Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Microwave-promoted Synthesis of Novel Bioactive N-based Heterocycles

Author(s): Monica Dinodia*

Volume 20, Issue 2, 2023

Published on: 10 June, 2022

Page: [136 - 155] Pages: 20

DOI: 10.2174/1570193X19666220420133723

Price: $65

Abstract

Our environment is in a continuous state of change, which, in turn, demands sustainable, eco-friendly, and safer chemistry techniques. This, in turn, has led to the green chemistry principles coming into the picture in recent years. Over the years, microwave heating has evolved as a green protocol in organic synthesis. The advantages of the safe and environment-friendly MW heating approach include a simple experimental setup, products of high purity with high yields, solvent-free reactions, short reaction times, elimination of the side products, and a decrease in the rate of by-product formation. Heterocycles, especially nitrogen heterocycles, are important not only because they are present in natural products, but because they have widespread applications in pharmaceutical industries as well. These N-heterocycles are part of many biologically active molecules. In the present review, the focus has been laid on the developments in MW-mediated synthesis of biologically important N-heterocycles in the last 2 years (2020-21).

Keywords: Eco-friendly heterocycles, green chemistry, microwave heating, organic synthesis, solvent-free reactions.

Graphical Abstract

[1]
Junk, L.; Kazmaier, U. Total synthesis and configurational revision of mozamide A, a hydroxy-brunsvicamide. J. Org. Chem., 2019, 84(5), 2489-2500.
[http://dx.doi.org/10.1021/acs.joc.8b02836] [PMID: 30753079]
[2]
Awad, S.M.; Zohny, Y.M.; Ali, S.A.; Mahgoub, S.; Said, A.M. Design, synthesis, molecular modeling, and biological evaluation of novel thiouracil derivatives as potential antithyroid agents. Molecules, 2018, 23(11), 2913.
[http://dx.doi.org/10.3390/molecules23112913] [PMID: 30413058]
[3]
Brousseau, J.; Xolin, A.; Barriault, L. A nine-step formal synthesis of (±)-morphine. Org. Lett., 2019, 21(5), 1347-1349.
[http://dx.doi.org/10.1021/acs.orglett.9b00044] [PMID: 30785291]
[4]
Kunitomo, J.; Satoh, M.; Shingu, T. Structure and synthesis of menisporphine, a new type of isoquinoline alkaloid. Tetrahedron, 1983, 39(20), 3261-3265.
[http://dx.doi.org/10.1016/S0040-4020(01)91573-X]
[5]
Muhlradt, P.F.; Morino, Y.; Snell, E.E. Vitamin b(2) analogs. Synthesis and biological activity of homologs of pyridoxal 5′-phosphate. J. Med. Chem., 1967, 10(3), 341-344.
[http://dx.doi.org/10.1021/jm00315a012] [PMID: 22185128]
[6]
Lamari, L.; Zitouni, A.; Dob, T.; Sabaou, N.; Lebrihi, A.; Germain, P.; Seguin, E.; Tillequin, F. New dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233. II. Physicochemical properties and structure elucidation. J. Antibiot. (Tokyo), 2002, 55(8), 702-706.
[http://dx.doi.org/10.7164/antibiotics.55.702] [PMID: 12374383]
[7]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[8]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[9]
Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R.U.S. FDA approved drugs from 2015-June 2020: A perspective. J. Med. Chem., 2021, 64(5), 2339-2381.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01786] [PMID: 33617716]
[10]
Das, P.; Delost, M.D.; Qureshi, M.H.; Smith, D.T.; Njardarson, J.T. A survey of the structures of US FDA approved combination drugs. J. Med. Chem., 2019, 62(9), 4265-4311.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01610] [PMID: 30444362]
[11]
Brown, D.G.; Wobst, H.J. A decade of FDA-approved drugs (2010-2019): Trends and future directions. J. Med. Chem., 2021, 64(5), 2312-2338.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01516] [PMID: 33617254]
[12]
Özkay, Y. Işikdağ I.; İncesu, Z.; Akalin, G. Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity. Eur. J. Med. Chem., 2010, 45(8), 3320-3328.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.015] [PMID: 20451307]
[13]
Xu, Z.; Zhao, S-J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[14]
El-Reedy, A.A.M.; Soliman, N.K. Synthesis, biological activity and molecular modeling study of novel 1,2,4-triazolo[4,3-b][1,2,4,5]tetrazines and 1,2,4-triazolo[4,3-b][1,2,4]triazines. Sci. Rep., 2020, 10(1), 6137.
[http://dx.doi.org/10.1038/s41598-020-62977-x] [PMID: 32273529]
[15]
Salehian, F.; Nadri, H.; Jalili-Baleh, L.; Youseftabar-Miri, L.; Abbas Bukhari, S.N.; Foroumadi, A.; Tüylü Küçükkilinç, T.; Sharifzadeh, M.; Khoobi, M. A review: Biologically active 3,4-heterocycle-fused coumarins. Eur. J. Med. Chem., 2021, 212, 113034.
[http://dx.doi.org/10.1016/j.ejmech.2020.113034] [PMID: 33276991]
[16]
Sondhi, S.M.; Dinodia, M.; Kumar, A. Synthesis, anti-inflammatory and analgesic activity evaluation of some amidine and hydrazone derivatives. Bioorg. Med. Chem., 2006, 14(13), 4657-4663.
[http://dx.doi.org/10.1016/j.bmc.2006.02.014] [PMID: 16504522]
[17]
Sondhi, S.M.; Dinodia, M.; Jain, S.; Kumar, A. Synthesis of biologically active N-methyl derivatives of amidines and cyclized five-membered products of amidines with oxalyl chloride. Eur. J. Med. Chem., 2008, 43(12), 2824-2830.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.005] [PMID: 18022734]
[18]
Reekie, T.; Kavanagh, M.; Longworth, M.; Kassiou, M. Synthesis of biologically active seven-membered-ring heterocycles. Synthesis, 2013, 45(23), 3211-3227.
[http://dx.doi.org/10.1055/s-0033-1338549]
[19]
Thakur, A.; Pereira, G.; Patel, C.; Chauhan, V.; Dhaked, R.K.; Sharma, A. Design, one-pot green synthesis and antimicrobial evaluation of novel imidazopyridine bearing pyran bis-heterocycles. J. Mol. Struct., 2020, 1206, 127686.
[http://dx.doi.org/10.1016/j.molstruc.2020.127686]
[20]
Melo de Oliveira, V.N.; Flávia do Amaral Moura, C.; Peixoto, A.D.S.; Gonçalves Ferreira, V.P.; Araújo, H.M.; Lapa Montenegro Pimentel, L.M.; Pessoa, C.D.Ó.; Nicolete, R.; Versiani Dos Anjos, J.; Sharma, P.P.; Rathi, B.; Pena, L.J.; Rollin, P.; Tatibouët, A.; Nascimento de Oliveira, R. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 220, 113472.
[http://dx.doi.org/10.1016/j.ejmech.2021.113472] [PMID: 33940463]
[21]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[22]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem., 2015, 1(1), 1.
[http://dx.doi.org/10.11648/j.jddmc.20150101.11]
[23]
Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M.Z. Unveiling a versatile heterocycle: Pyrazoline - A review. RSC Advances, 2017, 7(74), 46999-47016.
[http://dx.doi.org/10.1039/C7RA08939B]
[24]
Patel, P. A.; Kakadiya, S. P.; Purohit, H. D.; Bhadani, V. N.; Bhatt, P. V.; Purohit, D. M. Synthesis and antimicrobial screening of some new pyrazoline and 1,6-dihydropyrimidine derivatives. World J. Pharm. Res., 2017, 6(15Spec.Iss), 556-565.
[25]
Parashar, B.; Bhardwaj, S.; Sharma, S.; Gupta, G.D.; Sharma, V.K.; Punjabi, P.B. Comparative conventional and microwave assisted synthesis of some pyrazoline derivatives and their antimicrobial activity. J. Chem. Pharm. Res., 2010, 2(3), 33-42.
[26]
de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[27]
Hafez, E.A.A.; Al-Mousawi, S.M.; Moustafa, M.S.; Sadek, K.U.; Elnagdi, M.H. Green methodologies in organic synthesis: Recent developments in our laboratories. Green Chem. Lett. Rev., 2013, 6(3), 189-210.
[http://dx.doi.org/10.1080/17518253.2012.740078]
[28]
Jessop, P.; Zhang, L.B.; Geng, R.S.; Wang, Z.C.; Ren, G.Y.; Wen, L.R.M. Li Cutting-edge research for a greener sustainable future. Green Chem., 2020, 22, 3-12.
[http://dx.doi.org/10.1039/D0GC90003F]
[29]
(a) Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998. ;
(b) Horvath, I.; Anastas, P.T. Innovations and green chemistry. Chem. Rev., 2007, 107, 2167.
[30]
Anastas, P.T.; Williamson, T.C. Green Chemistry: Designing Chemistry for the Environment; American Chemical Series BooksWashington: DC, 1996, p. 1.
[31]
Jiang, S.; Ladewig, B.P. Green synthesis of polymeric membranes: Recent advances and future prospects. Curr. Opin. Green Sustain. Chem., 2020, 21, 1-8.
[http://dx.doi.org/10.1016/j.cogsc.2019.07.002]
[32]
Verma, A.; Thakur, S.; Mamba, G. Prateek; Gupta, R.K.; Thakur, P.; Thakur, V.K. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol., 2020, 148, 1130-1139.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.142] [PMID: 31954790]
[33]
DeVierno Kreuder, A.; House-Knight, T.; Whitford, J.; Ponnusamy, E.; Miller, P.; Jesse, N.; Rodenborn, R.; Sayag, S.; Gebel, M.; Aped, I.; Sharfstein, I.; Manaster, E.; Ergaz, I.; Harris, A.; Nelowet Grice, L. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustain. Chem.& Eng., 2017, 5(4), 2927-2935.
[http://dx.doi.org/10.1021/acssuschemeng.6b02399]
[34]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[35]
Tang, S.L.Y.; Smith, R.L.; Poliakoff, M. Principles of green chemistry: Productively. Green Chem., 2005, 7(11), 761.
[http://dx.doi.org/10.1039/b513020b]
[36]
Whiteker, G.T. Applications of the 12 principles of green chemistry in the crop protection industry. Org. Process Res. Dev., 2019, 23(10), 2109-2121.
[http://dx.doi.org/10.1021/acs.oprd.9b00305]
[37]
Ivanković A. Review of 12 principles of green chemistry in practice. IJSGE, 2017, 6(3), 39.
[http://dx.doi.org/10.11648/j.ijrse.20170603.12]
[38]
Brahmachari, G. Green Synthetic Approaches for Biologically Relevant Heterocycles.Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, 2015, pp. 1-6.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00001-3]
[39]
Driowya, M.; Saber, A.; Marzag, H.; Demange, L.; Benhida, R.; Bougrin, K. Microwave-assisted synthesis of bioactive six-membered heterocycles and their fused analogues. Molecules, 2016, 21(4), 492.
[http://dx.doi.org/10.3390/molecules21040492] [PMID: 27089315]
[40]
Driowya, M.; Saber, A.; Marzag, H.; Demange, L.; Bougrin, K.; Benhida, R. Microwave-assisted syntheses of bioactive seven-membered, macro-sized heterocycles and their fused derivatives. Molecules, 2016, 21(8), 1032.
[http://dx.doi.org/10.3390/molecules21081032] [PMID: 27517892]
[41]
Desai, K.G.; Naik, J.I.; Raval, J.P.; Desai, K.R. Microwave-induced and conventional heterocyclic synthesis: An antimicrobial entites of newer quinazolinyl-δ2-pyrazolines. Arab. J. Chem., 2014, 7(5), 597-603.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.015]
[42]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[43]
Majetich, G.; Hicks, R. The use of microwave heating to promote organic reactions. J. Microw. Power Electromagn. Energy, 1995, 30(1), 27-45.
