Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Comprehensive Pan-cancer Gene Signature Assessment through the Implementation of a Cascade Machine Learning System

Author(s): Daniel Castillo-Secilla*, Juan Manuel Galvez, Francisco Carrillo-Perez, Juan Carlos Prieto-Prieto, Olga Valenzuela, Luis Javier Herrera and Ignacio Rojas

Volume 18, Issue 1, 2023

Published on: 05 December, 2022

Page: [40 - 54] Pages: 15

DOI: 10.2174/1574893617666220421100512

Price: $65

Abstract

Background: Despite all the medical advances introduced for personalized patient treatment and the research supported in search of genetic patterns inherent to the occurrence of its different manifestations on the human being, the unequivocal and effective treatment of cancer, unfortunately, remains as an unresolved challenge within the scientific panorama. Until a universal solution for its control is achieved, early detection mechanisms for preventative diagnosis increasingly avoid treatments, resulting in unreliable effectiveness. The discovery of unequivocal gene patterns allowing us to discern between multiple pathological states could help shed light on patients suspected of an oncological disease but with uncertainty in the histological and immunohistochemical results.

Methods: This study presents an approach for pan-cancer diagnosis based on gene expression analysis that determines a reduced set of 12 genes, making it possible to distinguish between the main 14 cancer diseases.

Results: Our cascade machine learning process has been robustly designed, obtaining a mean F1 score of 92% and a mean AUC of 99.37% in the test set. Our study showed heterogeneous over-or underexpression of the analyzed genes, which can act as oncogenes or tumor suppressor genes. Upregulation of LPAR5 and PAX8 was demonstrated in thyroid cancer samples. KLF5 was highly expressed in the majority of cancer types.

Conclusion: Our model constituted a useful tool for pan-cancer gene expression evaluation. In addition to providing biological clues about a hypothetical common origin of cancer, the scalability of this study promises to be very useful for future studies to reinforce, confirm, and extend the biological observations presented here. Code availability and datasets are stored in the following GitHub repository to aim for the research reproducibility: https://github.com/CasedUgr/PanCancerClassification.

Keywords: PanCancer, RNA-Seq, TCGA, Gene Expression, Machine Learning, Feature Selection, CDSS

Graphical Abstract

[1]
Our world in data. 2020.Cancer deaths by type. Available from:. https://ourworldindata.org/grapher/cancer-deaths-
[2]
Gómez-López G, Dopazo J, Cigudosa JC, Valencia A, Al-Shahrour F. Precision medicine needs pioneering clinical bioinformaticians. Brief Bioinform 2019; 20(3): 752-66.
[http://dx.doi.org/10.1093/bib/bbx144] [PMID: 29077790]
[3]
Beauchemin M, Murray MT, Sung L, Hershman DL, Weng C, Schnall R. Clinical decision support for therapeutic decision-making in cancer: A systematic review. Int J Med Inform 2019; 130: 103940.
[http://dx.doi.org/10.1016/j.ijmedinf.2019.07.019] [PMID: 31450082]
[4]
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2014; 13: 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005] [PMID: 25750696]
[5]
Remeseiro B, Bolon-Canedo V. A review of feature selection methods in medical applications. Comput Biol Med 2019; 112103375
[http://dx.doi.org/10.1016/j.compbiomed.2019.103375] [PMID: 31382212]
[6]
Ren X, Wang Y, Chen L, Zhang XS, Jin Q. ellipsoidFN: A tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions. Nucleic Acids Res 2013; 41(4): e53-3.
[http://dx.doi.org/10.1093/nar/gks1288] [PMID: 23262226]
[7]
Zou M, Duren Z, Yuan Q, et al. MIMIC: An optimization method to identify cell type-specific marker panel for cell sorting. Brief Bioinformatics 2021; 22(6)bbab235
[http://dx.doi.org/10.1093/bib/bbab235]
[8]
Amrane M, Oukid S, Gagaoua I. Breast cancer classification using machine learning 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT). In: IEEE 2018; pp. 1-4.
[9]
Alyafeai Z, Ghouti L. A fully-automated deep learning pipeline for cervical cancer classification. Expert Syst Appl 2020; 141112951
[http://dx.doi.org/10.1016/j.eswa.2019.112951]
[10]
Lu Y, Han J. Cancer classification using gene expression data. Inf Syst 2003; 28(4): 243-68.
[http://dx.doi.org/10.1016/S0306-4379(02)00072-8]
[11]
Sadanandam A, Lyssiotis CA, Homicsko K, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 2013; 19(5): 619-25.
[http://dx.doi.org/10.1038/nm.3175] [PMID: 23584089]
[12]
Li Y, Kang K, Krahn JM, et al. A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. BMC Genomics 2017; 18(1): 508.
[http://dx.doi.org/10.1186/s12864-017-3906-0] [PMID: 28673244]
[13]
Ma X, Liu Y, Liu Y, et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 2018; 555(7696): 371-6.
[http://dx.doi.org/10.1038/nature25795] [PMID: 29489755]
[14]
Peng L, Bian XW, Li DK, et al. Large-scale rna-seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 tcga cancer types. Sci Rep 2015; 5(1): 13413.
[http://dx.doi.org/10.1038/srep13413] [PMID: 26292924]
[15]
Cheerla N, Gevaert O. Microrna based pan-cancer diagnosis and treatment recommendation. BMC Bioinformatics 2017; 18(1): 32.
[http://dx.doi.org/10.1186/s12859-016-1421-y] [PMID: 28086747]
[16]
Castillo D, Gálvez JM, Herrera LJ, Román BS, Rojas F, Rojas I. Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling. BMC Bioinformatics 2017; 18(1): 506.
[http://dx.doi.org/10.1186/s12859-017-1925-0] [PMID: 29157215]
[17]
Castillo D, Galvez JM, Herrera LJ, et al. Leukemia multiclass assessment and classification from Microarray and RNA-seq technologies integration at gene expression level. PLoS One 2019; 14(2)e0212127
[http://dx.doi.org/10.1371/journal.pone.0212127] [PMID: 30753220]
[18]
Gálvez JM, Castillo-Secilla D, Herrera LJ, et al. Towards improving skin cancer diagnosis by integrating microarray and rna- seq datasets. IEEE J Biomed Health Inform 2020; 24(7): 2119-30.
[http://dx.doi.org/10.1109/JBHI.2019.2953978] [PMID: 31871000]
[19]
Weinstein JN, Collisson EA, Mills GB, et al. Cancer Genome Atlas Research Network. The cancer genome atlas pan- cancer analysis project. Nat Genet 2013; 45(10): 1113-20.
[http://dx.doi.org/10.1038/ng.2764] [PMID: 24071849]
[20]
Castillo-Secilla D, Gálvez JM, Carrillo-Perez F, et al. KnowSeq R-Bioc package: The automatic smart gene expression tool for retrieving relevant biological knowledge. Comput Biol Med 2021; 133104387
[http://dx.doi.org/10.1016/j.compbiomed.2021.104387] [PMID: 33872966]
[21]
Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15-21.
[http://dx.doi.org/10.1093/bioinformatics/bts635] [PMID: 23104886]
[22]
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31(2): 166-9.
[http://dx.doi.org/10.1093/bioinformatics/btu638] [PMID: 25260700]
[23]
Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012; 13(2): 204-16.
[http://dx.doi.org/10.1093/biostatistics/kxr054] [PMID: 22285995]
[24]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47-7.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[25]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[26]
Peng H, Long F, Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27(8): 1226-38.
[http://dx.doi.org/10.1109/TPAMI.2005.159] [PMID: 16119262]
[27]
Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967; 13(1): 21-7.
[http://dx.doi.org/10.1109/TIT.1967.1053964]
[28]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[29]
Gray D, Jubb AM, Hogue D, et al. Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers. Cancer Res 2005; 65(21): 9751-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4531] [PMID: 16266996]
[30]
Lin M-L, Park J-H, Nishidate T, Nakamura Y, Katagiri T. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family. Breast Cancer Res 2007; 9(1): R17.
[http://dx.doi.org/10.1186/bcr1650] [PMID: 17280616]
[31]
Pitner MK, Taliaferro JM, Dalby KN, Bartholomeusz C. MELK: A potential novel therapeutic target for TNBC and other aggressive malignancies. Expert Opin Ther Targets 2017; 21(9): 849-59.
[http://dx.doi.org/10.1080/14728222.2017.1363183] [PMID: 28764577]
[32]
Xu Q, Ge Q, Zhou Y, et al. MELK promotes Endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine 2020; 51102609
[http://dx.doi.org/10.1016/j.ebiom.2019.102609] [PMID: 31915116]
[33]
Li B, Yan J, Phyu T, et al. MELK mediates the stability of EZH2 through site-specific phosphorylation in extranodal natural killer/T-cell lymphoma. Blood 2019; 134(23): 2046-58.
[http://dx.doi.org/10.1182/blood.2019000381] [PMID: 31434700]
[34]
Liu S, Qiu J, He G, et al. Dermatopontin inhibits WNT signaling pathway via CXXC finger protein 4 in hepatocellular carcinoma. J Cancer 2020; 11(21): 6288-98.
[http://dx.doi.org/10.7150/jca.47157] [PMID: 33033513]
[35]
Yamatoji M, Kasamatsu A, Kouzu Y, et al. Dermatopontin: A potential predictor for metastasis of human oral cancer. Int J Cancer 2012; 130(12): 2903-11.
[http://dx.doi.org/10.1002/ijc.26328] [PMID: 21796630]
[36]
Guo Y, Li H, Guan H, et al. Dermatopontin inhibits papillary thyroid cancer cell proliferation through MYC repression. Mol Cell Endocrinol 2019; 480: 122-32.
[http://dx.doi.org/10.1016/j.mce.2018.10.021] [PMID: 30391671]
[37]
Chen G, Gong H, Wang T, et al. SOSTDC1 inhibits bone metastasis in non-small cell lung cancer and may serve as a clinical therapeutic target. Int J Mol Med 2018; 42(6): 3424-36.
[http://dx.doi.org/10.3892/ijmm.2018.3926] [PMID: 30320379]
[38]
Zhou Q, Chen J, Feng J, Xu Y, Zheng W, Wang J. SOSTDC1 inhibits follicular thyroid cancer cell proliferation, migration, and EMT via suppressing PI3K/Akt and MAPK/Erk signaling pathways. Mol Cell Biochem 2017; 435(1-2): 87-95.
[http://dx.doi.org/10.1007/s11010-017-3059-0] [PMID: 28551845]
[39]
Cui Y, Zhang F, Jia Y, et al. The BMP antagonist, SOSTDC1, restrains gastric cancer progression via inactivation of c-Jun signaling. Am J Cancer Res 2019; 9(11): 2331-48.
[PMID: 31815038]
[40]
Bartolomé RA, Pintado-Berninches L, Jaén M, de Los Ríos V, Imbaud JI, Casal JI. SOSTDC1 promotes invasion and liver metastasis in colorectal cancer via interaction with ALCAM/CD166. Oncogene 2020; 39(38): 6085-98.
[http://dx.doi.org/10.1038/s41388-020-01419-4] [PMID: 32801337]
[41]
Zhang N, Li Y, Xie M, et al. DACT2 modulated by TFAP2A-mediated allelic transcription promotes EGFR-TKIs efficiency in advanced lung adenocarcinoma. Biochem Pharmacol 2020; 172113772
[http://dx.doi.org/10.1016/j.bcp.2019.113772] [PMID: 31866302]
[42]
Lu L, Wang Y, Ou R, et al. Dact2 epigenetic stimulator exerts dual efficacy for colorectal cancer prevention and treatment. Pharmacol Res 2018; 129: 318-28.
[http://dx.doi.org/10.1016/j.phrs.2017.11.032] [PMID: 29199082]
[43]
Li J, Zhang M, He T, et al. Methylation of DACT2 promotes breast cancer development by activating Wnt signaling. Sci Rep 2017; 7(1): 3325.
[http://dx.doi.org/10.1038/s41598-017-03647-3] [PMID: 28607412]
[44]
Guo L, Wang X, Yang Y, et al. Methylation of DACT2 contributes to the progression of breast cancer through activating WNT signaling pathway. Oncol Lett 2018; 15(3): 3287-94.
[PMID: 29435071]
[45]
Li P, Cong Z, Qiang Y, et al. Clinical significance of CCBE1 expression in lung cancer. Mol Med Rep 2018; 17(2): 2107-12.
[PMID: 29207117]
[46]
Van der Auwera I, Van den Eynden GG, Colpaert CG, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: A histomorphometric study. Clin Cancer Res 2005; 11(21): 7637-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1142] [PMID: 16278382]
[47]
Hunter S, Nault B, Ugwuagbo KC, Maiti S, Majumder M. Mir526b and mir655 promote tumour associated angiogenesis and lymphangiogenesis in breast cancer. Cancers (Basel) 2019; 11(7): 938.
[http://dx.doi.org/10.3390/cancers11070938] [PMID: 31277414]
[48]
Van der Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res 2008; 9(11): 2579-605.
[49]
Hama R, Watanabe Y, Shinada K, et al. Characterization of DNA hypermethylation in two cases of peritoneal mesothelioma. Tumour Biol 2012; 33(6): 2031-40.
[http://dx.doi.org/10.1007/s13277-012-0462-8] [PMID: 22836805]
[50]
Wrzesiński T, Szelag M, Cieślikowski WA, et al. Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer 2015; 15(1): 518.
[http://dx.doi.org/10.1186/s12885-015-1530-4] [PMID: 26169495]
[51]
Pérez-Magán E, Campos-Martín Y, Mur P, et al. Genetic alterations associated with progression and recurrence in meningiomas. J Neuropathol Exp Neurol 2012; 71(10): 882-93.
[http://dx.doi.org/10.1097/NEN.0b013e31826bf704] [PMID: 22964784]
[52]
Duan M, Fang M, Wang C, Wang H, Li M. Lncrna emx2os induces proliferation, invasion and sphere formation of ovarian cancer cells via regulating the mir-654-3p/akt3/pd-l1 axis. Cancer Manag Res 2020; 12: 2141-54.
[http://dx.doi.org/10.2147/CMAR.S229013] [PMID: 32273754]
[53]
Jiang H, Chen H, Wan P, Song S, Chen N. Downregulation of enhancer RNA EMX2OS is associated with poor prognosis in kidney renal clear cell carcinoma. Aging (Albany NY) 2020; 12(24): 25865-77.
[http://dx.doi.org/10.18632/aging.202151] [PMID: 33234727]
[54]
Wu C-Y, Zheng C, Xia E-J, et al. Lysophosphatidic acid receptor 5 (lpar5) plays a significance role in papillary thyroid cancer via phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin (mtor) pathway. Med Sci Monit 2020; 26e919820
[http://dx.doi.org/10.12659/MSM.919820]
[55]
Meiners J, Schulz K, Möller K, et al. Upregulation of SPDEF is associated with poor prognosis in prostate cancer. Oncol Lett 2019; 18(5): 5107-18.
[http://dx.doi.org/10.3892/ol.2019.10885] [PMID: 31612022]
[56]
Ye T, Feng J, Wan X, Xie D, Liu J. Double agent: Spdef gene with both oncogenic and tumor-suppressor functions in breast cancer. Cancer Manag Res 2020; 12: 3891-902.
[http://dx.doi.org/10.2147/CMAR.S243748] [PMID: 32547225]
[57]
Zhang W-H, Zhang S-Y, Hou Q-Q, et al. The significance of the cldn18-arhgap fusion gene in gastric cancer: A systematic review and meta-analysis. Front Oncol 2020; 10: 1214.
[http://dx.doi.org/10.3389/fonc.2020.01214] [PMID: 32983960]
[58]
Li J, Liu Y, Yin Y. Inhibitory effects of Arhgap6 on cervical carcinoma cells. Tumour Biol 2016; 37(2): 1411-25.
[http://dx.doi.org/10.1007/s13277-015-4502-z] [PMID: 26628301]
[59]
Chen W-X, Lou M, Cheng L, et al. Bioinformatics analysis of potential therapeutic targets among ARHGAP genes in breast cancer. Oncol Lett 2019; 18(6): 6017-25.
[http://dx.doi.org/10.3892/ol.2019.10949] [PMID: 31788076]
[60]
Wu Y, Xu M, He R, Xu K, Ma Y. ARHGAP6 regulates the proliferation, migration and invasion of lung cancer cells. Oncol Rep 2019; 41(4): 2281-888.
[http://dx.doi.org/10.3892/or.2019.7031] [PMID: 30816546]
[61]
Chi D, Zhang W, Jia Y. Cong D, Hu S. Spalt-like transcription factor 1 (sall1) gene expression inhibits cell proliferation and cell migration of human glioma cells through the wnt/β- catenin signaling pathway. Med Sci Monit Basic Res 2019; 25: 128-38.
[http://dx.doi.org/10.12659/MSMBR.915067] [PMID: 31040265]
[62]
Ma C, Wang F, Han B, et al. SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. Mol Cancer 2018; 17(1): 78.
[http://dx.doi.org/10.1186/s12943-018-0824-y] [PMID: 29625565]
[63]
Li Z, Zhao S, Wang H, Zhang B, Zhang P. miR-4286 promotes prostate cancer progression via targeting the expression of SALL1. J Gene Med 2019; e3127.
[http://dx.doi.org/10.1002/jgm.3127] [PMID: 31693770]
[64]
Gao Y, Ding Y, Chen H, Chen H, Zhou J. Targeting Krüppel-like factor 5 (KLF5) for cancer therapy. Curr Top Med Chem 2015; 15(8): 699-713.
[http://dx.doi.org/10.2174/1568026615666150302105052] [PMID: 25732792]
[65]
Chen P, Qian XK, Zhang YF, Sun XG, Shi XJ, Gao YS. KLF5 promotes proliferation in gastric cancer via regulating p21 and CDK4. Eur Rev Med Pharmacol Sci 2020; 24(8): 4224-31.
[PMID: 32373958]
[66]
Wu Y, Qin J, Li F, et al. Usp3 promotes breast cancer cell proliferation by deubiquitinating klf5. JBC 2019; 294(47): 17837-47.
[http://dx.doi.org/10.1074/jbc.RA119.009102]
[67]
Guo C, Shi H, Shang Y, Zhang Y, Cui J, Yu H. LncRNA LINC00261 overexpression suppresses the growth and metastasis of lung cancer via regulating miR-1269a/FOXO1 axis. Cancer Cell Int 2020; 20(1): 275.
[http://dx.doi.org/10.1186/s12935-020-01332-6] [PMID: 32607060]
[68]
Yan D, Liu W, Liu Y, Luo M. Linc00261 suppresses human colon cancer progression via sponging mir-324-3p and inactivating the wnt/β-catenin pathway. J Cell Physiol 2019; 234(12): 22648-56.
[http://dx.doi.org/10.1002/jcp.28831]
[69]
Liu S, Zheng Y, Zhang Y, et al. Methylation-mediated LINC00261 suppresses pancreatic cancer progression by epigenetically inhibiting c-Myc transcription. Theranostics 2020; 10(23): 10634-51.
[http://dx.doi.org/10.7150/thno.44278] [PMID: 32929371]
[70]
Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7(10): 569-80.
[http://dx.doi.org/10.1038/nrendo.2011.142] [PMID: 21878896]
[71]
Corona RI, Seo J-H, Lin X, et al. Non-coding somatic mutations converge on the PAX8 pathway in ovarian cancer. Nat Commun 2020; 11(1): 2020.
[http://dx.doi.org/10.1038/s41467-020-15951-0] [PMID: 32332753]
[72]
Bie L-Y, Li N, Deng W-Y, Lu X-Y, Guo P, Luo S-X. Evaluation of PAX8 expression promotes the proliferation of stomach Cancer cells. BMC Mol Cell Biol 2019; 20(1): 61.
[http://dx.doi.org/10.1186/s12860-019-0245-9] [PMID: 31881968]
[73]
Yokoyama T, Nakatake M, Kuwata T, et al. MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Invest 2016; 126(5): 1664-78.
[http://dx.doi.org/10.1172/JCI81516] [PMID: 27018596]
[74]
Ho JR, Chapeaublanc E, Kirkwood L, et al. Deregulation of Rab and Rab effector genes in bladder cancer. PLoS One 2012; 7(6)e39469
[http://dx.doi.org/10.1371/journal.pone.0039469] [PMID: 22724020]
[75]
Zhang M, Zhao J, Tang W, et al. High Hepsin expression predicts poor prognosis in Gastric Cancer. Sci Rep 2016; 6(1): 36902.
[http://dx.doi.org/10.1038/srep36902] [PMID: 27841306]
[76]
Kim HJ, Han JH, Chang IH, Kim W, Myung SC. Variants in the HEPSIN gene are associated with susceptibility to prostate cancer. Prostate Cancer Prostatic Dis 2012; 15(4): 353-8.
[http://dx.doi.org/10.1038/pcan.2012.17] [PMID: 22665141]
[77]
Willbold R, Wirth K, Martini T, Sültmann H, Bolenz C, Wittig R. Excess hepsin proteolytic activity limits oncogenic signaling and induces ER stress and autophagy in prostate cancer cells. Cell Death Dis 2019; 10(8): 601.
[http://dx.doi.org/10.1038/s41419-019-1830-8] [PMID: 31399560]
[78]
Goel MM, Agrawal D, Natu SM, Goel A. Hepsin immunohistochemical expression in prostate cancer in relation to Gleason’s grade and serum prostate specific antigen. Indian J Pathol Microbiol 2011; 54(3): 476-81.
[http://dx.doi.org/10.4103/0377-4929.85078] [PMID: 21934206]
[79]
Nakamura S, Kanda M, Koike M, et al. Kcnj15 expression and malignant behavior of esophageal squamous cell carcinoma. Ann Surg Oncol 2020; 27(7): 1-10.
[http://dx.doi.org/10.1245/s10434-019-08189-8]
[80]
Liu Y, Wang H, Ni B, et al. Loss of KCNJ15 expression promotes malignant phenotypes and correlates with poor prognosis in renal carcinoma. Cancer Manag Res 2019; 11: 1211-20.
[http://dx.doi.org/10.2147/CMAR.S184368] [PMID: 30799948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy