Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

The Effect of Gut Microbe Dysbiosis on the Pathogenesis of Alzheimer's Disease (AD) and Related Conditions

Author(s): Mohamed H. Nafady, Zeinab S. Sayed, Dalia A. Abdelkawy, Mostafa E. Shebl, Reem A. Elsayed, Ghulam Md Ashraf, Asma Perveen, Mohamed S. Attia and Eshak I. Bahbah*

Volume 19, Issue 4, 2022

Published on: 14 June, 2022

Page: [274 - 284] Pages: 11

DOI: 10.2174/1567205019666220419101205

Price: $65

Abstract

It has been hypothesized that the shift in gut microbiota composition, known as gut microbe dysbiosis, may be correlated with the onset of Alzheimer's disease (AD), which is the most common cause of dementia characterized by a gradual deterioration in cognitive function associated with the development of amyloid-beta (Aβ) plaques. The gut microbiota dysbiosis induces the release of significant amounts of amyloids, lipopolysaccharides, and neurotoxins, which might play a role in modulating signaling pathways and immune activation, leading to the production of proinflammatory cytokines related to the pathogenesis of AD. The dysbiosis of gut microbe is associated with various diseases such as type 2 diabetes, obesity, hypertension, and some neuropsychiatric disorders like depression, anxiety, and stress. It is conceivable that these diseases trigger the onset of AD. Thus, modifying the gut microbiota composition with probiotic and prebiotic supplementation can reduce depression and anxiety symptoms, lower stress reactivity, and improve memory. This narrative review aimed to examine the possible role of gut microbe dysbiosis in AD's pathogenesis.

Keywords: Alzheimer's disease, Amyloid-beta, lipopolysaccharides, Blood-brain barrier, Gut microbe dysbiosis, type 2 diabetes, obesity.

[1]
Gruner D, Paris S, Schwendicke F. Probiotics for managing caries and periodontitis: Systematic review and meta-analysis. J Dent 2016; 48: 16-25.
[http://dx.doi.org/10.1016/j.jdent.2016.03.002] [PMID: 26965080]
[2]
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 2017; 17(12): 94.
[http://dx.doi.org/10.1007/s11910-017-0802-6] [PMID: 29039142]
[3]
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 2015; 17(5): 565-76.
[http://dx.doi.org/10.1016/j.chom.2015.04.011] [PMID: 25974299]
[4]
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9: 392.
[http://dx.doi.org/10.3389/fncel.2015.00392] [PMID: 26528128]
[5]
Xu J, Xu C, Chen X, et al. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition 2014; 30(5): 584-9.
[http://dx.doi.org/10.1016/j.nut.2013.10.018] [PMID: 24698350]
[6]
Hill JM, Clement C, Pogue AI, Bhattacharjee S, Zhao Y, Lukiw WJ. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front Aging Neurosci 2014; 6: 127.
[http://dx.doi.org/10.3389/fnagi.2014.00127] [PMID: 24982633]
[7]
Kelly JR, Borre Y, O’ Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82: 109-18.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[8]
Tilg H, Moschen AR. Microbiota and diabetes: An evolving relationship. Gut 2014; 63(9): 1513-21.
[http://dx.doi.org/10.1136/gutjnl-2014-306928] [PMID: 24833634]
[9]
Liu X, Lu J, Liu Z, et al. Intestinal epithelial cell-derived lkb1 suppresses colitogenic microbiota. J Immunol 2018; 200(5): 1889-900.
[http://dx.doi.org/10.4049/jimmunol.1700547] [PMID: 29352002]
[10]
Karin M, Lawrence T, Nizet V. Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell 2006; 124(4): 823-35.
[http://dx.doi.org/10.1016/j.cell.2006.02.016] [PMID: 16497591]
[11]
Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009; 15(8): 1183-9.
[http://dx.doi.org/10.1002/ibd.20903] [PMID: 19235886]
[12]
Suryavanshi MV, Bhute SS, Jadhav SD, Bhatia MS, Gune RP, Shouche YS. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci Rep 2016; 6: 34712.
[http://dx.doi.org/10.1038/srep34712] [PMID: 27708409]
[13]
Ticinesi A, Milani C, Guerra A, et al. Understanding the gut-kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut 2018; 67(12): 2097-106.
[http://dx.doi.org/10.1136/gutjnl-2017-315734] [PMID: 29705728]
[14]
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480-4.
[http://dx.doi.org/10.1038/nature07540] [PMID: 19043404]
[15]
Schippa S, Iebba V, Barbato M, et al. A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol 2010; 10: 175.
[http://dx.doi.org/10.1186/1471-2180-10-175] [PMID: 20565734]
[16]
Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2012; 24(6): 521-30., e248.
[http://dx.doi.org/10.1111/j.1365-2982.2012.01891.x] [PMID: 22339879]
[17]
Kang D-W, Park JG, Ilhan ZE, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 2013; 8(7): e68322.
[http://dx.doi.org/10.1371/journal.pone.0068322] [PMID: 23844187]
[18]
Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014; 44(6): 842-50.
[http://dx.doi.org/10.1111/cea.12253] [PMID: 24330256]
[19]
Scher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 2015; 67(1): 128-39.
[http://dx.doi.org/10.1002/art.38892] [PMID: 25319745]
[20]
Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[21]
Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 1995; 8(6): 429-31.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[22]
Bhushan I, Kour M, Kour G, et al. Annals of Biotechnology Alzheimer ’ s disease: Causes & treatment -. RE:view 2018; 1.
[23]
Samanta MK, Wilson B, Santhi K, Kumar KP, Suresh B. Alzheimer disease and its management: A review. Am J Ther 2006; 13(6): 516-26.
[http://dx.doi.org/10.1097/01.mjt.0000208274.80496.f1] [PMID: 17122533]
[24]
Almkvist O. Neuropsychological features of early Alzheimer’s disease: Preclinical and clinical stages. Acta Neurol Scand Suppl 1996; 165: 63-71.
[http://dx.doi.org/10.1111/j.1600-0404.1996.tb05874.x] [PMID: 8740991]
[25]
Galasko D. An integrated approach to the management of Alzheimer’s disease: Assessing cognition, function and behaviour. Eur J Neurol 1998; 5: S9-S17.
[http://dx.doi.org/10.1111/j.1468-1331.1998.tb00444.x]
[26]
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 1990; 27(5): 457-64.
[http://dx.doi.org/10.1002/ana.410270502] [PMID: 2360787]
[27]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[28]
Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30(4): 572-80.
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[29]
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42(3 Pt 1): 631-9.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[30]
Dickson DW, Crystal HA, Mattiace LA, et al. Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 1992; 13(1): 179-89.
[http://dx.doi.org/10.1016/0197-4580(92)90027-U] [PMID: 1311804]
[31]
Association A. 2013 Alzheimer’ s disease facts and figures 2013; 9: 208-45.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003]
[32]
Streit WJ. Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 2004; 77(1): 1-8.
[http://dx.doi.org/10.1002/jnr.20093] [PMID: 15197750]
[33]
De-paula VJ, Radanovic M, Diniz BS. Alzheimer’ s disease 2012.
[http://dx.doi.org/10.1007/978-94-007-5416-4]
[34]
Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci 2015; 7: 9.
[http://dx.doi.org/10.3389/fnagi.2015.00009] [PMID: 25713531]
[35]
Haviv H, Habeck M, Kanai R, Toyoshima C, Karlish SJD. Neutral phospholipids stimulate Na,K-ATPase activity: A specific lipid-protein interaction. J Biol Chem 2013; 288(14): 10073-81.
[http://dx.doi.org/10.1074/jbc.M112.446997] [PMID: 23430748]
[36]
Xiao X, Wu Z-C, Chou K-C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One 2011; 6(6): e20592.
[http://dx.doi.org/10.1371/journal.pone.0020592] [PMID: 21698097]
[37]
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer’s disease. Cell Mol Neurobiol 2015; 35(1): 71-83.
[http://dx.doi.org/10.1007/s10571-014-0101-6] [PMID: 25149075]
[38]
Alonso R, Pisa D, Marina AI, Morato E, Rábano A, Carrasco L. Fungal infection in patients with Alzheimer’s disease. J Alzheimers Dis 2014; 41(1): 301-11.
[http://dx.doi.org/10.3233/JAD-132681] [PMID: 24614898]
[39]
Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J Nat Sci 2015; 1(7): 1.
[PMID: 26097896]
[40]
Bhattacharjee S, Lukiw WJ. Alzheimer’s disease and the microbiome. Front Cell Neurosci 2013; 7: 153.
[http://dx.doi.org/10.3389/fncel.2013.00153] [PMID: 24062644]
[41]
Syed AK, Boles BR. Fold modulating function: Bacterial toxins to functional amyloids. Front Microbiol 2014; 5: 401.
[http://dx.doi.org/10.3389/fmicb.2014.00401] [PMID: 25136340]
[42]
Hufnagel DA, Tükel C, Chapman MR. Disease to dirt: The biology of microbial amyloids. PLoS Pathog 2013; 9(11): e1003740.
[http://dx.doi.org/10.1371/journal.ppat.1003740] [PMID: 24278013]
[43]
Schwartz K, Boles BR. Microbial amyloids--functions and interactions within the host. Curr Opin Microbiol 2013; 16(1): 93-9.
[http://dx.doi.org/10.1016/j.mib.2012.12.001] [PMID: 23313395]
[44]
Oli MW, Otoo HN, Crowley PJ, et al. Functional amyloid formation by Streptococcus mutans. Microbiology 2012; 158(Pt 12): 2903-16.
[http://dx.doi.org/10.1099/mic.0.060855-0] [PMID: 23082034]
[45]
Boutajangout A, Wisniewski T. The innate immune system in Alzheimer’s disease. Int J Cell Biol 2013; 2013: 576383.
[http://dx.doi.org/10.1155/2013/576383] [PMID: 24223593]
[46]
Asti A, Gioglio L. Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimers Dis 2014; 39(1): 169-79.
[http://dx.doi.org/10.3233/JAD-131394] [PMID: 24150108]
[47]
Gustot A, Raussens V, Dehousse M, et al. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure. Cell Mol Life Sci 2013; 70(16): 2999-3012.
[http://dx.doi.org/10.1007/s00018-012-1245-5] [PMID: 23334185]
[48]
Tran SMS, Mohajeri MH. The role of gut bacterial metabolites in brain development, aging and disease. Nutrients 2021; 13(3): 1-41.
[http://dx.doi.org/10.3390/nu13030732] [PMID: 33669008]
[49]
Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28(10): 1221-7.
[http://dx.doi.org/10.1136/gut.28.10.1221] [PMID: 3678950]
[50]
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95(1): 50-60.
[http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane] [PMID: 22468341]
[51]
Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7: 41802.
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[52]
Bhattarai Y. Microbiota-gut-brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol Motil 2018; 30(6): e13366.
[http://dx.doi.org/10.1111/nmo.13366] [PMID: 29878576]
[53]
Jaeger LB, Dohgu S, Sultana R, et al. Lipopolysaccharide alters the blood-brain barrier transport of amyloid β protein: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 2009; 23(4): 507-17.
[http://dx.doi.org/10.1016/j.bbi.2009.01.017] [PMID: 19486646]
[54]
Zhan X, Cox C, Ander BP, et al. Inflammation combined with ischemia produces myelin injury and plaque-like aggregates of myelin, amyloid-β and AβPP in adult rat brain. J Alzheimers Dis 2015; 46(2): 507-23.
[http://dx.doi.org/10.3233/JAD-143072] [PMID: 25790832]
[55]
Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008; 5: 37.
[http://dx.doi.org/10.1186/1742-2094-5-37] [PMID: 18759972]
[56]
Zhan X, Stamova B, Jin L-W, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016; 87(22): 2324-32.
[http://dx.doi.org/10.1212/WNL.0000000000003391] [PMID: 27784770]
[57]
Johnson KV-A, Foster KR. Why does the microbiome affect behaviour? Nat Rev Microbiol 2018; 16(10): 647-55.
[http://dx.doi.org/10.1038/s41579-018-0014-3] [PMID: 29691482]
[58]
Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci 2016; 59(10): 1006-23.
[http://dx.doi.org/10.1007/s11427-016-5083-9] [PMID: 27566465]
[59]
Lanctôt KL, Herrmann N, Mazzotta P, Khan LR, Ingber N. GABAergic function in Alzheimer’s disease: Evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry 2004; 49(7): 439-53.
[http://dx.doi.org/10.1177/070674370404900705] [PMID: 15362248]
[60]
Mobility-Mass computational I into C of G-PP and PCI in NI (2016) HHS Public Access. Physiol Behav 176: 139-48.
[61]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2): 264-76.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[62]
Cirrito JR, Disabato BM, Restivo JL, et al. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc Natl Acad Sci USA 2011; 108(36): 14968-73.
[http://dx.doi.org/10.1073/pnas.1107411108] [PMID: 21873225]
[63]
Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J cancer Prev Off J Eur Cancer Prev Organ 1997; 6: S43-5.
[http://dx.doi.org/10.1097/00008469-199703001-00009]
[64]
Wrong OM, Edmonds CJ, Chadwick VS. The large intestine: Its role in mammalian nutrition and homeostasis. MTP press 1981.
[65]
Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 2002; 19(4): 390-412.
[http://dx.doi.org/10.1039/b108967f] [PMID: 12195810]
[66]
Warren CL, Kratochvil NCS, Hauschild KE, et al. Defining the sequence-recognition profile of DNA-binding molecules. Proc Natl Acad Sci USA 2006; 103(4): 867-72.
[http://dx.doi.org/10.1073/pnas.0509843102] [PMID: 16418267]
[67]
Quadri P, Fragiacomo C, Pezzati R, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 2004; 80(1): 114-22.
[PMID: 15213037]
[68]
Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM. Association of diabetes mellitus and dementia: The Rotterdam Study. Diabetologia 1996; 39(11): 1392-7.
[http://dx.doi.org/10.1007/s001250050588] [PMID: 8933010]
[69]
Tzourio C, Dufouil C, Ducimetière P, Alpérovitch A. Cognitive decline in individuals with high blood pressure: A longitudinal study in the elderly. EVA Study Group. Epidemiology of Vascular Aging. Neurology 1999; 53(9): 1948-52.
[http://dx.doi.org/10.1212/WNL.53.9.1948] [PMID: 10599763]
[70]
Fujii Y, Khasnobish A, Morita H. Relationship between Alzheimer’s Disease and the Human Microbiome. Alzheimer’s Dis 2019; pp. 147-58.
[http://dx.doi.org/10.15586/alzheimersdisease.2019.ch9]
[71]
Lu J, Ma KL, Ruan XZ. Dysbiosis of Gut Microbiota Contributes to the Development of Diabetes Mellitus. Infect Microbes Dis 2019; 1: 43-8.
[http://dx.doi.org/10.1097/IM9.0000000000000011]
[72]
Adachi K, Sugiyama T, Yamaguchi Y, et al. Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut-related metabolism in Japanese subjects. J Clin Biochem Nutr 2019; 64(3): 231-8.
[http://dx.doi.org/10.3164/jcbn.18-101] [PMID: 31138957]
[73]
Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr 2017; 147(7): 1468S-75S.
[http://dx.doi.org/10.3945/jn.116.240754] [PMID: 28615382]
[74]
Knight EM, Martins IVA, Gümüsgöz S, Allan SM, Lawrence CB. High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging 2014; 35(8): 1821-32.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.010] [PMID: 24630364]
[75]
Julien C, Tremblay C, Phivilay A, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging 2010; 31(9): 1516-31.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.022] [PMID: 18926603]
[76]
Barron AM, Rosario ER, Elteriefi R, Pike CJ. Sex-specific effects of high fat diet on indices of metabolic syndrome in 3xTg-AD mice: Implications for Alzheimer’s disease. PLoS One 2013; 8(10): e78554.
[http://dx.doi.org/10.1371/journal.pone.0078554] [PMID: 24205258]
[77]
Ho AJ, Raji CA, Becker JT, et al. Obesity is linked with lower brain volume in 700 AD and MCI patients. Neurobiol Aging 2010; 31(8): 1326-39.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.04.006] [PMID: 20570405]
[78]
Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 2003; 163(13): 1524-8.
[http://dx.doi.org/10.1001/archinte.163.13.1524] [PMID: 12860573]
[79]
Mendizábal Y, Llorens S, Nava E. Hypertension in metabolic syndrome: Vascular pathophysiology. Int J Hypertens 2013; 2013: 230868.
[http://dx.doi.org/10.1155/2013/230868] [PMID: 23573411]
[80]
Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 2005; 4(8): 487-99.
[http://dx.doi.org/10.1016/S1474-4422(05)70141-1] [PMID: 16033691]
[81]
Gentile MT, Poulet R, Di Pardo A, et al. b-Amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiol Aging 2009; 30: 222-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.005] [PMID: 17673335]
[82]
Carnevale D, Mascio G, D’Andrea I, et al. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension 2012; 60: 188-97.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.195511] [PMID: 22615109]
[83]
Yang T, Santisteban MM, Rodriguez V, et al. Microbiota and hypertension gut dysbiosis is linked to hypertension. 2015; 1331-40.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05315]
[84]
Afsar B, Vaziri ND, Aslan G, Tarim K, Kanbay M. Gut hormones and gut microbiota: Implications for kidney function and hypertension. J Am Soc Hypertens 2016; 10(12): 954-61.
[http://dx.doi.org/10.1016/j.jash.2016.10.007] [PMID: 27865823]
[85]
Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5(1): 14.
[http://dx.doi.org/10.1186/s40168-016-0222-x] [PMID: 28143587]
[86]
Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer’s disease 2011.
[http://dx.doi.org/10.1016/j.jalz.2011.05.2410]
[87]
Barnes DE, Yaffe K, Byers AL, McCormick M, Schaefer C, Whitmer RA. Midlife vs late-life depressive symptoms and risk of dementia: Differential effects for Alzheimer disease and vascular dementia. Arch Gen Psychiatry 2012; 69(5): 493-8.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.1481] [PMID: 22566581]
[88]
Li XL, Hu N, Tan MS, Yu JT, Tan L. Behavioral and psychological symptoms in Alzheimer’s disease. BioMed Res Int 2014; 2014: 927804.
[http://dx.doi.org/10.1155/2014/927804] [PMID: 25133184]
[89]
Blasko I, Kemmler G, Jungwirth S, et al. Plasma amyloid beta-42 independently predicts both late-onset depression and Alzheimer disease. Am J Geriatr Psychiatry 2010; 18(11): 973-82.
[http://dx.doi.org/10.1097/JGP.0b013e3181df48be] [PMID: 20808106]
[90]
Winter G, Hart RA, Charlesworth RPG, Sharpley CF. Gut microbiome and depression: What we know and what we need to know. Rev Neurosci 2018; 29(6): 629-43.
[http://dx.doi.org/10.1515/revneuro-2017-0072] [PMID: 29397391]
[91]
Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 2014; 26(8): 1155-62.
[http://dx.doi.org/10.1111/nmo.12378] [PMID: 24888394]
[92]
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558(Pt 1): 263-75.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[93]
Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci 2013; 36(5): 305-12.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[94]
Nagpal R, Kurakawa T, Tsuji H, et al. Evolution of gut Bifidobacterium population in healthy Japanese infants over the first three years of life: A quantitative assessment. Sci Rep 2017; 7(1): 10097.
[http://dx.doi.org/10.1038/s41598-017-10711-5] [PMID: 28855672]
[95]
Nagpal R, Tsuji H, Takahashi T, et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Front Microbiol 2017; 8: 1388.
[http://dx.doi.org/10.3389/fmicb.2017.01388] [PMID: 28785253]
[96]
Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 2016; 22(3): 250-3.
[http://dx.doi.org/10.1038/nm.4039] [PMID: 26828196]
[97]
Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: Implications for health outcomes. Nat Med 2016; 22(7): 713-22.
[http://dx.doi.org/10.1038/nm.4142] [PMID: 27387886]
[98]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107(26): 11971-5.
[http://dx.doi.org/10.1073/pnas.1002601107] [PMID: 20566857]
[99]
Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999; 69(5): 1035S-45S.
[http://dx.doi.org/10.1093/ajcn/69.5.1035s] [PMID: 10232646]
[100]
Rutayisire E, Wu X, Huang K, Tao S, Chen Y, Tao F. Cesarean section may increase the risk of both overweight and obesity in preschool children. BMC Pregnancy Childbirth 2016; 16(1): 338.
[http://dx.doi.org/10.1186/s12884-016-1131-5] [PMID: 27809806]
[101]
Boix-Amorós A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 2016; 7: 492.
[http://dx.doi.org/10.3389/fmicb.2016.00492] [PMID: 27148183]
[102]
Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin 2016; 32(2): 203-12.
[http://dx.doi.org/10.1016/j.ccc.2015.11.004] [PMID: 27016162]
[103]
Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1(1): 56-66.
[http://dx.doi.org/10.1038/ismej.2007.3] [PMID: 18043614]
[104]
Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5(3): e9836.
[http://dx.doi.org/10.1371/journal.pone.0009836] [PMID: 20352091]
[105]
Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 2011; 108(Suppl. 1): 4554-61.
[http://dx.doi.org/10.1073/pnas.1000087107] [PMID: 20847294]
[106]
Zar FA, Bakkanagari SR, Moorthi KM, Davis MB. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 2007; 45(3): 302-7.
[http://dx.doi.org/10.1086/519265] [PMID: 17599306]
[107]
Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 2010; 105(12): 2687-92.
[http://dx.doi.org/10.1038/ajg.2010.398] [PMID: 20940708]
[108]
Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes 2013; 37(1): 16-23.
[http://dx.doi.org/10.1038/ijo.2012.132] [PMID: 22907693]
[109]
Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014; 158(4): 705-21.
[http://dx.doi.org/10.1016/j.cell.2014.05.052] [PMID: 25126780]
[110]
Mahana D, Trent CM, Kurtz ZD, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med 2016; 8(1): 48.
[http://dx.doi.org/10.1186/s13073-016-0297-9] [PMID: 27124954]
[111]
Tomasik PJ, Tomasik P. Probiotics and prebiotics. Cereal Chem 2003; 80: 113-7.
[http://dx.doi.org/10.1094/CCHEM.2003.80.2.113]
[112]
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017; 9(9): 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[113]
Singh VP, Sharma J, Babu S. Rizwanulla, Singla A. Role of probiotics in health and disease: A review. J Pak Med Assoc 2013; 63(2): 253-7.
[PMID: 23894906]
[114]
Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM. Probiotic supplementation in patients with Alzheimer’s dementia - An explorative intervention study. Curr Alzheimer Res 2018; 15(12): 1106-13.
[http://dx.doi.org/10.2174/1389200219666180813144834] [PMID: 30101706]
[115]
Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011; 60(3): 307-17.
[http://dx.doi.org/10.1136/gut.2009.202515] [PMID: 20966022]
[116]
Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015; 310: 561-77.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.033] [PMID: 26408987]
[117]
Belizário JE, Faintuch J, Garay-Malpartida M. Gut microbiome dysbiosis and immunometabolism: New frontiers for treatment of metabolic diseases. Mediators Inflamm 2018; 2018: 2037838.
[http://dx.doi.org/10.1155/2018/2037838] [PMID: 30622429]
[118]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[119]
Liu P, Wu L, Peng G, et al. Brain , behavior , and immunity altered microbiomes distinguish alzheimer ’ s disease from amnestic mild cognitive impairment and health in a chinese cohort. 2019; 80: 633-43.
[http://dx.doi.org/10.1016/j.bbi.2019.05.008]
[120]
Saji N, Niida S, Murotani K, et al. Analysis of the relationship between the gut microbiome and dementia: A cross-sectional study conducted in Japan. Sci Rep 2019; 9(1): 1008.
[http://dx.doi.org/10.1038/s41598-018-38218-7] [PMID: 30700769]
[121]
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 2017; 56(2): 775-88.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[122]
Wu S-C, Cao Z-S, Chang K-M, Juang J-L. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila. Nat Commun 2017; 8(1): 24.
[http://dx.doi.org/10.1038/s41467-017-00040-6] [PMID: 28634323]
[123]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[124]
Kobayashi Y, Sugahara H, Shimada K, et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 2017; 7(1): 13510.
[http://dx.doi.org/10.1038/s41598-017-13368-2] [PMID: 29044140]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy