Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

A Machine Learning Language to Build a QSAR Model of Pyrazoline Derivative Inhibitors Targeting Mycobacterium tuberculosis Strain H37Rv

Author(s): Jayaprakash Venkatesan, Prabha Thangavelu*, Selvaraj Jubie, Sudeepan Jayapalan and Thangavel Sivakumar

Volume 20, Issue 2, 2023

Published on: 30 June, 2022

Page: [167 - 180] Pages: 14

DOI: 10.2174/1570180819666220420092723

Price: $65

Abstract

Background: Machine learning has become an essential tool for drug research to generate pertinent structural information to design drugs with higher biological activities. Quantitative structureactivity relationship (QSAR) is considered one technique. QSAR study involves two main steps: first is the generation of descriptors, and the second is building and validating the models.

Aim: By using a Python program language for building the QSAR model of pyrazoline derivatives, the data were collected from diverse literature for the inhibition of Mycobacterium tuberculosis. Pyrazoline, a small molecule scaffold, could block the biosynthesis of mycolic acids, resulting in mycobacteria death and leading to anti-tubercular drug discovery.

Methods: We have developed a new Python script that effectively uses CDK descriptor as the independent variable and anti-tubercular bioactivity as the dependent variable in building and validating the best QSAR model. The built QSAR model was further cross-validated by using the external test set compounds. Then, the three algorithms, viz. multiple linear regression, support vector machine, and partial least square classifiers, were used to differentiate and compare their r2 values.

Results: Our generated QSAR model via an open-source python program predicted well with external test set compounds. The generated statistical model afforded the ordinary least squares (OLS) regression as R2 value of 0.514, F value of 5.083, the adjusted R2 value of 0.413, and std. error of 0.092. Moreover, the multiple linear regression showed the R2 value of 0.5143, reg.coef_ of, -0.07795 (PC1), 0.01619 (PC2), 0.03763 (PC3), 0.07849 (PC4), -0.09726 (PC5), and reg.intercept_ of 4.8324. The performance of the model was determined by the support vector machine classifier of sklearn, module and it provided a model score of 0.5901. Further, the model performance was supported by a partial least square regression, and it showed the R2 value of 0.5901. The model performance was validated, and the model predicted similar values when compared to that of the train set, and the plotted linear curve between the predicted and actual pMIC50 value showed all data to fall over the middle linear line.

Conclusion: We have found that the model score obtained using this script via three diverse algorithms correlated well, and there was not much difference between them; the model may be useful in the design of a similar group of pyrazoline analogs as anti-tubercular agents.

Keywords: Machine learning, QSAR, Python, H37Rv strain, Mycobacterium tuberculosis, Pyrazoline derivatives.

Graphical Abstract

[1]
Prabha, T.; Aishwaryah, P.; Manickavalli, E.; Chandru, R.; Arulbharathi, G.; Anu, A.; Sivakumar, T. A Chalcone Annulated Pyrazoline Conjugates as a Potent Antimycobacterial Agents: Synthesis and in Silico Molecular Modeling Studies. Research J. Pharm.Tech., 2019, 12(8), 3857-3865.
[http://dx.doi.org/10.5958/0974-360X.2019.00663.2]
[2]
Nazar, M.F.; Badshah, A.; Mahmood, A.; Zafar, M.N.; Janjua, M.R.S.A.; Raza, M.A.; Hussain, R. Synthesis, spectroscopic characterization, and computed optical analysis of green fluorescent cyclohexenone derivatives. J. Phys. Org. Chem., 2016, 29, 152-160.
[http://dx.doi.org/10.1002/poc.3512]
[3]
Abdullah, M.I.; Mahmood, A.; Madni, M.; Masood, S.; Kashif, M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg. Chem., 2014, 54, 31-37.
[http://dx.doi.org/10.1016/j.bioorg.2014.03.006] [PMID: 24747187]
[4]
Nazar, M.F.; Abdullah, M.I.; Amir, B.; Asif, M.; Usman, A.R.; Salah, U.K. Synthesis, structure–activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors. J. Mol. Struct., 2015, 1086, 8-16.
[http://dx.doi.org/10.1016/j.molstruc.2014.12.090]
[5]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14, 177-184.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[6]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[7]
Prabha, T.; Sivakumar, T. Design, Synthesis, and Docking of Sulfadiazine Schiff Base Scaffold for their Potential Claim as INHA Enoyl-(Acyl-Carrier-Protein) Reductase Inhibitors. Asian J. Pharm. Clin. Res., 2018, 11(10), 233-237.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i10.27179]
[8]
Mahmood, A.; Irfan, A.; Wang, J-L. Developing Efficient Small Molecule Acceptors with sp2 -Hybridized Nitrogen at Different Positions by Density Functional Theory Calculations, Molecular Dynamics Simulations and Machine Learning. Chemistry, 2022, 28(2), e202103712.
[http://dx.doi.org/10.1002/chem.202103712] [PMID: 34767281]
[9]
Mahmood, A.; Wang, J-L. Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ. Sci., 2021, 14, 90-105.
[http://dx.doi.org/10.1039/D0EE02838J]
[10]
Gertrudes, J.C.; Maltarollo, V.G.; Silva, R.A.; Oliveira, P.R.; Honório, K.M.; da Silva, A.B.F. Machine learning techniques and drug design. Curr. Med. Chem., 2012, 19(25), 4289-4297.
[http://dx.doi.org/10.2174/092986712802884259] [PMID: 22830342]
[11]
Heo, S.; Safder, U.; Yoo, C. Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health. Environ. Pollut., 2019, 253, 29-38.
[http://dx.doi.org/10.1016/j.envpol.2019.06.081] [PMID: 31302400]
[12]
Polanski, J. Chemoinformatics: From chemical art to chemistry in silico. In: Reference: Module in Chemistry; Molecular Sciences and Chemical Engineering; Elsevier, University of Silesia: Katowice, Poland, 2017.
[13]
Safder, U.; Nam, K.; Kim, D.; Shahlaei, M.; Yoo, C. Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network. Ecotoxicol. Environ. Saf., 2018, 162, 17-28.
[http://dx.doi.org/10.1016/j.ecoenv.2018.06.061] [PMID: 29957404]
[14]
Johnson, M.; Younglove, B.; Lee, L.; LeBlanc, R.; Holt, H., Jr; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg. Med. Chem. Lett., 2007, 17(21), 5897-5901.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.105] [PMID: 17827004]
[15]
Prafulla, S.; Dhiraj, B.; Vidya, S. Synthesis and Anti-Tubercular Activity of Substituted Phenylpyrazole having Benzimidazole Ring. Res. J. Pharm. Tech., 2018, 11(8), 3599-3608.
[http://dx.doi.org/10.5958/0974-360X.2018.00662.5]
[16]
Sameer, I.; Shaikh, Z.Z.; Santosh, N.M.; Deepak, K.L. Development of New Pyrazole Hybrids as Antitubercular Agents: Synthesis, Biological Evaluation and Molecular Docking Study. Int. J. Pharm. Pharm. Sci., 2017, 9(11), 50-56.
[17]
Ali, M.A.; Yar, M.S.; Kumar, M.; Pandian, G.S. Synthesis and antitubercular activity of substituted novel pyrazoline derivatives. Nat. Prod. Res., 2007, 21(7), 575-579.
[http://dx.doi.org/10.1080/14786410701369367] [PMID: 17613813]
[18]
Dharmarajsinh, N.; Rana Mahesh, T.; Chhabria Nisha, K.; Shah Pathik, S. Brahmkshatriya. Discovery of new anti-tubercular agents by combining pyrazoline and benzoxazole pharmacophores: design, synthesis and insights into the binding interactions. Med. Chem. Res., 2014, 23, 2218-2228.
[http://dx.doi.org/10.1007/s00044-013-0815-x]
[19]
Sahu, S.; Dey, T.; Khaidem, S.; Jyothi, Y. Microwave Assisted Synthesis of Fluoro-Pyrazole Derivatives for Anti-inflammatory Activity. Res. J. Pharm. Tech., 2011, 4(3), 413-419.
[20]
Ozdemir, Z.; Kandilci, H.B.; Gümüşel, B.; Caliş, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
[21]
Kalpana, D.; Shivakumar, S.; Kavitha, N.; Murugan, V.; Manish, D. Synthesis and Evaluation of Some New Pyrazole Derivatives as Antimicrobial Agents. Res. J. Pharm. Tech., 2010, 3(4), 1039-1043.
[22]
Milano, J.; Oliveira, S.M.; Rossato, M.F.; Sauzem, P.D.; Machado, P.; Beck, P.; Zanatta, N.; Martins, M.A.P.; Mello, C.F.; Rubin, M.A.; Ferreira, J.; Bonacorso, H.G. Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur. J. Pharmacol., 2008, 581(1-2), 86-96.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.042] [PMID: 18190906]
[23]
Revanasiddappa, B.C.; Vijay Kumar, M.; Prashanth, N.; Ajmal, R.A.; Jisha, M.S. Synthesis, Antibacterial and Antifungal Evaluation of Novel Pyrazoline Derivatives. Res. J. Pharm. Tech., 2017, 10(5), 1481-1484.
[http://dx.doi.org/10.5958/0974-360X.2017.00261.X]
[24]
Ishwar Bhat, K.; Abhishek, K. Pyrazolines as Potent Antioxidant Agents. Res. J. Pharm. Tech., 2018, 11(5), 1978-1980.
[http://dx.doi.org/10.5958/0974-360X.2018.00367.0]
[25]
Shelke, S.N.; Mhaske, G.R.; Bonifácio, V.D.; Gawande, M.B. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. Bioorg. Med. Chem. Lett., 2012, 22(17), 5727-5730.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.072] [PMID: 22832312]
[26]
Aftab, A.; Asif, H.; Shah, A.K.; Mohamed, M.; Anil, B. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20(5), 577-58.
[http://dx.doi.org/10.1016/j.jscs.2014.12.004]
[27]
Fabian, P.; Gaël, V.; Alexandre, G.; Vincent, M.; Bertrand, T.; Olivier, G.; Mathieu, B.; Peter, P.; Ron, W.; Vincent, D.; Jake, V.; Alexandre, P.; David, C.; Matthieu, B.; Matthieu, P.; Édouard, D. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[28]
Kim, S.; Cho, K-H. PyQSAR: A Fast QSAR Modeling Platform Using Machine Learning and Jupyter Notebook. Bull. Korean Chem. Soc., 2019, 40, 39-44.
[29]
Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: present status and future prospects. Drug Discov. Today, 2019, 24(3), 773-780.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[30]
Lo, Y.C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today, 2018, 23(8), 1538-1546.
[http://dx.doi.org/10.1016/j.drudis.2018.05.010] [PMID: 29750902]
[31]
Mahmood, A.; Wang, J-L. A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9, 15684-15695.
[http://dx.doi.org/10.1039/D1TA04742F]
[32]
Ahmad, F.; Mahmood, A.; Muhmood, T. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater. Sci., 2021, 9(5), 1598-1608.
[http://dx.doi.org/10.1039/D0BM01672A] [PMID: 33443512]
[33]
Yao, X.J.; Panaye, A.; Doucet, J.P.; Zhang, R.S.; Chen, H.F.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1257-1266.
[http://dx.doi.org/10.1021/ci049965i] [PMID: 15272833]
[34]
Kubinyi, H. Evolutionary variable selection in regression and PLS analyses. J. Chemometr., 1996, 10, 119-133.
[http://dx.doi.org/10.1002/(SICI)1099-128X(199603)10:2<119::AID-CEM409>3.0.CO;2-4]
[35]
Owen, J.R.; Nabney, I.T.; Medina-Franco, J.L.; López-Vallejo, F.; Fabian, L-V. Visualization of molecular fingerprints. J. Chem. Inf. Model., 2011, 51(7), 1552-1563.
[http://dx.doi.org/10.1021/ci1004042] [PMID: 21696145]
[36]
Gao, H.; Williams, C.; Labute, P.; Bajorath, J. Binary quantitative structure-activity relationship (QSAR) analysis of estrogen receptor ligands. J. Chem. Inf. Comput. Sci., 1999, 39(1), 164-168.
[http://dx.doi.org/10.1021/ci980140g] [PMID: 10094611]
[37]
Cortes, C.; Vapnik, V. Support-vector networks. Chem. Biol. Drug Des., 2009, 297, 273-297.
[38]
Gasteiger, J., Ed.; Handbook of Chemoinformatics: from Data to Knowledge; Wiley-VCH, 2008.
[39]
Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect., 2003, 111(10), 1361-1375.
[http://dx.doi.org/10.1289/ehp.5758] [PMID: 12896860]

© 2024 Bentham Science Publishers | Privacy Policy