393.
[http://dx.doi.org/10.1007/s00281-017-0631-3] [PMID: 28497350]
[12]
Singh, J.A.; Saag, K.G.; Bridges, S.L., Jr; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; Curtis, J.R.; Furst, D.E.; Parks, D.; Kavanaugh, A.; O’Dell, J.; King, C.; Leong, A.; Matteson, E.L.; Schousboe, J.T.; Drevlow, B.; Ginsberg, S.; Grober, J.; St Clair, E.W.; Tindall, E.; Miller, A.S.; McAlindon, T. 2015 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol., 2016, 68(1), 1-26.
[http://dx.doi.org/10.1002/art.39480] [PMID: 26545940]
[13]
Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; Primdahl, J.; Södergren, A.; Wallberg Jonsson, S.; van Rompay, J.; Zabalan, C.; Pedersen, T.R.; Jacobsson, L.; de Vlam, K.; Gonzalez-Gay, M.A.; Semb, A.G.; Kitas, G.D.; Smulders, Y.M.; Szekanecz, Z.; Sattar, N.; Symmons, D.P.; Nurmohamed, M.T. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis., 2017, 76(1), 17-28.
[http://dx.doi.org/10.1136/annrheumdis-2016-209775] [PMID: 27697765]
[14]
Pesu, M.; Candotti, F.; Husa, M.; Hofmann, S.R.; Notarangelo, L.D.; O’Shea, J.J. Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol. Rev., 2005, 203(1), 127-142.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00220.x] [PMID: 15661026]
[15]
Changelian, P.S.; Flanagan, M.E.; Ball, D.J.; Kent, C.R.; Magnuson, K.S.; Martin, W.H.; Rizzuti, B.J.; Sawyer, P.S.; Perry, B.D.; Brissette, W.H.; McCurdy, S.P.; Kudlacz, E.M.; Conklyn, M.J.; Elliott, E.A.; Koslov, E.R.; Fisher, M.B.; Strelevitz, T.J.; Yoon, K.; Whipple, D.A.; Sun, J.; Munchhof, M.J.; Doty, J.L.; Casavant, J.M.; Blumenkopf, T.A.; Hines, M.; Brown, M.F.; Lillie, B.M.; Subramanyam, C.; Shang-Poa, C.; Milici, A.J.; Beckius, G.E.; Moyer, J.D.; Su, C.; Woodworth, T.G.; Gaweco, A.S.; Beals, C.R.; Littman, B.H.; Fisher, D.A.; Smith, J.F.; Zagouras, P.; Magna, H.A.; Saltarelli, M.J.; Johnson, K.S.; Nelms, L.F.; Des Etages, S.G.; Hayes, L.S.; Kawabata, T.T.; Finco-Kent, D.; Baker, D.L.; Larson, M.; Si, M.S.; Paniagua, R.; Higgins, J.; Holm, B.; Reitz, B.; Zhou, Y.J.; Morris, R.E.; O’Shea, J.J.; Borie, D.C. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science, 2003, 302(5646), 875-878.
[http://dx.doi.org/10.1126/science.1087061] [PMID: 14593182]
[16]
Dowty, M.E.; Jesson, M.I.; Ghosh, S.; Lee, J.; Meyer, D.M.; Krishnaswami, S.; Kishore, N. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. J. Pharmacol. Exp. Ther., 2014, 348(1), 165-173.
[http://dx.doi.org/10.1124/jpet.113.209304] [PMID: 24218541]
[17]
Fleischmann, R.; Mysler, E.; Hall, S.; Kivitz, A.J.; Moots, R.J.; Luo, Z.; DeMasi, R.; Soma, K.; Zhang, R.; Takiya, L.; Tatulych, S.; Mojcik, C.; Krishnaswami, S.; Menon, S.; Smolen, J.S.; Adams, L.; Ally, M.M.; du Plooy, M.C.; Louw, I.C.; Nayiager, S. Nel, C.B.; Nel, D.; Reuter, H.; Soloman, A.S.; Spargo, C.E.; Hall, S.; Rischmueller, M.; Sharma, S.D.; Will, R.K.; Youssef, P.P.; Arroyo, C.; Baes, R.P.; Dulos, R.B.; Hao, L.T.; Lanzon, A.E.; Lichauco, J.J.T.; Mangubat, J.H.; Ramiterre, E.B.; Reyes, B.H.M.; Tan, P.P.; Choe, J-Y.; Kang, Y.M.; Kwon, S.R.; Lee, S-H.; Lee, S-S.; Yoo, D-H.; Lin, H-Y.; Luo, S-F.; Tsai, S-T.; Tsai, W-C.; Tseng, J-C.; Wei, C-C.C.; Asavatanabodee, P.; Nantiruj, K.; Nilganuwong, S.; Uea-Areewongsa, P.; Majstorovic, L.B.; Bacic, S.M.; Batalov, A.Z.; Georgieva-Slavcheva, G.; Mihailova, M.; Nikolov, N.G.; Penev, D.P.; Spasov, Y.A.; Stanimirova, K.; Todorov, S.; Toncheva, A.R.; Yordanova, N.; Mosterova, Z.; Novosad, L.; Prochazkova, L.; Stehlikova, H.; Stejfova, Z.; Kiseleva, N.; Pank, L.; Savi, T.; Alexandra, B-G.; Amital, H.; Mevorach, D.; Rosner, I.A.; Mihailova, A.; Stumbra-Stumberga, E.; Basijokiene, V.; Lietuvininkiene, V.; Unikiene, D.; Brzezicki, J.; Dudek, A.M.; Glowacka-Kulesz, M.B.; Grabowicz-Wasko, B.; Hajduk-Kubacka, S.; Hilt, J.; Hrycaj, P.; Jeka, S.; Kolasa, R.; Krogulec, M.; Mastalerz, H.; Olak-Popko, A.; Owczarek, E.; Ruzga, Z.; Walczak, A.; Ancuta, C.I.; Ancuta, I.; Balanescu, A.R.; Berghea, F.; Bojin, S.; Arvunescu, M.A.I.; Ionescu, R.M.; Mociran, E.; Pavel, M.; Rednic, S.; Voie, A.; Zainea, C.M.; Bugrova, O.V.; Demin, A.; Ershova, O.B.; Gavrisheva, I.A.; Krechikova, D.G.; Kuropatkin, G.V.; Marusenko, I.M.; Menshikova, I.V.; Noskov, S.M.; Rebrov, A.P.; Smakotina, S.A.; Yakushin, S.S.; Zhilyaev, E.; Ramos, J.J.A.; Garcia, F.J.B.; Nebro, A.F.; Esteban, S.P.; Burson, J.M.S.; Sala, R.S.; Ataman, S.; Hizmetli, S.; Kuru, O.; Douglas, K.M.; Emery, P.; Moots, R.J.; Ong, V.H.; Sheeran, T.P.; Faraawi, R.Y.; Lessard, C.; Mendoza, C.A.; Avila-Armengol, H.E.; Zapata, F.I.A.; Irazoque-Palazuelos, F.C.; Cecena, M.A.M.; Pacheco-Tena, C.F.; Rizo-Rodriguez, J.C.; Rodriguez-Torres, I.M.; Aelion, J.A.; Caciolo, B.A.; Calmes, J.M.; Chatpar, P.; Dayal, N.; De Jesus, A.; Dikranian, A.H.; Diri, E.; Fairfax, M.J.; Fenton, I.F.; Fleischmann, R.M.; Gaylis, N.B.; George, R.L.; Halter, D.G.; Hernandez, P.; Hole, S.A.; Hou, A.C.; Huff, J.P.; Kafaja, S.; Kennedy, A.C.; Kenney, H.; Kimmel, S.C.; Kirby, B.S.; Kivitz, A.J.; Legerton, C.W.; Lindsey, S.M.; Mallepalli, J.R.; Mathews, S.D.; Metyas, S.K.; Mizutani, W.T.; Najam, S.; Nascimento, J.M.; Pang, S.W.; Patel, R.C.; Poiley, J.E.; Ramirez, C.E.; Reddy, R.; Rehman, Q.; Schnitz, W.M.; Scoville, C.D.; Shergy, W.J.; Silverfield, J.C.; Singhal, A.K.; Smallwood-Sherrer, Y.R.; Songcharoen, S.N.; Stack, M.T.; Stohl, W.; Su, T-I.K.; Udell, J.; Waraich, S.; Weidmann, C.E.; Wei, N.; Wiesenhutter, C.W.; Winkler, A.E.; Zagar, K.E.; Berman, A.; Mysler, E.F.; Hidalgo, R.A.P.; Venarotti, H.O.; Sariego, I.A.G.; Calabresse, R.E.J.; Ruiz-Tagle, J.I.V.; Vargas, L.F.M.B.; Berrocal, A.E.; Portocarrero, M.G.L.; Jesus, F.; Pena, R. ORAL Strategy investigators. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): A phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet, 2017, 390(10093), 457-468.
[http://dx.doi.org/10.1016/S0140-6736(17)31618-5] [PMID: 28629665]
[18]
Tanaka, Y.; Sugiyama, N.; Toyoizumi, S.; Lukic, T.; Lamba, M.; Zhang, R.; Chen, C.; Stock, T.; Valdez, H.; Mojcik, C.; Fan, H.; Deng, C.; Yuasa, H. Modified- versus immediate-release tofacitinib in Japanese rheumatoid arthritis patients: A randomized, phase III, non-inferiority study. Rheumatology (Oxford), 2019, 58(1), 70-79.
[http://dx.doi.org/10.1093/rheumatology/key250] [PMID: 30137547]
[19]
Jiang, J.K.; Ghoreschi, K.; Deflorian, F.; Chen, Z.; Perreira, M.; Pesu, M.; Smith, J.; Nguyen, D.T.; Liu, E.H.; Leister, W.; Costanzi, S.; O’Shea, J.J.; Thomas, C.J. Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). J. Med. Chem., 2008, 51(24), 8012-8018.
[http://dx.doi.org/10.1021/jm801142b] [PMID: 19053756]
[20]
Combe, B.; Kivitz, A.; Tanaka, Y.; van der Heijde, D.; Simon, J.A.; Baraf, H.S.B.; Kumar, U.; Matzkies, F.; Bartok, B.; Ye, L.; Guo, Y.; Tasset, C.; Sundy, J.S.; Jahreis, A.; Genovese, M.C.; Mozaffarian, N.; Landewé, R.B.M.; Bae, S.C.; Keystone, E.C.; Nash, P. Filgotinib versus placebo or adalimumab in patients with rheumatoid arthritis and inadequate response to methotrexate: A phase III randomised clinical trial. Ann. Rheum. Dis., 2021, 80(7), 848-858.
[http://dx.doi.org/10.1136/annrheumdis-2020-219214] [PMID: 33504485]
[21]
Van Rompaey, L.; Galien, R.; van der Aar, E.M.; Clement-Lacroix, P.; Nelles, L.; Smets, B.; Lepescheux, L.; Christophe, T.; Conrath, K.; Vandeghinste, N.; Vayssiere, B.; De Vos, S.; Fletcher, S.; Brys, R.; van ’t Klooster, G.; Feyen, J.H.; Menet, C. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J. Immunol., 2013, 191(7), 3568-3577.
[http://dx.doi.org/10.4049/jimmunol.1201348] [PMID: 24006460]
[22]
Fridman, J.S.; Scherle, P.A.; Collins, R.; Burn, T.C.; Li, Y.; Li, J.; Covington, M.B.; Thomas, B.; Collier, P.; Favata, M.F.; Wen, X.; Shi, J.; McGee, R.; Haley, P.J.; Shepard, S.; Rodgers, J.D.; Yeleswaram, S.; Hollis, G.; Newton, R.C.; Metcalf, B.; Friedman, S.M.; Vaddi, K. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: Preclinical characterization of INCB028050. J. Immunol., 2010, 184(9), 5298-5307.
[http://dx.doi.org/10.4049/jimmunol.0902819] [PMID: 20363976]
[23]
van Vollenhoven, R.F. Small molecular compounds in development for rheumatoid arthritis. Curr. Opin. Rheumatol., 2013, 25(3), 391-397.
[http://dx.doi.org/10.1097/BOR.0b013e32835fd828] [PMID: 23492738]
[24]
Yang, Y.; Li, X.F.; Zhang, X.; Bao, C.D.; Hu, J.K.; Xu, J.H.; Li, X.P.; Xu, J.; He, D.Y.; Li, Z.J.; Wang, G.C.; Wu, H.J.; Ji, F.; Zhan, L.J.; Zerbini, C.A.F.; Li, Z.G. Efficacy and safety of baricitinib in chinese rheumatoid arthritis patients and the subgroup analyses: Results from study RA-balancE. Rheumatol. Ther., 2020, 7(4), 851-866.
[http://dx.doi.org/10.1007/s40744-020-00231-6] [PMID: 32876903]
[25]
Yamaoka, K.; Tanaka, Y.; Kameda, H.; Khan, N.; Sasaki, N.; Harigai, M.; Song, Y.; Zhang, Y.; Takeuchi, T. The safety profile of upadacitinib in patients with rheumatoid arthritis in Japan. Drug Saf., 2021, 44(6), 711-722.
[http://dx.doi.org/10.1007/s40264-021-01067-x] [PMID: 34041702]
[26]
Tanaka, Y.; Takeuchi, T.; Tanaka, S.; Kawakami, A.; Iwasaki, M.; Song, Y.W.; Chen, Y.H.; Wei, J.C.; Lee, S.H.; Rokuda, M.; Izutsu, H.; Ushijima, S.; Kaneko, Y.; Akazawa, R.; Shiomi, T.; Yamada, E. Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid arthritis and an inadequate response to conventional DMARDs: A randomised, double-blind, placebo-controlled phase III trial (RAJ3). Ann. Rheum. Dis., 2019, 78(10), 1320-1332.
[http://dx.doi.org/10.1136/annrheumdis-2019-215163] [PMID: 31350270]
[27]
Baker, K.F.; Isaacs, J.D. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann. Rheum. Dis., 2018, 77(2), 175-187.
[http://dx.doi.org/10.1136/annrheumdis-2017-211555] [PMID: 28765121]
[28]
Lindvall, J.M.; Blomberg, K.E.; Väliaho, J.; Vargas, L.; Heinonen, J.E.; Berglöf, A.; Mohamed, A.J.; Nore, B.F.; Vihinen, M.; Smith, C.I. Bruton’s tyrosine kinase: Cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev., 2005, 203(1), 200-215.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00225.x] [PMID: 15661031]
[29]
Kelly, V.; Genovese, M. Novel small molecule therapeutics in rheumatoid arthritis. Rheumatology (Oxford), 2013, 52(7), 1155-1162.
[http://dx.doi.org/10.1093/rheumatology/kes367] [PMID: 23297340]
[30]
Di Paolo, J.A.; Huang, T.; Balazs, M.; Barbosa, J.; Barck, K.H.; Bravo, B.J.; Carano, R.A.; Darrow, J.; Davies, D.R.; DeForge, L.E.; Diehl, L.; Ferrando, R.; Gallion, S.L.; Giannetti, A.M.; Gribling, P.; Hurez, V.; Hymowitz, S.G.; Jones, R.; Kropf, J.E.; Lee, W.P.; Maciejewski, P.M.; Mitchell, S.A.; Rong, H.; Staker, B.L.; Whitney, J.A.; Yeh, S.; Young, W.B.; Yu, C.; Zhang, J.; Reif, K.; Currie, K.S. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat. Chem. Biol., 2011, 7(1), 41-50.
[http://dx.doi.org/10.1038/nchembio.481] [PMID: 21113169]
[31]
Norman, P. Investigational Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Expert Opin. Investig. Drugs, 2016, 25(8), 891-899.
[http://dx.doi.org/10.1080/13543784.2016.1182499] [PMID: 27148767]
[32]
Schafer, P.H.; Kivitz, A.J.; Ma, J.; Korish, S.; Sutherland, D.; Li, L.; Azaryan, A.; Kosek, J.; Adams, M.; Capone, L.; Hur, E.M.; Hough, D.R.; Ringheim, G.E. Spebrutinib (CC-292) affects markers of B cell activation, chemotaxis, and osteoclasts in patients with rheumatoid arthritis: Results from a mechanistic study. Rheumatol. Ther., 2020, 7(1), 101-119.
[http://dx.doi.org/10.1007/s40744-019-00182-7] [PMID: 31721017]
[33]
Bonilla-Hernán, M.G.; Miranda-Carús, M.E.; Martin-Mola, E. New drugs beyond biologics in rheumatoid arthritis: The kinase inhibitors. Rheumatology (Oxford), 2011, 50(9), 1542-1550.
[http://dx.doi.org/10.1093/rheumatology/ker192] [PMID: 21622522]
[34]
Sweeney, S.E.; Firestein, G.S. Primer: Signal transduction in rheumatic disease--a clinician’s guide. Nat. Clin. Pract. Rheumatol., 2007, 3(11), 651-660.
[http://dx.doi.org/10.1038/ncprheum0631] [PMID: 17968336]
[35]
Singh, V.J.; Sharma, B.; Chawla, P.A. Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents. Bioorg. Chem., 2021, 114, 105161.
[http://dx.doi.org/10.1016/j.bioorg.2021.105161] [PMID: 34328852]
[36]
Zhang, Y.L.; Dong, C. MAP kinases in immune responses. Cell. Mol. Immunol., 2005, 2(1), 20-27.
[PMID: 16212907]
[37]
Riccaboni, M.; Bianchi, I.; Petrillo, P. Spleen tyrosine kinases: Biology, therapeutic targets and drugs. Drug Discov. Today, 2010, 15(13-14), 517-530.
[http://dx.doi.org/10.1016/j.drudis.2010.05.001] [PMID: 20553955]
[38]
Pamuk, O.N.; Tsokos, G.C. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res. Ther., 2010, 12(6), 222.
[http://dx.doi.org/10.1186/ar3198] [PMID: 21211067]
[39]
Tohyama, Y.; Yamamura, H. Protein tyrosine kinase, syk: A key player in phagocytic cells. J. Biochem., 2009, 145(3), 267-273.
[http://dx.doi.org/10.1093/jb/mvp001] [PMID: 19124456]
[40]
Mócsai, A.; Ruland, J.; Tybulewicz, V.L. The SYK tyrosine kinase: A crucial player in diverse biological functions. Nat. Rev. Immunol., 2010, 10(6), 387-402.
[http://dx.doi.org/10.1038/nri2765] [PMID: 20467426]
[41]
Diaz-Meco, M.T.; Moscat, J. The atypical PKCs in inflammation: NF-κB and beyond. Immunol. Rev., 2012, 246(1), 154-167.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01093.x] [PMID: 22435553]
[42]
Hirai, T.; Chida, K. Protein kinase Czeta (PKCzeta): Activation mechanisms and cellular functions. J. Biochem., 2003, 133(1), 1-7.
[http://dx.doi.org/10.1093/jb/mvg017] [PMID: 12761192]
[43]
Liu, Z.; Sun, H.X.; Zhang, Y.W.; Li, Y.F.; Zuo, J.; Meng, Y.; Fang, F.D. Effect of SNPs in protein kinase C zeta gene on gene expression in the reporter gene detection system. World J. Gastroenterol., 2004, 10(16), 2357-2360.
[http://dx.doi.org/10.3748/wjg.v10.i16.2357] [PMID: 15285019]
[44]
Chang, X.; Han, J.; Zhao, Y.; Yan, X.; Sun, S.; Cui, Y. Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. BMC Musculoskelet. Disord., 2010, 11(1), 279.
[http://dx.doi.org/10.1186/1471-2474-11-279] [PMID: 21143847]
[45]
Zheng, Y.; Wang, L.; Zhang, W.; Xu, H.; Chang, X. Transgenic mice over-expressing carbonic anhydrase I showed aggravated joint inflammation and tissue destruction. BMC Musculoskelet. Disord., 2012, 13(1), 256.
[http://dx.doi.org/10.1186/1471-2474-13-256] [PMID: 23256642]
[46]
Deutsch, O.; Krief, G.; Konttinen, Y.T.; Zaks, B.; Wong, D.T.; Aframian, D.J.; Palmon, A. Identification of Sjögren’s syndrome oral fluid biomarker candidates following high-abundance protein depletion. Rheumatology (Oxford), 2015, 54(5), 884-890.
[http://dx.doi.org/10.1093/rheumatology/keu405] [PMID: 25339641]
[47]
Liu, C.; Wei, Y.; Wang, J.; Pi, L.; Huang, J.; Wang, P. Carbonic anhydrases III and IV autoantibodies in rheumatoid arthritis, systemic lupus erythematosus, diabetes, hypertensive renal disease, and heart failure. Clin. Dev. Immunol., 2012, 2012, 354594.
[http://dx.doi.org/10.1155/2012/354594] [PMID: 23049597]
[48]
Fensome, A.; Ambler, C.M.; Arnold, E.; Banker, M.E.; Brown, M.F.; Chrencik, J.; Clark, J.D.; Dowty, M.E.; Efremov, I.V.; Flick, A.; Gerstenberger, B.S.; Gopalsamy, A.; Hayward, M.M.; Hegen, M.; Hollingshead, B.D.; Jussif, J.; Knafels, J.D.; Limburg, D.C.; Lin, D.; Lin, T.H.; Pierce, B.S.; Saiah, E.; Sharma, R.; Symanowicz, P.T.; Telliez, J.B.; Trujillo, J.I.; Vajdos, F.F.; Vincent, F.; Wan, Z.K.; Xing, L.; Yang, X.; Yang, X.; Zhang, L. Dual inhibition of tyk2 and jak1 for the treatment of autoimmune diseases: Discovery of ((s)-2,2-difluorocyclopropyl)((1 r,5 s)-3-(2-((1-methyl-1 h-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo] [3.2.1]octan-8-yl)methanone (PF-06700841). J. Med. Chem., 2018, 61(19), 8597-8612.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00917] [PMID: 30113844]
[49]
Caldwell, R.D.; Qiu, H.; Askew, B.C.; Bender, A.T.; Brugger, N.; Camps, M.; Dhanabal, M.; Dutt, V.; Eichhorn, T.; Gardberg, A.S.; Goutopoulos, A.; Grenningloh, R.; Head, J.; Healey, B.; Hodous, B.L.; Huck, B.R.; Johnson, T.L.; Jones, C.; Jones, R.C.; Mochalkin, I.; Morandi, F.; Nguyen, N.; Meyring, M.; Potnick, J.R.; Santos, D.C.; Schmidt, R.; Sherer, B.; Shutes, A.; Urbahns, K.; Follis, A.V.; Wegener, A.A.; Zimmerli, S.C.; Liu-Bujalski, L. Discovery of evobrutinib: An oral, potent, and highly selective, covalent bruton’s tyrosine kinase (BTK) Inhibitor for the treatment of immunological diseases. J. Med. Chem., 2019, 62(17), 7643-7655.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00794] [PMID: 31368705]
[50]
Huang, Z.; Zhang, Q.; Yan, L.; Zhong, G.; Zhang, L.; Tan, X.; Wang, Y. Approaching the active conformation of 1,3-diaminopyrimidine based covalent inhibitors of Bruton’s tyrosine kinase for treatment of Rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2016, 26(8), 1954-1957.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.011] [PMID: 26976214]
[51]
Li, X.; Huang, Y.; Cheng, J.; Zhang, L.; Mao, F.; Zhu, J.; Sheng, C.; Li, J. Discovery of novel Syk/PDGFR-α/c-Kit inhibitors as multi-targeting drugs to treat rheumatoid arthritis. Bioorg. Med. Chem., 2018, 26(15), 4375-4381.
[http://dx.doi.org/10.1016/j.bmc.2018.06.029] [PMID: 30078608]
[52]
Zhang, C.; Pei, H.; He, J.; Zhu, J.; Li, W.; Niu, T.; Xiang, M.; Chen, L. Design, synthesis and evaluation of novel 7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as potent, selective and reversible Bruton’s tyrosine kinase (BTK) inhibitors for the treatment of rheumatoid arthritis. Eur. J. Med. Chem., 2019, 169, 121-143.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.077] [PMID: 30875504]
[53]
He, L.; Pei, H.; Zhang, C.; Shao, M.; Li, D.; Tang, M.; Wang, T.; Chen, X.; Xiang, M.; Chen, L. Design, synthesis and biological evaluation of 7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur. J. Med. Chem., 2018, 145, 96-112.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.079] [PMID: 29324347]
[54]
Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; Basak, A.; Heasley, S.E.; Kwon, S.; Langille, J.; Parikh, M.D.; Griffin, S.H.; Casavant, J.M.; Duclos, B.A.; Fenwick, A.E.; Harris, T.M.; Han, S.; Caspers, N.; Dowty, M.E.; Yang, X.; Banker, M.E.; Hegen, M.; Symanowicz, P.T.; Li, L.; Wang, L.; Lin, T.H.; Jussif, J.; Clark, J.D.; Telliez, J.B.; Robinson, R.P.; Unwalla, R. Identification of N-cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutylpropane-1-sulfonamide (PF-04965842): A selective JAK1 clinical candidate for the treatment of autoimmune diseases. J. Med. Chem., 2018, 61(3), 1130-1152.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01598] [PMID: 29298069]
[55]
Pei, H.; He, L.; Shao, M.; Yang, Z.; Ran, Y.; Li, D.; Zhou, Y.; Tang, M.; Wang, T.; Gong, Y.; Chen, X.; Yang, S.; Xiang, M.; Chen, L. Discovery of a highly selective JAK3 inhibitor for the treatment of rheumatoid arthritis. Sci. Rep., 2018, 8(1), 5273.
[http://dx.doi.org/10.1038/s41598-018-23569-y] [PMID: 29588471]
[56]
Keretsu, S.; Bhujbal, S.P.; Cho, S.J. Molecular modeling studies of pyrrolo[2,3-d]pyrimidin-4-amine derivatives as JAK1 inhibitors based on 3D-QSAR, molecular docking, molecular dynamics (MD) and MM-PBSA calculations. J. Biomol. Struct. Dyn., 2021, 39(3), 753-765.
[http://dx.doi.org/10.1080/07391102.2020.1714483] [PMID: 31916502]
[57]
Thakkar, M.; Bhuniya, D.; Kaduskar, R.; Mengawade, T.; Naik, K.; Salunkhe, V.; Bhalerao, A.; Kurhade, S.; Mavinahalli, J.; Jain, V.; Petla, R.; Avaragolla, S.; Ray, S.; Rouduri, S.; Dhanave, A.; De, S.; Pathade, V.; Tambe, A.; Raje, A.A.; Madgula, V.; Joshi, S.; Nadeem, A.; Bala, M.; Umrani, D.; Hariharan, N.; Kulkarni, B.; Mookhtiar, K.A. Discovery and evaluation of 1H-pyrrolo[2,3-b]pyridine based selective and reversible small molecule BTK inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2017, 27(8), 1867-1873.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.026] [PMID: 28279528]
[58]
Yin, Y.; Chen, C.J.; Yu, R.N.; Shu, L.; Wang, Z.J.; Zhang, T.T.; Zhang, D.Y. Novel 1H-pyrazolo[3,4-d]pyrimidin-6-amino derivatives as potent selective Janus kinase 3 (JAK3) inhibitors. Evaluation of their improved effect for the treatment of rheumatoid arthritis. Bioorg. Chem., 2020, 98, 103720.
[http://dx.doi.org/10.1016/j.bioorg.2020.103720] [PMID: 32171982]
[59]
Shi, J.B.; Chen, L.Z.; Wang, B.S.; Huang, X.; Jiao, M.M.; Liu, M.M.; Tang, W.J.; Liu, X.H. Novel pyrazolo [4, 3-d] pyrimidine as potent and orally active inducible nitric oxide synthase (iNOS) dimerization inhibitor with efficacy in rheumatoid arthritis mouse model. J. Med. Chem., 2019, 62(8), 4013-4031.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00039] [PMID: 30925056]
[60]
Albrecht, W.; Unger, A.; Bauer, S.M.; Laufer, S.A. Discovery of N-{4-[5-(4-Fluorophenyl)-3-methyl-2-methylsulfanyl-3 H-imida-zol-4-yl]-pyridin-2-yl}-acetamide (CBS-3595), a Dual p38α MAPK/PDE-4 Inhibitor with Activity against TNFα-Related Diseases. J. Med. Chem., 2017, 60, 5290-5305.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01647] [PMID: 28613871]
[61]
Crawford, J.J.; Johnson, A.R.; Misner, D.L.; Belmont, L.D.; Castanedo, G.; Choy, R.; Coraggio, M.; Dong, L.; Eigenbrot, C.; Erickson, R.; Ghilardi, N.; Hau, J.; Katewa, A.; Kohli, P.B.; Lee, W.; Lubach, J.W.; McKenzie, B.S.; Ortwine, D.F.; Schutt, L.; Tay, S.; Wei, B.; Reif, K.; Liu, L.; Wong, H.; Young, W.B. Discovery of GDC-0853: A potent, selective, and noncovalent bruton’s tyrosine kinase inhibitor in early clinical development. J. Med. Chem., 2018, 61(6), 2227-2245.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01712] [PMID: 29457982]
[62]
Zhang, X.; Sheng, X.; Shen, J.; Zhang, S.; Sun, W.; Shen, C.; Li, Y.; Wang, J.; Lv, H.; Cui, M.; Zhu, Y.; Huang, L.; Hao, D.; Qi, Z.; Sun, G.; Mao, W.; Pan, Y.; Shen, L.; Li, X.; Hu, G.; Gong, Z.; Han, S.; Li, J.; Chen, S.; Tu, R.; Wang, X.; Wu, C. Discovery and evaluation of pyrazolo[3,4-d]pyridazinone as a potent and orally active irreversible BTK inhibitor. ACS Med. Chem. Lett., 2019, 11(10), 1863-1868.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00395] [PMID: 33062165]
[63]
Liu, J.; Guiadeen, D.; Krikorian, A.; Gao, X.; Wang, J.; Babu Boga, S. Alhassan, A.B.; Yu, W.; Selyutin, O.; Yu, Y.; Anand, R.; Xu, J.; Kelly, J.; Duffy, J.L.; Liu, S.; Yang, C.; Wu, H.; Cai, J.; Bennett, C.; Maloney, K.M.; Tyagarajan, S.; Gao, Y.D.; Fischmann, T.O.; Presland, J.; Mansueto, M.; Xu, Z.; Leccese, E.; Zhang-Hoover, J.; Knemeyer, I.; Garlisi, C.G.; Stivers, P.; Brandish, P.E.; Hicks, A.; Kim, R.; Kozlowski, J.A. Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes. Bioorg. Med. Chem. Lett., 2020, 30(17), 127390.
[http://dx.doi.org/10.1016/j.bmcl.2020.127390] [PMID: 32738973]
[64]
Liu, J.; Guiadeen, D.; Krikorian, A.; Gao, X.; Wang, J.; Boga, S.B.; Alhassan, A.B.; Yu, Y.; Vaccaro, H.; Liu, S.; Yang, C.; Wu, H.; Cooper, A.; de Man, J.; Kaptein, A.; Maloney, K.; Hornak, V.; Gao, Y.D.; Fischmann, T.O.; Raaijmakers, H.; Vu-Pham, D.; Presland, J.; Mansueto, M.; Xu, Z.; Leccese, E.; Zhang-Hoover, J.; Knemeyer, I.; Garlisi, C.G.; Bays, N.; Stivers, P.; Brandish, P.E.; Hicks, A.; Kim, R.; Kozlowski, J.A. Discovery of 8-amino-imidazo[1,5-a]pyrazines as reversible btk inhibitors for the treatment of rheumatoid arthritis. ACS Med. Chem. Lett., 2015, 7(2), 198-203.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00463] [PMID: 26985298]
[65]
Qiu, H.; Ali, Z.; Bender, A.; Caldwell, R.; Chen, Y.Y.; Fang, Z.; Gardberg, A.; Glaser, N.; Goettsche, A.; Goutopoulos, A.; Grenningloh, R.; Hanschke, B.; Head, J.; Johnson, T.; Jones, C.; Jones, R.; Kulkarni, S.; Maurer, C.; Morandi, F.; Neagu, C.; Poetzsch, S.; Potnick, J.; Schmidt, R.; Roe, K.; Viacava Follis, A.; Wing, C.; Zhu, X.; Sherer, B. Discovery of potent and selective reversible Bruton’s tyrosine kinase inhibitors. Bioorg. Med. Chem., 2021, 40, 116163.
[http://dx.doi.org/10.1016/j.bmc.2021.116163] [PMID: 33932711]
[66]
Wang, X.; Barbosa, J.; Blomgren, P.; Bremer, M.C.; Chen, J.; Crawford, J.J.; Deng, W.; Dong, L.; Eigenbrot, C.; Gallion, S.; Hau, J.; Hu, H.; Johnson, A.R.; Katewa, A.; Kropf, J.E.; Lee, S.H.; Liu, L.; Lubach, J.W.; Macaluso, J.; Maciejewski, P.; Mitchell, S.A.; Ortwine, D.F.; DiPaolo, J.; Reif, K.; Scheerens, H.; Schmitt, A.; Wong, H.; Xiong, J.M.; Xu, J.; Zhao, Z.; Zhou, F.; Currie, K.S.; Young, W.B. Discovery of potent and selective tricyclic inhibitors of bruton’s tyrosine kinase with improved druglike properties. ACS Med. Chem. Lett., 2017, 8(6), 608-613.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00103] [PMID: 28626519]
[67]
Elsayed, M.S.A.; Nielsen, J.J.; Park, S.; Park, J.; Liu, Q.; Kim, C.H.; Pommier, Y.; Agama, K.; Low, P.S.; Cushman, M. Application of sequential palladium catalysis for the discovery of janus kinase inhibitors in the benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) series. J. Med. Chem., 2018, 61(23), 10440-10462.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00510] [PMID: 30460842]
[68]
Chough, C.; Joung, M.; Lee, S.; Lee, J.; Kim, J.H.; Kim, B.M. Development of selective inhibitors for the treatment of rheumatoid arthritis: (R)-3-(3-(Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile as a JAK1-selective inhibitor. Bioorg. Med. Chem., 2018, 26(8), 1495-1510.
[http://dx.doi.org/10.1016/j.bmc.2018.01.021] [PMID: 29452839]
[69]
Kawahata, W.; Asami, T.; Kiyoi, T.; Irie, T.; Taniguchi, H.; Asamitsu, Y.; Inoue, T.; Miyake, T.; Sawa, M. Design and synthesis of novel amino-triazine analogues as selective Bruton’s tyrosine kinase inhibitors for treatment of rheumatoid arthritis. J. Med. Chem., 2018, 61(19), 8917-8933.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01147] [PMID: 30216722]
[70]
Watterson, S.H.; De Lucca, G.V.; Shi, Q.; Langevine, C.M.; Liu, Q.; Batt, D.G.; Beaudoin Bertrand, M.; Gong, H.; Dai, J.; Yip, S.; Li, P.; Sun, D.; Wu, D.R.; Wang, C.; Zhang, Y.; Traeger, S.C.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Vickery, R.; Discenza, L.N.; D’Arienzo, C.J.; Zhang, Y.; Heimrich, E.; Gillooly, K.M.; Taylor, T.L.; Pulicicchio, C.; McIntyre, K.W.; Galella, M.A.; Tebben, A.J.; Muckelbauer, J.K.; Chang, C.; Rampulla, R.; Mathur, A.; Salter-Cid, L.; Barrish, J.C.; Carter, P.H.; Fura, A.; Burke, J.R.; Tino, J.A. Discovery of 6-fluoro-5-(r)-(3-(s)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4H)-yl)-2-methylphenyl)-2-(S)-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1H-carbazole-8-carboxamide (BMS-986142): A reversible inhibitor of bruton’s tyrosine kinase (btk) conformationally constrained by two locked atropisomers. J. Med. Chem., 2016, 59(19), 9173-9200.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01088] [PMID: 27583770]
[71]
He, L.; Pei, H.; Lan, T.; Tang, M.; Zhang, C.; Chen, L. Design and synthesis of a highly selective JAK3 inhibitor for the treatment of rheumatoid arthritis. Arch. Pharm. (Weinheim), 2017, 350(11), 1700194.
[http://dx.doi.org/10.1002/ardp.201700194] [PMID: 28944566]
[72]
Yao, X.; Sun, X.; Jin, S.; Yang, L.; Xu, H.; Rao, Y. Discovery of 4-aminoquinoline-3-carboxamide derivatives as potent reversible bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. J. Med. Chem., 2019, 62(14), 6561-6574.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00329] [PMID: 31260299]
[73]
Wu, H.; Huang, Q.; Qi, Z.; Chen, Y.; Wang, A.; Chen, C.; Liang, Q.; Wang, J.; Chen, W.; Dong, J.; Yu, K.; Hu, C.; Wang, W.; Liu, X.; Deng, Y.; Wang, L.; Wang, B.; Li, X.; Gray, N.S.; Liu, J.; Wei, W.; Liu, Q. Irreversible inhibition of BTK kinase by a novel highly selective inhibitor CHMFL-BTK-11 suppresses inflammatory response in rheumatoid arthritis model. Sci. Rep., 2017, 7(1), 466.
[http://dx.doi.org/10.1038/s41598-017-00482-4] [PMID: 28352114]
[74]
Atobe, M.; Serizawa, T.; Yamakawa, N.; Takaba, K.; Nagano, Y.; Yamaura, T.; Tanaka, E.; Tazumi, A.; Bito, S.; Ishiguro, M.; Kawanishi, M. Discovery of 4,6- and 5,7-disubstituted isoquinoline derivatives as a novel class of protein kinase C ζ inhibitors with fragment-merging strategy. J. Med. Chem., 2020, 63(13), 7143-7162.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00449] [PMID: 32551607]
[75]
Kaur, M.; Singh, M.; Silakari, O. Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: Designing, synthesis and biological evaluation. Future Med. Chem., 2017, 9(11), 1193-1211.
[http://dx.doi.org/10.4155/fmc-2017-0037] [PMID: 28722479]
[76]
Watterson, S.H.; Liu, Q.; Beaudoin Bertrand, M.; Batt, D.G.; Li, L.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Moore, R.; Yang, Z.; Vickery, R.; Elzinga, P.A.; Discenza, L.; D’Arienzo, C.; Gillooly, K.M.; Taylor, T.L.; Pulicicchio, C.; Zhang, Y.; Heimrich, E.; McIntyre, K.W.; Ruan, Q.; Westhouse, R.A.; Catlett, I.M.; Zheng, N.; Chaudhry, C.; Dai, J.; Galella, M.A.; Tebben, A.J.; Pokross, M.; Li, J.; Zhao, R.; Smith, D.; Rampulla, R.; Allentoff, A.; Wallace, M.A.; Mathur, A.; Salter-Cid, L.; Macor, J.E.; Carter, P.H.; Fura, A.; Burke, J.R.; Tino, J.A. Discovery of branebrutinib (BMS-986195): A strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of bruton’s tyrosine kinase (BTK). J. Med. Chem., 2019, 62(7), 3228-3250.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00167] [PMID: 30893553]
[77]
Bua, S.; Di Cesare Mannelli, L.; Vullo, D.; Ghelardini, C.; Bartolucci, G.; Scozzafava, A.; Supuran, C.T.; Carta, F. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the treatment of rheumatoid arthritis. J. Med. Chem., 2017, 60(3), 1159-1170.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01607] [PMID: 28075587]
[78]
Shi, L.; Zhong, Z.; Li, X.; Zhou, Y.; Pan, Z. Discovery of an orally available janus kinase 3 selective covalent inhibitor. J. Med. Chem., 2019, 62(2), 1054-1066.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01823] [PMID: 30615446]
[79]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[80]
Kantarjian, H.M.; Prat, F.; Steensma, D.P.; Kurzrock, R.; Stewart, D.J.; Sekeres, M.A.; Leveque, J. Cancer research in the United States: A critical review of current status and proposal for alternative models. Cancer, 2018, 124(14), 2881-2889.
[http://dx.doi.org/10.1002/cncr.31522] [PMID: 29757456]
[81]
Moore, T.J.; Zhang, H.; Anderson, G.; Alexander, G.C. Estimated costs of pivotal trials for novel therapeutic agents approved by the US food and drug administration, 2015-2016. JAMA Intern. Med., 2018, 178(11), 1451-1457.
[http://dx.doi.org/10.1001/jamainternmed.2018.3931] [PMID: 30264133]
[82]
Martin, L.; Hutchens, M.; Hawkins, C.; Radnov, A. How much do clinical trials cost? Nat. Rev. Drug Discov., 2017, 16(6), 381-382.
[http://dx.doi.org/10.1038/nrd.2017.70] [PMID: 28529317]
[83]
Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev., 2019, 119(18), 10520-10594.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[84]
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639), 115-118.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[85]
Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; Kim, R.; Raman, R.; Nelson, P.C.; Mega, J.L.; Webster, D.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22), 2402-2410.
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[86]
Stoel, B. Use of artificial intelligence in imaging in rheumatology - current status and future perspectives. RMD Open, 2020, 6(1), e001063.
[http://dx.doi.org/10.1136/rmdopen-2019-001063] [PMID: 31958283]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy