Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Research Article

Premature Infants have no Higher Risk of Atopy and Respiratory Functions Compared to Control at 4-6 Years of Age

Author(s): Mehmet Satar*, Tuğçe Güven, Hüseyin Şimşek and Derya Ufuk Altıntaş

Volume 19, Issue 1, 2023

Published on: 08 June, 2022

Page: [99 - 104] Pages: 6

DOI: 10.2174/1573396318666220417183655

Price: $65

Abstract

Aims: This study aimed to evaluate the respiratory functions and atopy conditions of preterm infants treated with aminophylline or caffeine for apnea in NICU in early childhood.

Materials and Methods: This is a retrospective cohort study. In this study, 27 patients aged 4 to 6 years hospitalized in NICU for prematurity and 26 healthy children were included. The subjects were evaluated for fx5, phadiatope, total IgE levels, skin tests, and respiratory function tests.

Results: There was no statistically significant difference among groups in terms of fx5, phadiatope, total IgE levels, and skin test results. Moreover, no statistically significant difference was found among the groups in terms of FVC, FEV1, FEV1/ FVC, PEF, MEF75, MEF50, MEF25, and MEF25-75 values in respiratory function tests. Preterm neonates with bronchopulmonary dysplasia (BPD) had higher FEV1 values compared to ones without BPD (p=0.02).

Conclusion: Preterm infants treated with aminophylline or caffeine did not have a higher risk of atopy and had similar respiratory function tests compared to healthy infants at 4-6 years old. However, FEV1 values were higher in infants with BPD. These results suggested that respiratory functions could be affected in the long-term follow-up of premature infants with BPD.

Keywords: Prematurity, respiratory function tests, bronchopulmonary dysplasia, necrotizing enterocolitis, apnea, cyanosis.

Graphical Abstract

[1]
Carlo WA. The high risk infant. In: Kliegman RM, Stanton B, St. Geme JW, Schor NF, Behrman RE, Eds. Nelson Textbook of Pediatrics. (20th ed.). Philadelphia: Elsevier 2016; pp. 821-31.
[2]
Patrinos ME, Martin RJ. Apnea in the term infant. Semin Fetal Neonatal Med 2017; 22(4): 240-4.
[http://dx.doi.org/10.1016/j.siny.2017.04.003] [PMID: 28438477]
[3]
Abu-Shaweesh JM, Martin RJ. Neonatal apnea: What’s new? Pediatr Pulmonol 2008; 43(10): 937-44.
[http://dx.doi.org/10.1002/ppul.20832] [PMID: 18780339]
[4]
Henderson-Smart DJ, Steer PA. Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst Rev 2010; 20(1): CD000273.
[http://dx.doi.org/10.1002/14651858.CD000273.pub2] [PMID: 20091506]
[5]
Bolton CE, Bush A, Hurst JR, Kotecha S, McGarvey L. Lung consequences in adults born prematurely. Thorax 2015; 70(6): 574-80.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206590] [PMID: 25825005]
[6]
Vrijlandt EJ, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ. Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med 2006; 173(8): 890-6.
[http://dx.doi.org/10.1164/rccm.200507-1140OC] [PMID: 16456146]
[7]
Kaczmarczyk K, Wiszomirska I, Szturmowicz M, Magiera A. Błażkiewicz M. Are preterm-born survivors at risk of long-term respiratory disease? Ther Adv Respir Dis 2017; 11(7): 277-87.
[http://dx.doi.org/10.1177/1753465817710595] [PMID: 28614994]
[8]
Siltanen M, Savilahti E, Pohjavuori M, Kajosaari M. Respiratory symptoms and lung function in relation to atopy in children born pre-term. Pediatr Pulmonol 2004; 37(1): 43-9.
[http://dx.doi.org/10.1002/ppul.10402] [PMID: 14679488]
[9]
Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am J Respir Crit Care Med 1997; 156(4 Pt 1): 1178-84.
[http://dx.doi.org/10.1164/ajrccm.156.4.9610028] [PMID: 9351619]
[10]
Lum S, Kirkby J, Welsh L, Marlow N, Hennessy E, Stocks J. Nature and severity of lung function abnormalities in extremely pre-term children at 11 years of age. Eur Respir J 2011; 37(5): 1199-207.
[http://dx.doi.org/10.1183/09031936.00071110] [PMID: 20947682]
[11]
Ronkainen E, Dunder T, Peltoniemi O, Kaukola T, Marttila R, Hallman M. New BPD predicts lung function at school age: Follow-up study and meta-analysis. Pediatr Pulmonol 2015; 50(11): 1090-8.
[http://dx.doi.org/10.1002/ppul.23153] [PMID: 25589379]
[12]
Doyle LW, Ranganathan S, Cheong JLY. Neonatal caffeine treatment and respiratory function at 11 years in children under 1,251 g at birth. Am J Respir Crit Care Med 2017; 196(10): 1318-24.
[http://dx.doi.org/10.1164/rccm.201704-0767OC] [PMID: 28707987]
[13]
Lombardi E, Fainardi V, Calogero C, et al. Lung function in a cohort of 5-year-old children born very preterm. Pediatr Pulmonol 2018; 53(12): 1633-9.
[http://dx.doi.org/10.1002/ppul.24179] [PMID: 30345653]
[14]
Gibson AM, Reddington C, McBride L, Callanan C, Robertson C, Doyle LW. Lung function in adult survivors of very low birth weight, with and without bronchopulmonary dysplasia. Pediatr Pulmonol 2015; 50(10): 987-94.
[http://dx.doi.org/10.1002/ppul.23093] [PMID: 25195792]
[15]
Eichenwald EC, Stark AR. Management and outcomes of very low birth weight. N Engl J Med 2008; 358(16): 1700-11.
[http://dx.doi.org/10.1056/NEJMra0707601] [PMID: 18420502]
[16]
Jat KR. Spirometry in children. Prim Care Respir J 2013; 22(2): 221-9.
[http://dx.doi.org/10.4104/pcrj.2013.00042] [PMID: 23732636]
[17]
Glass HC, Costarino AT, Stayer SA, Brett CM, Cladis F, Davis PJ. Outcomes for extremely premature infants. Anesth Analg 2015; 120(6): 1337-51.
[http://dx.doi.org/10.1213/ANE.0000000000000705] [PMID: 25988638]
[18]
Bhatt-Mehta V, Schumacher RE. Treatment of apnea of prematurity. Paediatr Drugs 2003; 5(3): 195-210.
[http://dx.doi.org/10.2165/00128072-200305030-00006] [PMID: 12608884]
[19]
Johnson PJ. Caffeine citrate therapy for apnea of prematurity. Neonatal Netw 2011; 30(6): 408-12.
[http://dx.doi.org/10.1891/0730-0832.30.6.408] [PMID: 22052121]
[20]
Erenberg A, Leff RD, Haack DG, et al. Caffeine citrate for the treatment of apnea of prematurity: A double-blind, placebo-controlled study. Pharmacotherapy 2000; 20(6): 644-52.
[http://dx.doi.org/10.1592/phco.20.7.644.35167] [PMID: 10853619]
[21]
Vollsæter M, Skromme K, Satrell E, et al. Children born preterm at the turn of the millennium had better lung function than children born similarly preterm in the early 1990s. PLoS One 2015; 10(12): e0144243.
[http://dx.doi.org/10.1371/journal.pone.0144243] [PMID: 26641080]
[22]
Yu M, Huang JH, Zhu R, Zhang XZ, Wu WY, Wen XH. Effect of caffeine citrate on early pulmonary function in preterm infants with ap-nea. Zhongguo Dang Dai Er Ke Za Zhi 2016; 18(3): 206-10.
[PMID: 26975815]
[23]
Gonçalves DMM, Wandalsen GF, Scavacini AS, et al. Pulmonary function in former very low birth weight preterm infants in the first year of life. Respir Med 2018; 136: 83-7.
[http://dx.doi.org/10.1016/j.rmed.2018.02.004] [PMID: 29501252]
[24]
Simpson SJ, Logie KM, O’Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax 2017; 72(8): 702-11.
[http://dx.doi.org/10.1136/thoraxjnl-2016-208985] [PMID: 28119488]
[25]
Fortuna M, Carraro S, Temporin E, et al. Mid-childhood lung function in a cohort of children with “new bronchopulmonary dysplasia”. Pediatr Pulmonol 2016; 51(10): 1057-64.
[http://dx.doi.org/10.1002/ppul.23422] [PMID: 27077215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy