Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Perspective

Target Mutation-Driven Drug Discovery

Author(s): Concetta Altamura*, Diana Conte, Maria Rosaria Carratù and Jean-François Desaphy

Volume 29, Issue 31, 2022

Published on: 23 May, 2022

Page: [5156 - 5158] Pages: 3

DOI: 10.2174/1389450123666220418111200

[1]
Cortes, J.; Pavlovsky, C.; Saußele, S. Chronic myeloid leukaemia. Lancet, 2021, 398(10314), 1914-1926.
[http://dx.doi.org/10.1016/S0140-6736(21)01204-6] [PMID: 34425075]
[2]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[http://dx.doi.org/10.1126/science.1062538] [PMID: 11423618]
[3]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[4]
Zhou, T.; Commodore, L.; Huang, W.S.; Wang, Y.; Thomas, M.; Keats, J.; Xu, Q.; Rivera, V.M.; Shakespeare, W.C.; Clackson, T.; Dalgarno, D.C.; Zhu, X. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem. Biol. Drug Des., 2011, 77(1), 1-11.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01054.x] [PMID: 21118377]
[5]
Orphanet. Prevalence of rare diseases: Bibliographic data, Orphanet Report Series, Rare Diseases collection, January 2021, Number 1 : Diseases listed in alphabetical order. 2021. Available from: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_diseases pdf.
[6]
Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet., 2015, 16(1), 45-56.
[http://dx.doi.org/10.1038/nrg3849] [PMID: 25404111]
[7]
Lopes-Pacheco, M. CFTR Modulators: The changing face of cystic fibrosis in the era of precision medicine. Front. Pharmacol., 2020, 10, 1662.
[PMID: 28993909]
[8]
Maggi, L.; Bonanno, S.; Altamura, C.; Desaphy, J.F. ion channel gene mutations causing skeletal muscle disorders: Pathomechanisms and opportunities for therapy. Cells, 2021, 10(6), 1521.
[http://dx.doi.org/10.3390/cells10061521] [PMID: 34208776]
[9]
Altamura, C.; Lucchiari, S.; Sahbani, D.; Ulzi, G.; Comi, G.P.; D’Ambrosio, P.; Petillo, R.; Politano, L.; Vercelli, L.; Mongini, T.; Dotti, M.T.; Cardani, R.; Meola, G.; Lo Monaco, M.; Matthews, E.; Hanna, M.G.; Carratù, M.R.; Conte, D.; Imbrici, P.; Desaphy, J.F. The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel. Hum. Mutat., 2018, 39(9), 1273-1283.
[http://dx.doi.org/10.1007/s00424-020-02376-3] [PMID: 32361781]
[10]
Farinato, A.; Altamura, C.; Imbrici, P.; Maggi, L.; Bernasconi, P.; Mantegazza, R.; Pasquali, L.; Siciliano, G.; Lo Monaco, M.; Vial, C.; Sternberg, D.; Carratù, M.R.; Conte, D.; Desaphy, J.F. Pharmacogenetics of myotonic hNav1.4 sodium channel variants situated near the fast inactivation gate. Pharmacol. Res., 2019, 141, 224-235.
[http://dx.doi.org/10.1016/j.phrs.2019.01.004] [PMID: 30611854]
[11]
Desaphy, J.F.; Modoni, A.; Lomonaco, M.; Camerino, D.C. Dramatic improvement of myotonia permanens with flecainide: A two-case report of a possible bench-to-bedside pharmacogenetics strategy. Eur. J. Clin. Pharmacol., 2013, 69(4), 1037-1039.
[http://dx.doi.org/10.1007/s00228-012-1414-3] [PMID: 23052413]
[12]
Desaphy, J.F.; Carbonara, R.; D’Amico, A.; Modoni, A.; Roussel, J.; Imbrici, P.; Pagliarani, S.; Lucchiari, S.; Lo Monaco, M.; Conte Camerino, D. Translational approach to address therapy in myotonia permanens due to a new SCN4A mutation. Neurology, 2016, 86(22), 2100-2108.
[http://dx.doi.org/10.1212/WNL.0000000000002721] [PMID: 27164696]
[13]
Portaro, S.; Rodolico, C.; Sinicropi, S.; Musumeci, O.; Valenzise, M.; Toscano, A. Flecainide-responsive myotonia permanens with SNEL Onset: A new case and literature review. Pediatrics, 2016, 137(4), e20153289.
[http://dx.doi.org/10.1542/peds.2015-3289] [PMID: 26944947]
[14]
Lehmann-Horn, F.; D’Amico, A.; Bertini, E.; Lomonaco, M.; Merlini, L.; Nelson, K.R.; Philippi, H.; Siciliano, G.; Spaans, F.; Jurkat-Rott, K. Myotonia permanens with Nav1.4-G1306E displays varied phenotypes during course of life. Acta Myol., 2017, 36(3), 125-134.
[PMID: 29774303]
[15]
Altamura, C.; Mangiatordi, G.F.; Nicolotti, O.; Sahbani, D.; Farinato, A.; Leonetti, F.; Carratù, M.R.; Conte, D.; Desaphy, J.F.; Imbrici, P. Mapping ligand binding pockets in chloride ClC-1 channels through an integrated in silico and experimental approach using anthracene-9-carboxylic acid and niflumic acid. Br. J. Pharmacol., 2018, 175(10), 1770-1780.
[http://dx.doi.org/10.1111/bph.14192] [PMID: 29500929]
[16]
Pande, M.; Kundu, D.; Srivastava, R. Drugs repurposing against SARS-CoV2 and the new variant B.1.1.7 (alpha strain) targeting the spike protein: Molecular docking and simulation studies. Heliyon, 2021, 7(8), e07803.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07803] [PMID: 34423145]

© 2025 Bentham Science Publishers | Privacy Policy