[http://dx.doi.org/10.1080/08327823.1995.11688258]
[44]
Deshayes, S.; Liagre, M.; Loupy, A.; Luche, J-L.; Petit, A. Microwave activation in phase transfer catalysis. Tetrahedron, 1999, 55(36), 10851-10870.
[http://dx.doi.org/10.1016/S0040-4020(99)00601-8]
[45]
de la Hoz, A.; Díaz-Ortis, A.; Moreno, A.; Langa, F. Cycloadditions under microwave irradiation conditions: Methods and applications. Eur. J. Org. Chem., 2000, 2000(22), 3659-3673.
[http://dx.doi.org/10.1002/1099-0690(200011)2000:22<3659:AID-EJOC3659>3.0.CO;2-0]
[46]
Larhed, M.; Hallberg, A. Microwave-assisted high-speed chemistry: A new technique in drug discovery. Drug Discov. Today, 2001, 6(8), 406-416.
[http://dx.doi.org/10.1016/S1359-6446(01)01735-4] [PMID: 11301285]
[47]
Varma, R.S. Solvent-Free Organic Syntheses. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e]
[48]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave Assisted Organic Synthesis-a Review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[49]
Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathé, D. New solvent-free organic synthesis using focused microwaves. Synthesis, 1998, 1998(09), 1213-1234.
[http://dx.doi.org/10.1055/s-1998-6083]
[50]
Kidwai, M.; Venkataramanan, R.; Kohli, S. Alumina supported synthesis of β-lactams using microwave. Synth. Commun., 2000, 30(6), 989-1002.
[http://dx.doi.org/10.1080/00397910008087116]
[51]
Polo, E.; Prent-Peñaloza, L.; Núñez, Y.A.R. Valdés-Salas, Lady; Trilleras, J.; Ramos, J.; Henao, J. A.; Galdámez, A.; Morales-Bayuelo, A.; Gutiérrez, M. Microwave-assisted synthesis, biological assessment, and molecular modeling of aza-heterocycles: Potential inhibitory capacity of cholinergic enzymes to Alzheimer’s Disease. J. Mol. Struct., 2021, 1224, 129307.
[http://dx.doi.org/10.1016/j.molstruc.2020.129307]
[52]
Gupta, S.; Rai, A.K.; Pandey, S.; Singh, L.R.; Kant, R.; Tamrakar, A.K.; Sashidhara, K.V. Microwave-assisted efficient synthesis of pyrazole-fibrate derivatives as stimulators of glucose uptake in skeletal muscle cells. Bioorg. Med. Chem. Lett., 2021, 34, 127760.
[http://dx.doi.org/10.1016/j.bmcl.2020.127760] [PMID: 33359606]
[53]
Nesaragi, A.R.; Kamble, R.R.; Bayannavar, P.K.; Shaikh, S.K.J.; Hoolageri, S.R.; Kodasi, B.; Joshi, S.D.; Kumbar, V.M. Microwave assisted regioselective synthesis of quinoline appended triazoles as potent anti-tubercular and antifungal agents via copper (I) catalyzed cycloaddition. Bioorg. Med. Chem. Lett., 2021, 41, 127984.
[http://dx.doi.org/10.1016/j.bmcl.2021.127984] [PMID: 33766768]
[54]
Nguyen Thi, Q.G.; Le-Nhat-Thuy, G.; Dang Thi, T.A.; Hoang Thi, P.; Nguyen Tuan, A.; Nguyen Thi, T.H.; Nguyen, T.T.; Nguyen Ha, T.; Hoang Mai, H.; Nguyen, T.V. Synthesis of novel potent cytotoxicy podophyllotoxin-naphthoquinone compounds via microwave-assited multicomponent domino reactions. Bioorg. Med. Chem. Lett., 2021, 37, 127841.
[http://dx.doi.org/10.1016/j.bmcl.2021.127841] [PMID: 33556568]
[55]
Mangasuli, S.N. Microwave assisted synthesis and biological activity of a novel triazino indole-coumarin hybrid: Crystal structure, hirshfeld surface analysis and DFT calculations. Chemical Data Collections, 2020, 29, 100503.
[http://dx.doi.org/10.1016/j.cdc.2020.100503]
[56]
Singh, G.; Kalra, P.; Singh, A.; Sharma, G. A quick microwave preparation of isatin hydrazone schiff base conjugated organosilicon compounds: exploration of their antibacterial, antifungal, and antioxidative potentials. J. Organomet. Chem., 2021, 953, 122051.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122051]
[57]
Alraqa, S.Y.; Alharbi, K.; Aljuhani, A.; Rezki, N.; Aouad, M.R.; Ali, I. Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1,2,3-triazole molecular hybrids with different pharmacophores. J. Mol. Struct., 2021, 1225, 129192.
[http://dx.doi.org/10.1016/j.molstruc.2020.129192]
[58]
Cherif, M.; Horchani, M.; Al-Ghamdi, Y.O.; Almalki, S.G.; Alqurashi, Y.E.; Ben Jannet, H.; Romdhane, A. New pyrano-1,2,3-triazolopyrimidinone derivatives as anticholinesterase and antibacterial agents: Design, microwave-assisted synthesis and molecular docking study. J. Mol. Struct., 2020, 1220, 128685.
[http://dx.doi.org/10.1016/j.molstruc.2020.128685]
[59]
Ramya Sucharitha, E.; Krishna, T.M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo[1,3]thiazine-1,2,3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett., 2021, 47, 128201.
[http://dx.doi.org/10.1016/j.bmcl.2021.128201] [PMID: 34139328]
[60]
Bathula, C.; Mk, R. K, A. K.; Yadav, H.; Ramesh, S.; Shinde, S.; Shrestha, N. K.; Km, M.; Reddy, V.; Mohammed, A. Microwave assisted synthesis of imidazolyl fluorescent dyes as antimicrobial agents. J. Mater. Res. Technol., 2020, 9(3), 6900-6908.
[http://dx.doi.org/10.1016/j.jmrt.2020.01.011]
[61]
Farghaly, T.A.; Althagafi, I.; Ibrahim, M.H.; Al-Qurashi, N.T.; Farooq, U. Synthesis under microwaves irradiation, structure elucidation, docking study for inhibiting COVID-19 and DFT calculations of novel azoles incorporated indole moiety. J. Mol. Struct., 2021, 1244, 131263.
[http://dx.doi.org/10.1016/j.molstruc.2021.131263]
[62]
Sarojini, P.; Jeyachandran, M.; Sriram, D.; Ranganathan, P.; Gandhimathi, S. Facile microwave-assisted synthesis and antitubercular evaluation of novel aziridine derivatives. J. Mol. Struct., 2021, 1233, 130038.
[http://dx.doi.org/10.1016/j.molstruc.2021.130038]
[63]
Vagish, C.B.; Kumara, K.; Vivek, H.K.; Bharath, S.; Lokanath, N.K.; Ajay Kumar, K. Coumarin-triazole hybrids: Design, microwave-assisted synthesis, crystal and molecular structure, theoretical and computational studies and screening for their anticancer potentials against PC-3 and DU-145. J. Mol. Struct., 2021, 1230, 129899.
[http://dx.doi.org/10.1016/j.molstruc.2021.129899]
[64]
Altalhi, A.A.; Hashem, H.E.; Negm, N.A.; Mohamed, E.A.; Azmy, E.M. Synthesis, characterization, computational study, and screening of novel 1-phenyl-4-(2-phenylacetyl)-thiosemicarbazide derivatives for their antioxidant and antimicrobial activities. J. Mol. Liq., 2021, 333, 115977.
[http://dx.doi.org/10.1016/j.molliq.2021.115977]
[65]
Le-Nhat-Thuy, G.; Dang Thi, T.A.; Nguyen Thi, Q.G.; Hoang Thi, P.; Nguyen, T.A.; Nguyen, H.T.; Nguyen Thi, T.H.; Nguyen, H.S.; Nguyen, T.V. Synthesis and biological evaluation of novel benzo[a]pyridazino[3,4-c]phenazine derivatives. Bioorg. Med. Chem. Lett., 2021, 43, 128054.
[http://dx.doi.org/10.1016/j.bmcl.2021.128054] [PMID: 33895275]
[66]
Riadi, Y. Green, rapid and efficient synthesis of new antibacterial pyridopyrimidinone mediated by eutectic mixture of urea/CuCl2. Sustain. Chem. Pharm., 2020, 15, 100233.
[http://dx.doi.org/10.1016/j.scp.2020.100233]
[67]
Reddy, E.R.; Ramesh, S.; Anitha, K.; Reddy, A.P.; Reddy, V.P. Microwave-assisted synthesis and antibacterial activity of 1-(5-((2-(4-bromobenzoyl)-3-methylbenzofuran-5-Yl)Methyl)-2-((1-Aryl-1H-1,2,3-Triazol-4-Yl)Methoxy)Phenyl)ethanones. Chemical Data Collections, 2021, 34, 100730.
[http://dx.doi.org/10.1016/j.cdc.2021.100730]
[68]
Singh, A.; Singh, S.; Sewariya, S.; Singh, N.; Singh, P.; Kumar, A.; Bandichhor, R.; Chandra, R. Stereospecific N-acylation of indoles and corresponding microwave mediated synthesis of pyrazinoindoles using hexafluoroisopropanol. Tetrahedron, 2021, 84, 132017.
[http://dx.doi.org/10.1016/j.tet.2021.132017]
[69]
Pradeep, M.; Vishnuvardhan, M.; Thalari, G. A simple and efficient microwave assisted synthesis of pyrrolidinyl-quinoline based pyrazoline derivatives and their antimicrobial activity. Chemical Data Collections, 2021, 32, 100666.
[http://dx.doi.org/10.1016/j.cdc.2021.100666]
[70]
Znati, M.; Horchani, M.; Latapie, L.; Ben Jannet, H.; Bouajila, J. New 1,2,3-Triazole linked flavonoid conjugates: Microwave-assisted synthesis, cytotoxic activity and molecular docking studies. J. Mol. Struct., 2021, 1246, 131216.
[http://dx.doi.org/10.1016/j.molstruc.2021.131216]
[71]
Yang, Y.; Fu, R.; Liu, Y.; Cai, J.; Zeng, X. Microwave-promoted one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions. Tetrahedron, 2020, 76(27), 131312.
[http://dx.doi.org/10.1016/j.tet.2020.131312]
[72]
Mishra, N.P.; Mohapatra, S.; Sahoo, C.R.; Raiguru, B.P.; Nayak, S.; Jena, S.; Padhy, R.N. Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2h-chromene based imidazo[1,2-a]pyridine derivatives as potent peptide deformylase inhibitors. J. Mol. Struct., 2021, 1246, 131183.
[http://dx.doi.org/10.1016/j.molstruc.2021.131183]
[73]
Thach, T-D.; Nguyen, T.M-T.; Nguyen, T.A-T.; Dang, C-H.; Luong, T-B.; Dang, V-S.; Banh, K-S.; Luc, V-S.; Nguyen, T-D. Synthesis and antimicrobial, antiproliferative and anti-inflammatory activities of novel 1,3,5-substituted pyrazoline sulphonamides. Arab. J. Chem., 2021, 14(11), 103408.
[http://dx.doi.org/10.1016/j.arabjc.2021.103408]
[74]
Kaur, M.; Mehta, V.; Abdullah Wani, A.; Arora, S.; Bharatam, P.V.; Sharon, A.; Singh, S.; Kumar, R. Synthesis of 1,4-dihydropyrazolo[4,3-b]indoles via intramolecular C(sp2)-N bond formation involving nitrene insertion, DFT study and their anticancer assessment. Bioorg. Chem., 2021, 114, 105114.
[http://dx.doi.org/10.1016/j.bioorg.2021.105114] [PMID: 34243073]
[75]
Aljuhani, A.; Almehmadi, M.A.; Barnawi, I.O.; Rezki, N.; Ali, I.; Messali, M.; Reda Aouad, M. Microwave versus conventional synthesis, anticancer, DNA binding and docking studies of some 1,2,3-triazoles carrying benzothiazole. Arab. J. Chem., 2021, 14(3), 102997.
[http://dx.doi.org/10.1016/j.arabjc.2021.102997]
[76]
Naik, T.R.R. Therapeutic significance of 1,4-dihydropyridine compounds as potential anticancer agents.Organic Synthesis; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.89860]
[77]
Dutta, A.; Sarma, D. Base promoted metal-free approach towards synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones under microwave irradiation. Sustain. Chem. Pharm., 2021, 20, 100402.
[http://dx.doi.org/10.1016/j.scp.2021.100402]
[78]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct., 2022, 1249, 131605.
[http://dx.doi.org/10.1016/j.molstruc.2021.131605]
[79]
Atta-Allah, S.R. AboulMagd, A.M.; Farag, P.S. Design, microwave assisted synthesis, and molecular modeling study of some new 1,3,4-thiadiazole derivatives as potent anticancer agents and potential VEGFR-2 inhibitors. Bioorg. Chem., 2021, 112, 104923.
[http://dx.doi.org/10.1016/j.bioorg.2021.104923] [PMID: 33932767]
[80]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[81]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G]
[82]
Saber, A.; Driowya, M.; Alaoui, S.; Marzag, H.; Demange, L.; Álvarez, E.; Benhida, R.; Bougrin, K. Solvent-free regioselective synthesis of novel isoxazoline and pyrazoline n-substituted saccharin derivatives under microwave irradiation. Chem. Heterocycl. Compd., 2016, 52(1), 31-40.
[http://dx.doi.org/10.1007/s10593-016-1828-4]
[83]
Georgescu, E.; Dumitrascu, F.; Georgescu, F.; Draghici, C.; Dumitrescu, D. Microwave - Assisted synthesis of a library of pyrrolo[1,2-c]quinazolines. Rev. Chim., 2019, 70(9), 3094-3099.
[http://dx.doi.org/10.37358/RC.19.9.7495]
[84]
Acosta, P.; Insuasty, B.; Ortiz, A.; Abonia, R.; Sortino, M.; Zacchino, S.A.; Quiroga, J. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′3′5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity. Arab. J. Chem., 2016, 9(3), 481-492.
[http://dx.doi.org/10.1016/j.arabjc.2015.03.002]
[85]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. N1-Benzenesulfonyl-2-pyrazoline hybrids in neurological disorders: Syntheses, biological screening and computational studies. EXCLI J., 2018.
[http://dx.doi.org/10.17179/EXCLI2017-871]
[86]
Chen, H.; Li, R.; Gao, F.; Li, X. An efficient synthesis of δ-glyconolactams by intramolecular schmidt-boyer reaction under microwave radiation. Tetrahedron Lett., 2012, 53(52), 7147-7149.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.098]
[87]
Aarjane, M.; Slassi, S.; Tazi, B.; Maouloua, M.; Amine, A. Novel series of acridone-1,2,3-triazole derivatives: Microwave-assisted synthesis, DFT study and antibacterial activities. J. Chem. Sci., 2019, 131(8), 85.
[http://dx.doi.org/10.1007/s12039-019-1653-2]
[88]
Mirjafari, A. Direct synthesis of 2,4,5-trisubstituted imidazoles from alcohols and α-hydroxyketones by microwave. Environ. Chem. Lett., 2014, 12, 177-183.
[http://dx.doi.org/10.1007/s10311-013-0423-5]
[89]
Manta, S.; Tzioumaki, N.; Kollatos, N.; Andrea, P.; Margaritouli, M.; Panagiotopoulou, A.; Papanastasiou, I.; Mitsos, C.; Tsotinis, A.; Schols, D.; Komiotis, D. Polyfunctionalized pyrrole derivatives: Easy three-component microwave-assisted synthesis, cytostatic and antiviral evaluation. CMIC, 2018, 5(1), 23-31.
[http://dx.doi.org/10.2174/2213335605666180221155915]
[90]
Subhashini, N.J.P.; Praveen Kumar, E.; Gurrapu, N.; Yerragunta, V. Design and synthesis of imidazolo-1, 2,3-triazoles hybrid compounds by microwave-assisted method: Evaluation as an antioxidant and antimicrobial agents and molecular docking studies. J. Mol. Struct., 2019, 1180, 618-628.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.029]
[91]
Chundawat, T.; Sharma, N.; Kumari, P.; Bhagat, S. Microwave-assisted nickel-catalyzed one-pot synthesis of 2,4,5-trisubstituted imidazoles. Synlett, 2015, 27(03), 404-408.
[http://dx.doi.org/10.1055/s-0035-1560825]
[92]
Li, H.B.; Liang, W.; Liu, L.; Chen, K.; Wu, Y. Microwave-assisted convenient synthesis of N-arylpyrrolidines in water. Chin. Chem. Lett., 2011, 22(3), 276-279.
[http://dx.doi.org/10.1016/j.cclet.2010.09.034]
[93]
Ju, Y.; Varma, R.S. An efficient and simple aqueous N-heterocyclization of aniline derivatives: Microwave-assisted synthesis of N-aryl azacycloalkanes. Org. Lett., 2005, 7(12), 2409-2411.
[http://dx.doi.org/10.1021/ol050683t] [PMID: 15932210]
[94]
Chawla, A.; Kapoor, V.K. Microwave assisted one pot synthesis and antimicrobial activity of 2-(3′-acetyl-2′-methyl-5′-phenyl)-pyrrol-1-yl-1,4,5-triphenyl-1H-imidazole Derivatives. Pharma Chem., 2018, 10, 27-31.
[95]
El-borai, M.A.; Rizk, H.F.; Abd-Aal, M.F.; El-Deeb, I.Y. Synthesis of pyrazolo[3,4-b]pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activities - Part 1. Eur. J. Med. Chem., 2012, 48, 92-96.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.038] [PMID: 22178093]
[96]
Raghu Prasad, M.; Pran Kishore, D. Multistep, microwave assisted, solvent free synthesis and antibacterial activity of 6-substituted-2,3,4-trihydropyrimido[1,2-c]9,10,11,12-tetrahydrobenzo[b]thieno[3,2-e]pyrimidines. Chem. Pharm. Bull. (Tokyo), 2007, 55(5), 776-779.
[http://dx.doi.org/10.1248/cpb.55.776] [PMID: 17473467]
[97]
Samrat, S.K.; Tharappel, A.M.; Li, Z.; Li, H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res., 2020, 288, 198141.
[http://dx.doi.org/10.1016/j.virusres.2020.198141] [PMID: 32846196]
[98]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[99]
Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res., 2013, 100(2), 446-454.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[100]
Batalha, P.N.; Forezi, L.S.M.; Lima, C.G.S.; Pauli, F.P.; Boechat, F.C.S.; de Souza, M.C.B.V.; Cunha, A.C.; Ferreira, V.F.; da Silva, F.C. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches. Bioorg. Chem., 2021, 106, 104488.
[http://dx.doi.org/10.1016/j.bioorg.2020.104488] [PMID: 33261844]
[101]
Gyebi, G.A.; Ogunro, O.B.; Adegunloye, A.P.; Ogunyemi, O.M.; Afolabi, S.O. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL pro): An in silico screening of alkaloids and terpenoids from african medicinal plants. J. Biomol. Struct. Dyn., 2020, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1764868] [PMID: 33089728]
[102]
Clososki, G.; Soldi, R.; da Silva, R.; Guaratini, T.; Lopes, J.; Pereira, P.; Lopes, J.; dos Santos, T.; Martins, R.; Costa, C.; de Carvalho, A.; daSilva, L.; Arruda, E.; Lopes, N. Tenofovir disoproxil fumarate: New chemical developments and encouraging in vitro biological results for SARS-CoV-2. J. Braz. Chem. Soc., 2020, 31(8), 1552-1556.
[http://dx.doi.org/10.21577/0103-5053.20200106]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy