Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

In Silico Optimization of Frizzled-8 Receptor Inhibition Activity of Carbamazepine: Designing New Anti-Cancer Agent

Author(s): Roya Ahmadi, Bakhtyar Sepehri*, Mehdi Irani and Raouf Ghavami*

Volume 26, Issue 4, 2023

Published on: 26 August, 2022

Page: [696 - 705] Pages: 10

DOI: 10.2174/1386207325666220421104008

Price: $65

Abstract

Background: Frizzled-8 (FZD8) receptor is a therapeutic target for cancer treatment and recent research has shown that carbamazepine (CBZ) can inhibit this receptor.

Objective: In this work, it has been tried to optimize CBZ to enhance its binding capacity to the N6W binding site of FZD8 by using structure-based drug design methods.

Methods: CBZ and its 83 derivatives were docked to the N6W binding site of FZD8.

Results: Docking results show that two compounds 79 and 82 have the smallest binding energies and are fitted to the N6W binding site. Compounds C79 and C82 have been synthesized by replacing a hydrogen atom of the seven-membered ring in CBZ with benzoate and nicotinate groups, respectively. In addition, docking results show that a trifluoromethyl on one of the phenyl rings is favorable for improving the FZD8 inhibition activity of the molecule.

Conclusion: Both molecules C79 and C82 were subjected to molecular dynamics (MD) simulation. MD results show that FZD8-C82 complex is stable and this compound binds to the N6W binding site more strongly than compounds C79 and CBZ.

Keywords: Frizzled-8 receptor, carbamazepine, wnt signaling pathway, anti-cancer agent, molecular docking, molecular dynamics simulation.

Graphical Abstract

[1]
Schulte, G. Frizzleds and WNT/β-catenin signaling-The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur. J. Pharmacol., 2015, 763(Pt B), 191-195.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.031] [PMID: 26003275]
[2]
Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol., 2003, 63(6), 1256-1272.
[http://dx.doi.org/10.1124/mol.63.6.1256] [PMID: 12761335]
[3]
Huang, H.C.; Klein, P.S. The Frizzled family: Receptors for multiple signal transduction pathways. Genome Biol., 2004, 5(7), 234.
[http://dx.doi.org/10.1186/gb-2004-5-7-234] [PMID: 15239825]
[4]
Zhong, Z.A.; Michalski, M.N.; Stevens, P.D.; Sall, E.A.; Williams, B.O. Regulation of Wnt receptor activity: Implications for therapeutic development in colon cancer. J. Biol. Chem., 2021, 296, 100782.
[http://dx.doi.org/10.1016/j.jbc.2021.100782] [PMID: 34000297]
[5]
Hirai, H.; Matoba, K.; Mihara, E.; Arimori, T.; Takagi, J. Crystal structure of a mammalian Wnt-frizzled complex. Nat. Struct. Mol. Biol., 2019, 26(5), 372-379.
[http://dx.doi.org/10.1038/s41594-019-0216-z] [PMID: 31036956]
[6]
Wu, G.; Weng, W.; Xia, P.; Yan, S.; Zhong, C.; Xie, L.; Xie, Y.; Fan, G. Wnt signalling pathway in bladder cancer. Cell. Signal., 2021, 79, 109886.
[http://dx.doi.org/10.1016/j.cellsig.2020.109886] [PMID: 33340660]
[7]
Yang, Q.; Wang, Y.; Pan, X.; Ye, J.; Gan, S.; Qu, F.; Chen, L.; Chu, C.; Gao, Y.; Cui, X. Frizzled 8 promotes the cell proliferation and metastasis of renal cell carcinoma. Oncotarget, 2017, 8(45), 78989-79002.
[http://dx.doi.org/10.18632/oncotarget.20742] [PMID: 29108281]
[8]
Wang, H.Q.; Xu, M.L.; Ma, J.; Zhang, Y.; Xie, C.H. Frizzled-8 as a putative therapeutic target in human lung cancer. Biochem. Biophys. Res. Commun., 2012, 417(1), 62-66.
[http://dx.doi.org/10.1016/j.bbrc.2011.11.055] [PMID: 22138402]
[9]
Zeng, C.M.; Chen, Z.; Fu, L. Frizzled receptors as potential therapeutic targets in human cancers. Int. J. Mol. Sci., 2018, 19(5), 1543.
[http://dx.doi.org/10.3390/ijms19051543] [PMID: 29789460]
[10]
Zhao, Y.; Ren, J.; Hillier, J.; Lu, W.; Jones, E.Y. Antiepileptic drug carbamazepine binds to a novel pocket on the wnt receptor Frizzled-8. J. Med. Chem., 2020, 63(6), 3252-3260.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02020] [PMID: 32049522]
[11]
Gonzalez Castro, L.N.; Milligan, T.A. Seizures in patients with cancer. Cancer, 2020, 126(7), 1379-1389.
[http://dx.doi.org/10.1002/cncr.32708] [PMID: 31967671]
[12]
Cucchiara, F.; Ferraro, S.; Luci, G.; Bocci, G. Relevant pharmacological interactions between alkylating agents and antiepileptic drugs: Preclinical and clinical data. Pharmacol. Res., 2022, 175, 105976.
[http://dx.doi.org/10.1016/j.phrs.2021.105976] [PMID: 34785318]
[13]
Soyata, A.; Hasanah, A.N.; Rusdiana, T. Isoflavones in soybean as a daily nutrient: The mechanisms of action and how they alter the pharmacokinetics of drugs. Turk J. Pharm. Sci., 2021, 18(6), 799-810.
[http://dx.doi.org/10.4274/tjps.galenos.2020.79106] [PMID: 34979737]
[14]
Sepehri, B.; Ghavami, R. The identification of new CD38 inhibitors by combined structure and ligand based virtual screening approaches of ZINC database. Lett. Drug Des. Discov., 2018, 15(6), 654-660.
[http://dx.doi.org/10.2174/1570180814666170914120848]
[15]
Sepehri, B.; Rezaei, M.; Ghavami, R. The in silico identification of potent anti-cancer agents by targeting the ATP binding site of the N-domain of HSP90. SAR QSAR Environ. Res., 2018, 29(7), 551-565.
[http://dx.doi.org/10.1080/1062936X.2018.1494626] [PMID: 30058412]
[16]
Sepehri, B.; Ghavami, R. The identification of new ATAD2 bromodomain inhibitors: The application of combined ligand and structure-based virtual screening. SAR QSAR Environ. Res., 2017, 28(12), 957-971.
[http://dx.doi.org/10.1080/1062936X.2017.1385532] [PMID: 29191061]
[17]
Benes, J.; Parada, A.; Figueiredo, A.A.; Alves, P.C.; Freitas, A.P.; Learmonth, D.A.; Cunha, R.A.; Garrett, J.; Soares-da-Silva, P. Anticonvulsant and sodium channel-blocking properties of novel 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide derivatives. J. Med. Chem., 1999, 42(14), 2582-2587.
[http://dx.doi.org/10.1021/jm980627g] [PMID: 10411478]
[18]
Ambrósio, A.F.; Soares-Da-Silva, P.; Carvalho, C.M.; Carvalho, A.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem. Res., 2002, 27(1-2), 121-130.
[http://dx.doi.org/10.1023/A:1014814924965] [PMID: 11926264]
[19]
Lu, W.; Uetrecht, J.P. Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab. Dispos., 2008, 36(8), 1624-1636.
[http://dx.doi.org/10.1124/dmd.107.019554] [PMID: 18463199]
[20]
Elliott, E.C.; Regan, S.L.; Maggs, J.L.; Bowkett, E.R.; Parry, L.J.; Williams, D.P.; Park, B.K.; Stachulski, A.V. Haloarene derivatives of carbamazepine with reduced bioactivation liabilities: 2-monohalo and 2,8-dihalo derivatives. J. Med. Chem., 2012, 55(22), 9773-9784.
[http://dx.doi.org/10.1021/jm301013n] [PMID: 23088585]
[21]
Fortuna, A.; Alves, G.; Soares-da-Silva, P.; Falcão, A. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: New set of data for predictive in silico ADME models. Epilepsy Res., 2013, 107(1-2), 37-50.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.08.013] [PMID: 24050973]
[22]
Tian, M.; Abdelrahman, A.; Weinhausen, S.; Hinz, S.; Weyer, S.; Dosa, S.; El-Tayeb, A.; Müller, C.E. Carbamazepine derivatives with P2X4 receptor-blocking activity. Bioorg. Med. Chem., 2014, 22(3), 1077-1088.
[http://dx.doi.org/10.1016/j.bmc.2013.12.035] [PMID: 24411477]
[23]
Kanase, Y.; Kitada, T.; Tabata, H.; Makino, K.; Oshitari, T.; Ohashi, H.; Yoshinaga, T.; Natsugari, H.; Takahashi, H. 4-Substituted carbamazepine derivatives: Conformational analysis and sodium channel-blocking properties. Bioorg. Med. Chem., 2018, 26(9), 2508-2513.
[http://dx.doi.org/10.1016/j.bmc.2018.04.013] [PMID: 29673716]
[24]
Available from: http://www.hyper.com
[25]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[26]
Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(S1)(Suppl. 1), S33.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S33] [PMID: 21342564]
[27]
MGL Tools. Available from: http://mgltools.scripps.edu
[28]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[29]
Lifes Sciences and Material Sciences. Available from: www.accelrys.com
[30]
Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; Gohlke, H.; Goetz, A.W.; Greene, D.; Harris, R.; Homeyer, N.; Izadi, S.; Kovalenko, A.; Kurtzman, T.; Lee, T.S.; LeGrand, S.; Li, P.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Mermelstein, D.J.; Merz, K.M.; Miao, Y.; Monard, G.; Nguyen, C.; Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D.R.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shen, J.; Simmerling, C.L.; Smith, J.; Salomon-Ferrer, R.; Swails, J.; Walker, R.C.; Wang, J.; Wei, H.; Wolf, R.M.; Wu, X.; Xiao, L.; York, D.M.; Kollman, P.A. Amber 18; University of California: San Francisco, 2018. Available from: http://ambermd.org/AmberMD.php
[31]
Frisch, D.J.; Trucks, M.J.; Schlegel, G.W.; Scuseria, H.B.; Robb, G.E.; Cheeseman, M.A.; Scalmani, J.R.; Barone, G.; Mennucci, V.; Petersson, B.; Nakatsuji, G.A.; Caricato, H.; Li, M.; Hratchian, X.; Izmaylov, H.P.; Bloino, A.F.; Zheng, J.; Sonnenb, G. Gaussian 09, Gaussian, Inc. Wallingford CT., 2009. Available from: https://gaussian.com/glossary/g09/
[32]
6TFB: Carbamazepine binds Frizzled8_RCSBPDB. Available from: https://www.rcsb.org/structure/6TFB
[33]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[34]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[35]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colic-Salvetti correlation-energy into a functional of the electron density. Am. Phys. Soc., 1998, 1998(37), 785-789.
[36]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[37]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[38]
Petersson, G.A.; Al‐Laham, M.A. A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J. Chem. Phys., 1991, 94(9), 6081-6090.
[http://dx.doi.org/10.1063/1.460447]
[39]
Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys., 1998, 1998(89), 2193-2218.
[40]
Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem., 1993, 97(40), 10269-10280.
[http://dx.doi.org/10.1021/j100142a004]
[41]
Besler, B.H.; Merz, K.M.; Kollman, P.A. Atomic charges derived from semiempirical methods. J. Comput. Chem., 1990, 11(4), 431-439.
[http://dx.doi.org/10.1002/jcc.540110404]
[42]
Jafari, S.; Ryde, U.; Irani, M. QM/MM study of the catalytic reaction of myrosinase; importance of assigning proper protonation states of active-site residues. J. Chem. Theory Comput., 2021, 17(3), 1822-1841.
[http://dx.doi.org/10.1021/acs.jctc.0c01121] [PMID: 33543623]
[43]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[44]
Wu, X.; Brooks, B.R. Self-guided Langevin dynamics simulation method. Chem. Phys. Lett., 2003, 381(3-4), 512-518.
[http://dx.doi.org/10.1016/j.cplett.2003.10.013]
[45]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[46]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[47]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[48]
Roe, D.R.; Cheatham, T.E., III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[49]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[50]
Onufriev, A.; Bashford, D.; Case, D.A. Modification of the generalized born model suitable for macromolecules. J. Phys. Chem. B, 2000, 104(15), 3712-3720.
[http://dx.doi.org/10.1021/jp994072s]
[51]
Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 2004, 55(2), 383-394.
[http://dx.doi.org/10.1002/prot.20033] [PMID: 15048829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy