Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Review of Multifunction Smart Nanoparticle based Drug Delivery Systems

Author(s): Hareem Fatima, Muhammad Yasin Naz*, Shazia Shukrullah, Hira Aslam, Sami Ullah and Mohammed Ali Assiri

Volume 28, Issue 36, 2022

Published on: 07 October, 2022

Page: [2965 - 2983] Pages: 19

DOI: 10.2174/1381612828666220422085702

Price: $65

Abstract

Cancer nano-therapeutics are rapidly evolving and are often used to overcome a number of concerns with traditional drug delivery methods, including non-specific drug targeting and distribution, low oral bioavailability, and poor hydrophilicity. Modern nano-based targeting techniques have been developed as a result of advances in nano vehicle engineering and materials science, which may bring people with cancer a new hope. Clinical trials have been authorized for a number of medicinal nanocarriers. Nanocarriers with the best feasible size and surface attributes have been developed to optimize biodistribution and increase blood circulation duration. Nanotherapeutics can carry preloaded active medicine towards cancerous cells by preferentially leveraging the specific physiopathology of malignancies. In contrast to passive targeting, active targeting strategies involving antigens or ligands, developed against specific tumor sites, boost the selectivity of these curative nanovehicles. Another barrier that nanoparticles may resolve or lessen is drug resistance. Multifunctional and complex nanoparticles are currently being explored and are predicted to usher in a new era of nanoparticles that will allow for more individualized and customized cancer therapy. The potential prospects and opportunities of stimuli-triggered nanosystems in therapeutic trials are also explored in this review.

Keywords: Smart nanoparticles, drug delivery systems, active targeting tactics, drug resistance, nanotherapeutics, physiopathology of malignancies

[1]
Davoodi P, Lee LY, Xu Q, et al. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132: 104-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.002] [PMID: 30415656]
[2]
Tabata I. The importance of drug delivery systems in tissue engineering. Pharm Sci Technol Today 2000; 3(3): 80-9.
[http://dx.doi.org/10.1016/S1461-5347(00)00242-X] [PMID: 10707043]
[3]
Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Acc Chem Res 2000; 33(2): 94-101.
[http://dx.doi.org/10.1021/ar9800993] [PMID: 10673317]
[4]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[5]
Bader RA, Putnam DA. Engineering polymer systems for improved drug delivery. New Jersey, USA: John Wiley & Sons, Inc. 2014. SBN:9781118747896
[http://dx.doi.org/10.1002/9781118747896]
[6]
Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem 2017; 1(8): 1-17.
[http://dx.doi.org/10.1038/s41570-017-0063] [PMID: 31286060]
[7]
Guo X, Wang L, Wei X, Zhou S. Polymer‐based drug delivery systems for cancer treatment. J Polym Sci A Polym Chem 2016; 54(22): 3525-50.
[http://dx.doi.org/10.1002/pola.28252]
[8]
Frøkjær S, Patton JS. Drug delivery research. Nat Rev Drug Discov 2009; 8: 87.
[http://dx.doi.org/10.1038/nrd2791]
[9]
Wertheimer AI, Santella TM, Finestone AJ, Levy RA. Drug delivery systems improve pharmaceutical profile and facilitate medication adherence. Adv Ther 2005; 22(6): 559-77.
[http://dx.doi.org/10.1007/BF02849950] [PMID: 16510373]
[10]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[11]
Urquhart J. Erratic patient compliance with prescribed drug regimens: Target for drug delivery systems. Clin Pharmacol Ther 2000; 67(4): 331-4.
[http://dx.doi.org/10.1067/mcp.2000.105582] [PMID: 10801240]
[12]
Rosen H, Abribat T. The rise and rise of drug delivery. Nat Rev Drug Discov 2005; 4(5): 381-5.
[http://dx.doi.org/10.1038/nrd1721] [PMID: 15864267]
[13]
Jain A, Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. Peptide and protein delivery using new drug delivery systems. Crit Rev Ther Drug Carrier Syst 2013; 30(4): 293-.
[http://dx.doi.org/10.1615/critrevtherdrugcarriersyst.2013006955] [PMID: 23662604]
[14]
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm 2014; 459(1-2): 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]
[15]
Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release 2003; 90(3): 261-80.
[http://dx.doi.org/10.1016/S0168-3659(03)00194-9] [PMID: 12880694]
[16]
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4(11): 1443-67.
[http://dx.doi.org/10.4155/tde.13.104] [PMID: 24228993]
[17]
Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspec-tives. Saudi Pharm J 2016; 24(4): 413-28.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[18]
Mainardes RM, Silva LP. Drug delivery systems: Past, present, and future. Curr Drug Targets 2004; 5(5): 449-55.
[http://dx.doi.org/10.2174/1389450043345407] [PMID: 15216911]
[19]
Yun Y, Lee BK, Park K. Controlled drug delivery systems: The next 30 years. Front Chem Sci Eng 2014; 8(3): 276-9.
[http://dx.doi.org/10.1007/s11705-014-1426-x]
[20]
Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008; 132(3): 153-63.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.012] [PMID: 18817820]
[21]
Khanna SC, Jecklin T, Speiser P. Bead polymerization technique for sustained-release dosage form. J Pharm Sci 1970; 59(5): 614-8.
[http://dx.doi.org/10.1002/jps.2600590508] [PMID: 5446415]
[22]
Birrenbach G, Speiser PP. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 1976; 65(12): 1763-6.
[http://dx.doi.org/10.1002/jps.2600651217] [PMID: 1036442]
[23]
Heller J. Controlled release of biologically active compounds from bioerodible polymers. Biomaterials 1980; 1(1): 51-7.
[http://dx.doi.org/10.1016/0142-9612(80)90060-5] [PMID: 6258660]
[24]
Heller J. Controlled drug release from poly(ortho esters). Ann N Y Acad Sci 1985; 446(1): 51-66.
[http://dx.doi.org/10.1111/j.1749-6632.1985.tb18390.x] [PMID: 3925854]
[25]
Heller J, Himmelstein KJ. Poly(ortho ester) biodegradable polymer systems. Methods Enzymol 1985; 112: 422-36.
[http://dx.doi.org/10.1016/S0076-6879(85)12033-1] [PMID: 3930918]
[26]
Langer R, Cima LG, Tamada JA, Wintermantel E. Future directions in biomaterials. Biomaterials 1990; 11(9): 738-45.
[http://dx.doi.org/10.1016/0142-9612(90)90038-R] [PMID: 2090313]
[27]
Folkman J, Long DM. The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res 1964; 4(3): 139-42.
[http://dx.doi.org/10.1016/S0022-4804(64)80040-8] [PMID: 14130164]
[28]
Roseman TJ. Release of steroids from a silicone polymer. J Pharm Sci 1972; 61(1): 46-50.
[http://dx.doi.org/10.1002/jps.2600610106] [PMID: 5058644]
[29]
Przybylski M, Zaharko DS, Chirigos MA, Adamson RH, Schultz RM, Ringsdorf H. DIVEMA-methotrexate: Immune-adjuvant role of polymeric carriers linked to antitumor agents. Cancer Treat Rep 1978; 62(11): 1837-43.
[PMID: 728901]
[30]
Peppas NA, Merrill EW. Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. J Biomed Mater Res 1977; 11(3): 423-34.
[http://dx.doi.org/10.1002/jbm.820110309] [PMID: 853047]
[31]
Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 2003; 49(12): 2990-3006.
[http://dx.doi.org/10.1002/aic.690491202]
[32]
McCoy CP, Brady C, Cowley JF, et al. Triggered drug delivery from biomaterials. Expert Opin Drug Deliv 2010; 7(5): 605-16.
[http://dx.doi.org/10.1517/17425241003677731] [PMID: 20205603]
[33]
Sershen S, West J. Implantable, polymeric systems for modulated drug delivery. Adv Drug Deliv Rev 2002; 54(9): 1225-35.
[http://dx.doi.org/10.1016/S0169-409X(02)00090-X] [PMID: 12393303]
[34]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[35]
Jaimes-Aguirre L, Gibbens-Bandala BV, Morales-Avila E, Ocampo-García BE, Seyedeh-Fatemeh M, Amirhosein A. Polymer-based drug delivery systems, development and pre-clinical status. Curr Pharm Des 2016; 22(19): 2886-903.
[http://dx.doi.org/10.2174/1381612822666160217125028] [PMID: 26898743]
[36]
Rodzinski A, Guduru R, Liang P, et al. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci Rep 2016; 6(1): 20867.
[http://dx.doi.org/10.1038/srep20867] [PMID: 26875783]
[37]
Bhattacharya S, Khanam J, Sarkar P, Pal TK. A chemotherapeutic approach targeting the acidic tumor microenvironment: Combination of a proton pump inhibitor and paclitaxel for statistically optimized nanotherapeutics. RSC Advances 2019; 9(1): 240-54.
[http://dx.doi.org/10.1039/C8RA08924H]
[38]
Galagudza MM, Korolev DV, Sonin DL, et al. Targeted drug delivery into reversibly injured myocardium with silica nanoparticles: Surface functionalization, natural biodistribution, and acute toxicity. Int J Nanomedicine 2010; 5: 231-7.
[http://dx.doi.org/10.2147/IJN.S8719] [PMID: 20463939]
[39]
Joshi J, Kothapalli CR. Nanofibers based tissue engineering and drug delivery approaches for myocardial regeneration. Curr Pharm Des 2015; 21(15): 2006-20.
[http://dx.doi.org/10.2174/1381612821666150302153138] [PMID: 25732660]
[40]
Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev 2015; 84: 85-106.
[http://dx.doi.org/10.1016/j.addr.2014.08.006] [PMID: 25172834]
[41]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[42]
Grover M, Utreja P. Recent advances in drug delivery systems for anti-diabetic drugs: A review. Curr Drug Deliv 2014; 11(4): 444-57.
[http://dx.doi.org/10.2174/1567201811666140118225021] [PMID: 24438443]
[43]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: An immense hope for diabetics. Drug Deliv 2016; 23(7): 2371-90.
[http://dx.doi.org/10.3109/10717544.2014.991001] [PMID: 25544604]
[44]
Kanoff RB. Intraspinal delivery of opiates by an implantable, programmable pump in patients with chronic, intractable pain of nonmalignant origin. J Am Osteopath Assoc 1994; 94(6): 487-93.
[PMID: 8077118]
[45]
Hoekstra A. Pain relief mediated by implantable drug delivery devices. Int J Artif Organs 1994; 17(3): 151-4.
[http://dx.doi.org/10.1177/039139889401700305] [PMID: 8050806]
[46]
Saroja Ch, Lakshmi P, Bhaskaran S. Recent trends in vaccine delivery systems: A review. Int J Pharm Investig 2011; 1(2): 64-74.
[http://dx.doi.org/10.4103/2230-973X.82384] [PMID: 23071924]
[47]
Levin G, Gershonowitz A, Sacks H, et al. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res 2005; 22(4): 550-5.
[http://dx.doi.org/10.1007/s11095-005-2498-6] [PMID: 15846462]
[48]
Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm 2008; 364(2): 227-36.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.032] [PMID: 18805472]
[49]
Thambi T, Son S, Lee DS, Park JH. Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater 2016; 29: 261-70.
[http://dx.doi.org/10.1016/j.actbio.2015.10.011] [PMID: 26472611]
[50]
Guarnieri D, Biondi M, Yu H, et al. Tumor-activated prodrug (TAP)-conjugated nanoparticles with cleavable domains for safe doxorubicin delivery. Biotechnol Bioeng 2015; 112(3): 601-11.
[http://dx.doi.org/10.1002/bit.25454] [PMID: 25220931]
[51]
Kim S, Chen Y, Ho EA, Liu S. Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery. Acta Biomater 2017; 47: 100-12.
[http://dx.doi.org/10.1016/j.actbio.2016.10.006] [PMID: 27717914]
[52]
Wei L, Chen J, Zhao S, Ding J, Chen X. Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomater 2017; 58: 44-53.
[http://dx.doi.org/10.1016/j.actbio.2017.05.053] [PMID: 28576715]
[53]
Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U. Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 2014; 62: 243-50.
[http://dx.doi.org/10.1016/j.ejps.2014.05.021] [PMID: 24931189]
[54]
Cui YN, Xu QX, Davoodi P, Wang DP, Wang CH. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nano-particles modified with transferrin. Acta Pharmacol Sin 2017; 38(6): 943-53.
[http://dx.doi.org/10.1038/aps.2017.45] [PMID: 28552909]
[55]
Palo M, Holländer J, Suominen J, Yliruusi J, Sandler N. 3D printed drug delivery devices: Perspectives and technical challenges. Expert Rev Med Devices 2017; 14(9): 685-96.
[http://dx.doi.org/10.1080/17434440.2017.1363647] [PMID: 28774216]
[56]
Zhang H, Jackson JK, Chiao M. Microfabricated drug delivery devices: Design, fabrication, and applications. Adv Funct Mater 2017; 27(45): 1703606.
[http://dx.doi.org/10.1002/adfm.201703606]
[57]
Staples M, Daniel K, Cima MJ, Langer R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res 2006; 23(5): 847-63.
[http://dx.doi.org/10.1007/s11095-006-9906-4] [PMID: 16715375]
[58]
Brudno Y, Mooney DJ. On-demand drug delivery from local depots. J Control Release 2015; 219: 8-17.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.011] [PMID: 26374941]
[59]
Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. Int J Pharm 2011; 415(1-2): 34-52.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.049] [PMID: 21640806]
[60]
da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J 2018; 340: 9-14.
[http://dx.doi.org/10.1016/j.cej.2018.01.010] [PMID: 31384170]
[61]
Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 2018; 46 (sup2): 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[62]
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112(11): 5818-78.
[http://dx.doi.org/10.1021/cr300068p] [PMID: 23043508]
[63]
Dolovich MB, Dhand R. Aerosol drug delivery: Developments in device design and clinical use. Lancet 2011; 377(9770): 1032-45.
[http://dx.doi.org/10.1016/S0140-6736(10)60926-9] [PMID: 21036392]
[64]
de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012; 2(1): 39.
[http://dx.doi.org/10.1186/2191-219X-2-39] [PMID: 22809406]
[65]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[66]
Simonazzi A, Cid AG, Villegas M, Romero AI, Palma SD, Bermúdez JM. Nanotechnology applications in drug controlled release Drug targeting and stimuli sensitive drug delivery systems. Elsevier 2018; pp. 81-116.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00003-3]
[67]
De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[68]
Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: Promising vehicle for bioactive drugs. Biol Pharm Bull 2006; 29(9): 1790-8.
[http://dx.doi.org/10.1248/bpb.29.1790] [PMID: 16946487]
[69]
Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 2005; 23(31): 7794-803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[70]
Green MR, Manikhas GM, Orlov S, et al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 2006; 17(8): 1263-8.
[http://dx.doi.org/10.1093/annonc/mdl104] [PMID: 16740598]
[71]
Nyman DW, Campbell KJ, Hersh E, et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 2005; 23(31): 7785-93.
[http://dx.doi.org/10.1200/JCO.2004.00.6148] [PMID: 16258082]
[72]
Zhang G, Zhang R, Wen X, Li L, Li C. Micelles based on biodegradable poly(L-glutamic acid)-b-polylactide with paramagnetic Gd ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system. Biomacromolecules 2008; 9(1): 36-42.
[http://dx.doi.org/10.1021/bm700713p] [PMID: 18047289]
[73]
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2(5): 347-60.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[74]
Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 1999; 5(1): 83-94.
[PMID: 9918206]
[75]
Sagita E, Syahdi RR, Arrahman A. Synthesis of polymer-drug conjugates using natural polymer: What, why and how? Pharmaceut Sci Res 2018; 5(3): 97-115.
[76]
Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003; 92(7): 1343-55.
[http://dx.doi.org/10.1002/jps.10397] [PMID: 12820139]
[77]
Batrakova EV, Dorodnych TY, Klinskii EY, et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: In vivo evaluation of anti-cancer activity. Br J Cancer 1996; 74(10): 1545-52.
[http://dx.doi.org/10.1038/bjc.1996.587] [PMID: 8932333]
[78]
Lee KS, Chung HC, Im SA, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 2008; 108(2): 241-50.
[http://dx.doi.org/10.1007/s10549-007-9591-y] [PMID: 17476588]
[79]
Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 2006; 6(11): 2427-30.
[http://dx.doi.org/10.1021/nl061412u] [PMID: 17090068]
[80]
Joshi DT. Significance of amphiphilic block copolymer micelles and its characteristics. Int J Trend Sci Res Develo 2017; 1(5): 407-11.
[http://dx.doi.org/10.31142/ijtsrd2316]
[81]
Wang X, Li J, Wang Y, et al. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 2009; 3(10): 3165-74.
[http://dx.doi.org/10.1021/nn900649v] [PMID: 19761191]
[82]
Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: A novel approach to cancer chemotherapy. Anticancer Drugs 1999; 10(8): 767-76.
[http://dx.doi.org/10.1097/00001813-199909000-00010] [PMID: 10573209]
[83]
Taghavi PAN, Mutlu P, Khodadust R, Gunduz U. Poly(amidoamine) (PAMAM) nanoparticles: Synthesis and biomedical applications. Hacettepe J Biol Chem 2013; 41(3): 289-99.
[84]
Bangham AD. Liposomes: The Babraham connection. Chem Phys Lipids 1993; 64(1-3): 275-85.
[http://dx.doi.org/10.1016/0009-3084(93)90071-A] [PMID: 8242839]
[85]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[86]
Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005; 16(7): 691-707.
[http://dx.doi.org/10.1097/01.cad.0000167902.53039.5a] [PMID: 16027517]
[87]
Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother 2006; 7(11): 1469-74.
[http://dx.doi.org/10.1517/14656566.7.11.1469] [PMID: 16859430]
[88]
Rivera E. Current status of liposomal anthracycline therapy in metastatic breast cancer. Clin Breast Cancer 2003; 4 (Suppl. 2): S76-83.
[http://dx.doi.org/10.3816/CBC.2003.s.019] [PMID: 14667278]
[89]
Rosenthal E, Poizot-Martin I, Saint-Marc T, Spano JP, Cacoub P, Group DNXS. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol 2002; 25(1): 57-9.
[http://dx.doi.org/10.1097/00000421-200202000-00012] [PMID: 11823698]
[90]
Park JH, Lee S, Kim J-H, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog Polym Sci 2008; 33(1): 113-37.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.09.003]
[91]
Kim TY, Kim DW, Chung JY, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004; 10(11): 3708-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0655] [PMID: 15173077]
[92]
Shi C, Guo X, Qu Q, Tang Z, Wang Y, Zhou S. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials 2014; 35(30): 8711-22.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.036] [PMID: 25002267]
[93]
Jin X, Zhang P, Luo L, et al. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. Int J Nanomedicine 2016; 11: 4535-44.
[http://dx.doi.org/10.2147/IJN.S103994] [PMID: 27660445]
[94]
Kumari P, Muddineti OS, Rompicharla SVK, et al. Cholesterol-conjugated poly(D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv 2017; 24(1): 209-23.
[http://dx.doi.org/10.1080/10717544.2016.1245365] [PMID: 28156164]
[95]
Deshayes S, Cabral H, Ishii T, et al. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc 2013; 135(41): 15501-7.
[http://dx.doi.org/10.1021/ja406406h] [PMID: 24028269]
[96]
Gilbreth RN, Novarra S, Wetzel L, et al. Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. J Control Release 2016; 234: 104-14.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.041] [PMID: 27212104]
[97]
Elhissi AM, Ahmed W, Hassan IU, Dhanak VR, D’Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012; 2012: 837327.
[http://dx.doi.org/10.1155/2012/837327] [PMID: 22028974]
[98]
Minelli C, Lowe SB, Stevens MM. Engineering nanocomposite materials for cancer therapy. Small 2010; 6(21): 2336-57.
[http://dx.doi.org/10.1002/smll.201000523] [PMID: 20878632]
[99]
Shao W, Paul A, Rodes L, Prakash S. A new carbon nanotube-based breast cancer drug delivery system: Preparation and in vitro analysis using paclitaxel. Cell Biochem Biophys 2015; 71(3): 1405-14.
[http://dx.doi.org/10.1007/s12013-014-0363-0] [PMID: 27101155]
[100]
Wang H-M, Huang X-Q, Wang A-J, et al. Construction of efficient “on-off-on” fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via covalent energy transfer between g-C3N4 quantum dots and palladium triangular plates. Anal Chim Acta 2020; 1104: 53-9.
[http://dx.doi.org/10.1016/j.aca.2020.01.009] [PMID: 32106957]
[101]
Garcia-Cortes M, Encinar JR, Costa-Fernandez JM, Sanz-Medel A. Highly sensitive nanoparticle-based immunoassays with elemental detection: Application to Prostate-Specific Antigen quantification. Biosens Bioelectron 2016; 85: 128-34.
[http://dx.doi.org/10.1016/j.bios.2016.04.090] [PMID: 27162143]
[102]
Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[103]
Hussain K, Hussain T. Gold nanoparticles:A boon to drug delivery system. South Indian J Biol Sci 2015; 1(3): 128.
[http://dx.doi.org/10.22205/sijbs/2015/v1/i3/100407]
[104]
Hu C, Niestroj M, Yuan D, Chang S, Chen J. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int J Nanomedicine 2015; 10: 2065-77.
[PMID: 25844037]
[105]
Sanna V, Sechi M. Nanoparticle therapeutics for prostate cancer treatment. Maturitas 2012; 73(1): 27-32.
[http://dx.doi.org/10.1016/j.maturitas.2012.01.016] [PMID: 22341739]
[106]
Zhang X, Xing JZ, Chen J, et al. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med 2008; 31(3): E160-7.
[http://dx.doi.org/10.25011/cim.v31i3.3473] [PMID: 18544279]
[107]
Taneja SS. Re: Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. J Urol 2020; 203(1): 31.
[http://dx.doi.org/10.1097/JU.0000000000000614] [PMID: 31634071]
[108]
Yamkamon V, Htoo KPP, Yainoy S, Suksrichavalit T, Tangchaikeeree T, Eiamphungporn W. Urinary PCA3 detection in prostate cancer by magnetic nanoparticles coupled with colorimetric enzyme-linked oligonucleotide assay. EXCLI J 2020; 19: 501-13.
[PMID: 32398974]
[109]
Khramtsov P, Kropaneva M, Bochkova M, Timganova V, Zamorina S, Rayev M. Solid-phase nuclear magnetic resonance immunoassay for the prostate-specific antigen by using protein-coated magnetic nanoparticles. Mikrochim Acta 2019; 186(12): 768.
[http://dx.doi.org/10.1007/s00604-019-3925-4] [PMID: 31713740]
[110]
Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY. Magnetic nanoparticles: Recent advances in synthesis, self-assembly and applications. J Mater Chem 2011; 21(42): 16819-45.
[http://dx.doi.org/10.1039/c1jm11845e]
[111]
Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel) 2017; 7(7): 189.
[http://dx.doi.org/10.3390/nano7070189] [PMID: 28737672]
[112]
Roggers R, Kanvinde S, Boonsith S, Oupický D. The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech 2014; 15(5): 1163-71.
[http://dx.doi.org/10.1208/s12249-014-0142-7] [PMID: 24871552]
[113]
Zhang J, Rosenholm JM. The viability of mesoporous silica nanoparticles for drug delivery. Ther Deliv 2015; 6(8): 891-3.
[http://dx.doi.org/10.4155/TDE.15.46] [PMID: 26271998]
[114]
Hsiao S-M, Peng B-Y, Tseng YS, Liu H-T, Chen C-H, Lin H-M. Preparation and characterization of multifunctional mesoporous silica nanoparticles for dual magnetic resonance and fluorescence imaging in targeted cancer therapy. Microporous Mesoporous Mater 2017; 250: 210-20.
[http://dx.doi.org/10.1016/j.micromeso.2017.04.050]
[115]
Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B 2016; 6(4): 297-307.
[http://dx.doi.org/10.1016/j.apsb.2016.01.007] [PMID: 27471670]
[116]
Sanchez-Moreno P, Ortega-Vinuesa JL, Peula-Garcia JM, Marchal JA, Boulaiz H. Smart drug-delivery systems for cancer nanotherapy. Curr Drug Targets 2018; 19(4): 339-59.
[http://dx.doi.org/10.2174/1389450117666160527142544] [PMID: 27231107]
[117]
Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications Natural polymer drug delivery systems. Springer 2016; pp. 33-93.
[118]
Lakkakula JR, Maçedo Krause RW. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine 2014; 9(6): 877-94.
[http://dx.doi.org/10.2217/nnm.14.41] [PMID: 24981652]
[119]
Wong KH, Lu A, Chen X, Yang Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules 2020; 25(16): 3620.
[http://dx.doi.org/10.3390/molecules25163620] [PMID: 32784890]
[120]
Lao J, Madani J, Puértolas T, et al. Liposomal doxorubicin in the treatment of breast cancer patients: A review. J Drug Deliv 2013; 2013: 456409.
[http://dx.doi.org/10.1155/2013/456409] [PMID: 23634302]
[121]
Gao M, Yang Y, Bergfel A, Huang L, Zheng L, Bowden TM. Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery. J Nanobiotechnology 2020; 18(1): 13.
[http://dx.doi.org/10.1186/s12951-020-0575-y] [PMID: 31941501]
[122]
Li R, Wu R, Zhao L, Wu M, Yang L, Zou H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 2010; 4(3): 1399-408.
[http://dx.doi.org/10.1021/nn9011225] [PMID: 20148593]
[123]
Sabahi A, Salahandish R, Ghaffarinejad A, Omidinia E. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta 2020; 209: 120595.
[http://dx.doi.org/10.1016/j.talanta.2019.120595] [PMID: 31892044]
[124]
Chen Q, Li K, Wen S, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2013; 34(21): 5200-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.009] [PMID: 23583039]
[125]
Chen Q, Wang H, Liu H, et al. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 2015; 87(7): 3949-56.
[http://dx.doi.org/10.1021/acs.analchem.5b00135] [PMID: 25768040]
[126]
Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules 2019; 9(12): 790.
[http://dx.doi.org/10.3390/biom9120790] [PMID: 31783573]
[127]
Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 2017; 9(4): 46.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[128]
Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 2007; 18(5): 1391-6.
[http://dx.doi.org/10.1021/bc060367e] [PMID: 17630789]
[129]
Martínez-Carmona M, Gun’ko Y, Vallet-Regí M. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials (Basel) 2018; 8(4): 268.
[http://dx.doi.org/10.3390/nano8040268] [PMID: 29690644]
[130]
Adimoolam MG. AV, Nalam MR, Sunkara MV. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy. J Mater Chem B Mater Biol Med 2017; 5(46): 9189-96.
[http://dx.doi.org/10.1039/C7TB02599H] [PMID: 32264601]
[131]
Akbari Jonous Z, Shayeh JS, Yazdian F, Yadegari A, Hashemi M, Omidi M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Eng Life Sci 2019; 19(3): 206-16.
[http://dx.doi.org/10.1002/elsc.201800093] [PMID: 32625003]
[132]
Fakayode OJ, Kruger CA, Songca SP, Abrahamse H, Oluwafemi OS. Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. Mater Sci Eng C 2018; 92: 737-44.
[http://dx.doi.org/10.1016/j.msec.2018.07.026] [PMID: 30184802]
[133]
Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011; 103(2): 317-24.
[http://dx.doi.org/10.1007/s11060-010-0389-0] [PMID: 20845061]
[134]
Gultepe E, Reynoso FJ, Jhaveri A, et al. Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution. Nanomedicine 2010; 5(8): 1173-82.
[http://dx.doi.org/10.2217/nnm.10.84] [PMID: 21039195]
[135]
Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv Drug Deliv Rev 2012; 64(9): 866-84.
[http://dx.doi.org/10.1016/j.addr.2012.01.020] [PMID: 22349241]
[136]
Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2009; 71(3): 431-44.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.026] [PMID: 18977297]
[137]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[138]
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009; 30(7): 1073-81.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[139]
Stefanadis C, Chrysochoou C, Markou D, et al. Increased temperature of malignant urinary bladder tumors in vivo: The application of a new method based on a catheter technique. J Clin Oncol 2001; 19(3): 676-81.
[http://dx.doi.org/10.1200/JCO.2001.19.3.676] [PMID: 11157017]
[140]
Russo A, DeGraff W, Friedman N, Mitchell JB. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res 1986; 46(6): 2845-8.
[PMID: 2421885]
[141]
Ghadiali JE, Stevens MM. Enzyme‐responsive nanoparticle systems. Adv Mater 2008; 20(22): 4359-63.
[http://dx.doi.org/10.1002/adma.200703158]
[142]
Torchilin VP. Fundamentals of stimuli-responsive drug and gene delivery systems 2018.
[http://dx.doi.org/10.1039/9781788013536-00001]
[143]
Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014; 32(4): 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[144]
Ganesh VA, Baji A, Ramakrishna S. Smart functional polymers–a new route towards creating a sustainable environment. RSC Advances 2014; 4(95): 53352-64.
[http://dx.doi.org/10.1039/C4RA10631H]
[145]
Yu P, Yu H, Guo C, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater 2015; 14: 115-24.
[http://dx.doi.org/10.1016/j.actbio.2014.12.001] [PMID: 25498306]
[146]
Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 2000; 6(1): 15-9.
[http://dx.doi.org/10.1016/S1357-4310(99)01615-9] [PMID: 10637570]
[147]
Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011; 10(10): 767-77.
[http://dx.doi.org/10.1038/nrd3554] [PMID: 21921921]
[148]
Lee ES, Oh KT, Kim D, Youn YS, Bae YH. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J Control Release 2007; 123(1): 19-26.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.006] [PMID: 17826863]
[149]
Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multistimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34(14): 3647-57.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[150]
Chen W, Zhong P, Meng F, et al. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J Control Release 2013; 169(3): 171-9.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.001] [PMID: 23306022]
[151]
Punjabi PB, Chauhan NPS, Juneja P, Jangid NK, Kalal S. Microgels: Drug uptake and release behavior.In: Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. (1st Edition.). CRC press 2015; pp. 4690-700.
[152]
Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym Chem 2014; 5(5): 1519-28.
[http://dx.doi.org/10.1039/C3PY01192E]
[153]
Wang J, Sun X, Mao W, et al. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv Mater 2013; 25(27): 3670-6.
[http://dx.doi.org/10.1002/adma.201300929] [PMID: 23740675]
[154]
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[155]
Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010; 9(11): 923-8.
[http://dx.doi.org/10.1038/nmat2859] [PMID: 20935658]
[156]
Li ZY, Hu JJ, Xu Q, et al. A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nano-particles. J Mater Chem B Mater Biol Med 2015; 3(1): 39-44.
[http://dx.doi.org/10.1039/C4TB01533A] [PMID: 32261922]
[157]
Nguyen MM, Carlini AS, Chien MP, et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 2015; 27(37): 5547-52.
[http://dx.doi.org/10.1002/adma.201502003] [PMID: 26305446]
[158]
Lock LL, Tang Z, Keith D, Reyes C, Cui H. Enzyme-specific doxorubicin drug beacon as drug-resistant theranostic molecular probes. ACS Macro Lett 2015; 4(5): 552-5.
[http://dx.doi.org/10.1021/acsmacrolett.5b00170]
[159]
de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 2012; 64(11): 967-78.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[160]
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019; 24(6): E1117.
[http://dx.doi.org/10.3390/molecules24061117] [PMID: 30901827]
[161]
Shi Y, van den Dungen ET, Klumperman B, van Nostrum CF, Hennink WE. Reversible addition–fragmentation chain transfer synthesis of a micelle-forming, structure reversible thermosensitive diblock copolymer based on the N-(2-Hydroxy propyl) methacrylamide backbone. ACS Macro Lett 2013; 2(5): 403-8.
[http://dx.doi.org/10.1021/mz300662b]
[162]
Shi Y, Cardoso RM, Van Nostrum CF, Hennink WE. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polym Chem 2015; 6(11): 2048-53.
[http://dx.doi.org/10.1039/C4PY01759E]
[163]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[164]
Adelsberger J, Kulkarni A, Jain A, et al. Thermoresponsive PS-b-PNIPAM-b-PS micelles: Aggregation behavior, segmental dynamics, and thermal response. Macromolecules 2010; 43(5): 2490-501.
[http://dx.doi.org/10.1021/ma902714p]
[165]
Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res 2008; 41(12): 1842-51.
[http://dx.doi.org/10.1021/ar800150g] [PMID: 19053240]
[166]
Chen Z, Yin J-J, Zhou Y-T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012; 6(5): 4001-12.
[http://dx.doi.org/10.1021/nn300291r] [PMID: 22533614]
[167]
Fang K, Song L, Gu Z, Yang F, Zhang Y, Gu N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf B Biointerfaces 2015; 136: 712-20.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.014] [PMID: 26513754]
[168]
Hu K, Sun J, Guo Z, et al. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Adv Mater 2015; 27(15): 2507-14.
[http://dx.doi.org/10.1002/adma.201405757] [PMID: 25753892]
[169]
Xie J, Zhang Y, Yan C, et al. High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically in-duced cancer theranostics. Biomaterials 2014; 35(33): 9126-36.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.019] [PMID: 25106772]
[170]
Xiong F, Chen Y, Chen J, et al. Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. J Control Release 2013; 172(3): 993-1001.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.023] [PMID: 24096016]
[171]
Song L, Zang F, Song M, Chen G, Zhang Y, Gu N. Effective PEGylation of Fe3O4 nanomicelles for in vivo MR imaging. J Nanosci Nanotechnol 2015; 15(6): 4111-8.
[http://dx.doi.org/10.1166/jnn.2015.9803] [PMID: 26369019]
[172]
Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. Revisiting the cytotoxicity of quantum dots: An in-depth overview. Biophys Rev 2020; 12(3): 703-18.
[http://dx.doi.org/10.1007/s12551-020-00653-0] [PMID: 32140918]
[173]
van Zandwijk N, Frank AL. Potential toxicities of carbon nanotubes: Time for a reminder. Expert Rev Respir Med 2020; 14(4): 339-40.
[174]
Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 2005; 26(36): 7587-95.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.027] [PMID: 16005959]
[175]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review J Adv Res 2018; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[176]
Lee BK, Yun YH, Park K. Smart nanoparticles for drug delivery: boundaries and opportunities. Chem Eng Sci 2015; 125: 158-64.
[http://dx.doi.org/10.1016/j.ces.2014.06.042] [PMID: 25684780]
[177]
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: From fundamentals to the clinic. Chem Commun (Camb) 2014; 50(58): 7743-65.
[http://dx.doi.org/10.1039/C4CC01429D] [PMID: 24805962]
[178]
Baek S, Singh RK, Khanal D, et al. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 2015; 7(34): 14191-216.
[http://dx.doi.org/10.1039/C5NR02730F] [PMID: 26260245]
[179]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[180]
Ferrari M. Frontiers in cancer nanomedicine: Directing mass transport through biological barriers. Trends Biotechnol 2010; 28(4): 181-8.
[http://dx.doi.org/10.1016/j.tibtech.2009.12.007] [PMID: 20079548]
[181]
Helmus MN. The need for rules and regulations. Nat Nanotechnol 2007; 2(6): 333-4.
[http://dx.doi.org/10.1038/nnano.2007.165] [PMID: 18654297]
[182]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy