Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Development of Heterocyclic Compounds with Indazole Moiety as Potential Antiparasitic Agents

Author(s): Abhik Paul, Tanmoy Guria, Puspita Roy and Arindam Maity*

Volume 22, Issue 14, 2022

Published on: 07 June, 2022

Page: [1160 - 1176] Pages: 17

DOI: 10.2174/1568026622666220415224139

Price: $65

Abstract

Indazole is a vital nitrogen-containing heterocyclic unit in organic and medicinal chemistry research and a helpful precursor molecule for the production of various types of encirclement heterocycles. Indazole analogues are diverse pharmacological agents that can be used to treat a variety of conditions, including cancer, inflammation, infectious diseases, and neurological problems. In fact, the indazole moiety containing inhibitors also showed excellent medicinal properties for the treatment of parasitic diseases. Therefore, the development of new inhibitors has immense promise for usage as key components for the next generation of antiparasitic medication. In this review, we have summarized the recent developments of indazole-containing antiparasitic inhibitors, specially anti-protozoal, anti-fungal, and antiamoebic inhibitors, as well as their structure-activity relationship (SAR) findings for medicinal chemists who are searching for new preclinical parasitic drug candidates.

Keywords: Indazole, Anti-protozoal, Anti-fungal, Antiamoebic, Structure activity relationship (SAR), Heterocyclic compounds.

Graphical Abstract

[1]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[2]
Yi-Ting, L.; Guang-Hui, R.; You-Sheng, L.; Kun, Y.; Le-Ping, S.; Shi-Zhu, L.; Shan, L.; Tie-Wu, J. Global burden and challenges of parasitic diseases in Africa. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi, 2018, 30(2), 226-231.
[http://dx.doi.org/10.16250/j.32.1374.2018020] [PMID: 29770673]
[3]
Hotez, P.J. Human parasitology and parasitic diseases: Heading towards 2050. Adv. Parasitol., 2018, 100, 29-38.
[http://dx.doi.org/10.1016/bs.apar.2018.03.002]
[4]
Singh, B.; Varikuti, S.; Halsey, G.; Volpedo, G.; Hamza, O.M.; Satoskar, A.R. Host-directed therapies for parasitic diseases. Future Med. Chem., 2019, 11(15), 1999-2018.
[http://dx.doi.org/10.4155/fmc-2018-0439] [PMID: 31390889]
[5]
Meade, T.M.; Watson, J. Parasitic Diseases. In: The Laboratory Rat; Wiley Online Books; Elsevier, 2020; pp. 569-600.
[http://dx.doi.org/10.1016/B978-0-12-814338-4.00014-3]
[6]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[7]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), E1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[8]
Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. Recent advances in the development of indazole-based anticancer agents. ChemMedChem, 2018, 13(15), 1490-1507.
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292]
[9]
Sandeep Reddy, G.; Mohanty, S.; Kumar, J.; Venteswar Rao, B. Synthesis and evaluation of anticancer activity of indazole derivatives. Russ. J. Gen. Chem., 2018, 88(11), 2394-2399.
[http://dx.doi.org/10.1134/S1070363218110233]
[10]
Ghelani, S.M.; Khunt, H.R.; Naliapara, Y.T. Design, synthesis, characterization, and antimicrobial screening of novel indazole bearing oxadiazole derivatives. J. Heterocycl. Chem., 2017, 54(1), 65-70.
[http://dx.doi.org/10.1002/jhet.2540]
[11]
Vyas, D.H.; Tala, S.D.; Akbari, J.D.; Dhaduk, M.F.; Joshi, H.S. Synthesis, antimicrobial and antitubercular activity of some cyclohexenone and indazole derivatives. Indian J. Chem. - Sect. B Org. Med. Chem., 2009, 48(10), 1405-1410.
[http://dx.doi.org/10.1002/chin.201007103]
[12]
Pérez-Villanueva, J.; Yépez-Mulia, L.; González-Sánchez, I.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; Sainz-Espuñes, T.D.R.; Cerbón, M.A.; Rodríguez-Villar, K.; Rodríguez-Vicente, A.K.; Cortés-Gines, M.; Custodio-Galván, Z.; Estrada-Castro, D.B. Synthesis and biological evaluation of 2H-indazole derivatives: Towards antimicrobial and anti-inflammatory dual agents. Molecules, 2017, 22(11), E1864.
[http://dx.doi.org/10.3390/molecules22111864] [PMID: 29088121]
[13]
Kim, S.H.; Markovitz, B.; Trovato, R.; Murphy, B.R.; Austin, H.; Willardsen, A.J.; Baichwal, V.; Morham, S.; Bajji, A. Discovery of a new HIV-1 inhibitor scaffold and synthesis of potential prodrugs of indazoles. Bioorg. Med. Chem. Lett., 2013, 23(10), 2888-2892.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.075] [PMID: 23566519]
[14]
Lee, F.Y.; Lien, J.C.; Huang, L.J.; Huang, T.M.; Tsai, S.C.; Teng, C.M.; Wu, C.C.; Cheng, F.C.; Kuo, S.C. Synthesis of 1-benzyl-3-(5¢-hydroxymethyl-2¢-furyl)indazole analogues as novel antiplatelet agents. J. Med. Chem., 2001, 44(22), 3746-3749.
[http://dx.doi.org/10.1021/jm010001h] [PMID: 11606139]
[15]
Qin, J.; Cheng, W.; Duan, Y-T.; Yang, H.; Yao, Y. Indazole as a privileged scaffold: The derivatives and their therapeutic applications. Anticancer. Agents Med. Chem., 2021, 21(7), 839-860.
[http://dx.doi.org/10.2174/1871520620999200818160350] [PMID: 32819234]
[16]
Thangadurai, A.; Minu, M.; Wakode, S.; Agrawal, S.; Narasimhan, B. Indazole: A medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21(7), 1509-1523.
[http://dx.doi.org/10.1007/s00044-011-9631-3]
[17]
Cao, Y.; Luo, C.; Yang, P.; Li, P.; Wu, C. Indazole scaffold: A generalist for marketed and clinical drugs. Med. Chem. Res., 2021, 30(3), 501-518.
[http://dx.doi.org/10.1007/s00044-020-02665-7]
[18]
Ali, N.A.; Dar, B.A.; Pradhan, V.; Farooqui, M. Chemistry and biology of indoles and indazoles: A mini-review. Mini Rev. Med. Chem., 2013, 13(12), 1792-1800.
[http://dx.doi.org/10.2174/1389557511313120009] [PMID: 22625410]
[19]
Cankařová, N.; Hlaváč, J.; Krchňák, V. Recent synthetic approaches to 1H- and 2H-indazoles. a review. Org. Prep. Proced. Int., 2010, 42(5), 433-465.
[http://dx.doi.org/10.1080/00304948.2010.513898]
[20]
Cerecetto, H.; Gerpe, A.; González, M.; Arán, V.J.; de Ocáriz, C.O. Pharmacological properties of indazole derivatives: Recent developments. Mini Rev. Med. Chem., 2005, 5(10), 869-878.
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831]
[21]
Ghosh, S.; Mondal, S.; Hajra, A. Direct catalytic functionalization of indazole derivatives. Adv. Synth. Catal., 2020, 362(18), 3768-3794.
[http://dx.doi.org/10.1002/adsc.202000423]
[22]
Andrews, K.T.; Haque, A.; Jones, M.K. HDAC inhibitors in parasitic diseases. Immunol. Cell Biol., 2012, 90(1), 66-77.
[http://dx.doi.org/10.1038/icb.2011.97] [PMID: 22124373]
[23]
Hotez, P.J.; Kamath, A. Neglected tropical diseases in sub-saharan Africa: Review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis., 2009, 3(8), e412.
[http://dx.doi.org/10.1371/journal.pntd.0000412] [PMID: 19707588]
[24]
Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(2), 95-111.
[http://dx.doi.org/10.1016/j.ijpddr.2014.02.002] [PMID: 25057459]
[25]
Schmidt, A.; Beutler, A.; Snovydovych, B. Recent advances in the chemistry of indazoles. Eur. J. Org. Chem., 2008, 2008(24), 4073-4095. Available from: https://doi.org/https://doi.org/10.1002/ejoc.200800227
[http://dx.doi.org/10.1002/ejoc.200800227]
[26]
Aguilera-Venegas, B.; Olea-Azar, C.; Arán, V.J.; Speisky, H. Indazoles: a new top seed structure in the search of efficient drugs against Trypanosoma cruzi. Future Med. Chem., 2013, 5(15), 1843-1859.
[http://dx.doi.org/10.4155/fmc.13.144] [PMID: 24144415]
[27]
Shoji, Y.; Hari, Y.; Aoyama, T. Facile synthesis of 3-Trimethylsilylindazoles by [3+2]cycloaddition reaction of lithium trimethylsilyldiazomethane with benzynes. Tetrahedron Lett., 2004, 45(8), 1769-1771.
[http://dx.doi.org/10.1016/j.tetlet.2003.12.086]
[28]
Peruncheralathan, S.; Khan, T.A.; Ila, H.; Junjappa, H. α-Oxoketene dithioacetals mediated heteroaromatic annulation protocol for benzoheterocycles: An efficient regiocontrolled synthesis of highly substituted and annulated indazoles. Tetrahedron, 2004, 60(15), 3457-3464.
[http://dx.doi.org/10.1016/j.tet.2004.02.029]
[29]
Correa, A.; Tellitu, I.; Domínguez, E.; SanMartin, R. Novel alternative for the N-S bond formation and its application to the synthesis of benzisothiazol-3-ones. Org. Lett., 2006, 8(21), 4811-4813.
[http://dx.doi.org/10.1021/ol061867q] [PMID: 17020309]
[30]
Zhang, Z.; Huang, Y.; Huang, G.; Zhang, G.; Liu, Q. [Bis-(Trifluoroacetoxy)iodo]benzene-mediated oxidative direct amination C-N bond formation: Synthesis of 1H-indazoles. J. Heterocycl. Chem., 2017, 54(4), 2426-2433.
[http://dx.doi.org/10.1002/jhet.2839]
[31]
Li, H.; Li, P.; Wang, L. Direct access to acylated azobenzenes via Pd-catalyzed C-H functionalization and further transformation into an indazole backbone. Org. Lett., 2013, 15(3), 620-623.
[http://dx.doi.org/10.1021/ol303434n] [PMID: 23343496]
[32]
Moustafa, A.; Malakar, C.; Aljaar, N.; Merisor, E.; Conrad, J.; Beifuss, U. Microwave-assisted molybdenum-catalyzed reductive cyclization of o-nitrobenzylidene amines to 2-Aryl-2H-indazoles. Synlett, 2013, 24(12), 1573-1577.
[http://dx.doi.org/10.1055/s-0033-1339195]
[33]
Nykaza, T.V.; Harrison, T.S.; Ghosh, A.; Putnik, R.A.; Radosevich, A.T. A biphilic phosphetane catalyzes N-N bond-forming cadogan heterocyclization via PIII/PV═O Redox Cycling. J. Am. Chem. Soc., 2017, 139(20), 6839-6842.
[http://dx.doi.org/10.1021/jacs.7b03260] [PMID: 28489354]
[34]
Genung, N.E.; Wei, L.; Aspnes, G.E. Regioselective synthesis of 2H-indazoles using a mild, one-pot condensation-Cadogan reductive cyclization. Org. Lett., 2014, 16(11), 3114-3117.
[http://dx.doi.org/10.1021/ol5012423] [PMID: 24848311]
[35]
Zhu, J.S.; Kraemer, N.; Li, C.J.; Haddadin, M.J.; Kurth, M.J. Photochemical preparation of 1,2-dihydro-3 H-indazol-3-ones in aqueous solvent at room temperature. J. Org. Chem., 2018, 83(24), 15493-15498.
[http://dx.doi.org/10.1021/acs.joc.8b02356] [PMID: 30468072]
[36]
Gerpe, A.; Aguirre, G.; Boiani, L.; Cerecetto, H.; González, M.; Olea-Azar, C.; Rigol, C.; Maya, J.D.; Morello, A.; Piro, O.E.; Arán, V.J.; Azqueta, A.; de Ceráin, A.L.; Monge, A.; Rojas, M.A.; Yaluff, G. Indazole N-oxide derivatives as antiprotozoal agents: Synthesis, biological evaluation and mechanism of action studies. Bioorg. Med. Chem., 2006, 14(10), 3467-3480.
[http://dx.doi.org/10.1016/j.bmc.2006.01.007] [PMID: 16483783]
[37]
Ibáñez-Escribano, A.; Nogal-Ruiz, J.J.; Gómez-Barrio, A.; Arán, V.J.; Escario, J.A. in vitro trichomonacidal activity and preliminary in silico chemometric studies of 5-nitroindazolin-3-one and 3-alkoxy-5-nitroindazole derivatives. Parasitology, 2016, 143(1), 34-40.
[http://dx.doi.org/10.1017/S0031182015001419] [PMID: 26525913]
[38]
Muro, B.; Reviriego, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; Rosales, M.J.; Sánchez-Moreno, M.; Arán, V.J. New perspectives on the synthesis and antichagasic activity of 3-alkoxy-1-alkyl-5-nitroindazoles. Eur. J. Med. Chem., 2014, 74, 124-134.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.025] [PMID: 24448422]
[39]
Arán, V.J.; Ochoa, C.; Boiani, L.; Buccino, P.; Cerecetto, H.; Gerpe, A.; González, M.; Montero, D.; Nogal, J.J.; Gómez-Barrio, A.; Azqueta, A.; López de Ceráin, A.; Piro, O.E.; Castellano, E.E. Synthesis and biological properties of new 5-nitroindazole derivatives. Bioorg. Med. Chem., 2005, 13(9), 3197-3207.
[http://dx.doi.org/10.1016/j.bmc.2005.02.043] [PMID: 15809155]
[40]
Boiani, L.; Gerpe, A.; Arán, V.J.; Torres de Ortiz, S.; Serna, E.; Vera de Bilbao, N.; Sanabria, L.; Yaluff, G.; Nakayama, H.; Rojas de Arias, A.; Maya, J.D.; Morello, J.A.; Cerecetto, H.; González, M. in vitro and in vivo antitrypanosomatid activity of 5-nitroindazoles. Eur. J. Med. Chem., 2009, 44(3), 1034-1040.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.024] [PMID: 18706738]
[41]
Marín, C.; Ramírez-Macías, I.; Rosales, M.J.; Muro, B.; Reviriego, F.; Navarro, P.; Arán, V.J.; Sánchez-Moreno, M. in vitro leishmanicidal activity of 1,3-disubstituted 5-nitroindazoles. Acta Trop., 2015, 148, 170-178.
[http://dx.doi.org/10.1016/j.actatropica.2015.04.028] [PMID: 25956673]
[42]
Fonseca-Berzal, C.; Escario, J.A.; Arán, V.J.; Gómez-Barrio, A. Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles. Parasitol. Res., 2014, 113(3), 1049-1056.
[http://dx.doi.org/10.1007/s00436-013-3740-5] [PMID: 24435615]
[43]
Fonseca-Berzal, C.; Ibáñez-Escribano, A.; Vela, N.; Cumella, J.; Nogal-Ruiz, J.J.; Escario, J.A.; da Silva, P.B.; Batista, M.M.; Soeiro, M.N.C.; Sifontes-Rodríguez, S.; Meneses-Marcel, A.; Gómez-Barrio, A.; Arán, V.J. Antichagasic, leishmanicidal, and trichomonacidal activity of 2-benzyl-5-nitroindazole-derived amines. ChemMedChem, 2018, 13(12), 1246-1259.
[http://dx.doi.org/10.1002/cmdc.201800084] [PMID: 29624912]
[44]
El Ghozlani, M.; Bouissane, L.; Berkani, M.; Mojahidi, S.; Allam, A.; Menendez, C.; Cojean, S.; Loiseau, P.M.; Baltas, M.; Rakib, E.M. Synthesis and biological evaluation against Leishmania donovani of novel hybrid molecules containing indazole-based 2-pyrone scaffolds. MedChemComm, 2018, 10(1), 120-127.
[http://dx.doi.org/10.1039/C8MD00475G] [PMID: 30774860]
[45]
Vega, M.C.; Rolón, M.; Montero-Torres, A.; Fonseca-Berzal, C.; Escario, J.A.; Gómez-Barrio, A.; Gálvez, J.; Marrero-Ponce, Y.; Arán, V.J. Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-Disubstituted 5-nitroindazolinones, new prototypes of antichagasic drug. Eur. J. Med. Chem., 2012, 58, 214-227.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.009] [PMID: 23124218]
[46]
Harrison, J.R.; Brand, S.; Smith, V.; Robinson, D.A.; Thompson, S.; Smith, A.; Davies, K.; Mok, N.; Torrie, L.S.; Collie, I.; Hallyburton, I.; Norval, S.; Simeons, F.R.C.; Stojanovski, L.; Frearson, J.A.; Brenk, R.; Wyatt, P.G.; Gilbert, I.H.; Read, K.D. A molecular hybridization approach for the design of potent, highly selective, and brain-penetrant N -myristoyltransferase inhibitors. J. Med. Chem., 2018, 61(18), 8374-8389.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00884] [PMID: 30207721]
[47]
Martín-Escolano, R.; Aguilera-Venegas, B.; Marín, C.; Martín-Montes, Á.; Martín-Escolano, J.; Medina-Carmona, E.; Arán, V.J.; Sánchez-Moreno, M. Synthesis and biological in vitro and in vivo evaluation of 2-(5-nitroindazol-1-yl)ethylamines and related compounds as potential therapeutic alternatives for Chagas disease. ChemMedChem, 2018, 13(19), 2104-2118.
[http://dx.doi.org/10.1002/cmdc.201800512] [PMID: 30098232]
[48]
Díaz-Urrutia, C.A.; Olea-Azar, C.A.; Zapata, G.A.; Lapier, M.; Mura, F.; Aguilera-Venegas, B.; Arán, V.J.; López-Múñoz, R.A.; Maya, J.D. Biological and chemical study of fused tri- and tetracyclic indazoles and analogues with important antiparasitic activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 95, 670-678.
[http://dx.doi.org/10.1016/j.saa.2012.04.076] [PMID: 22584127]
[49]
Rodríguez, J.; Gerpe, A.; Aguirre, G.; Kemmerling, U.; Piro, O.E.; Arán, V.J.; Maya, J.D.; Olea-Azar, C.; González, M.; Cerecetto, H. Study of 5-nitroindazoles’ anti-Trypanosoma cruzi mode of action: Electrochemical behaviour and ESR spectroscopic studies. Eur. J. Med. Chem., 2009, 44(4), 1545-1553.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.018] [PMID: 18762357]
[50]
Rodríguez, J.; Arán, V.J.; Boiani, L.; Olea-Azar, C.; Lavaggi, M.L.; González, M.; Cerecetto, H.; Maya, J.D.; Carrasco-Pozo, C.; Cosoy, H.S. New potent 5-nitroindazole derivatives as inhibitors of Trypanosoma cruzi growth: Synthesis, biological evaluation, and mechanism of action studies. Bioorg. Med. Chem., 2009, 17(24), 8186-8196.
[http://dx.doi.org/10.1016/j.bmc.2009.10.030] [PMID: 19900812]
[51]
Rodríguez-Villar, K.; Yépez-Mulia, L.; Cortés-Gines, M.; Aguilera-Perdomo, J.D.; Quintana-Salazar, E.A.; Olascoaga Del Angel, K.S.; Cortés-Benítez, F.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; Pérez-Villanueva, J. Synthesis, antiprotozoal activity, and cheminformatic analysis of 2-phenyl-2H-indazole derivatives. Molecules, 2021, 26(8), 2145.
[http://dx.doi.org/10.3390/molecules26082145] [PMID: 33917871]
[52]
Rodríguez-Villar, K.; Hernández-Campos, A.; Yépez-Mulia, L.; Sainz-Espuñes, T.D.R.; Soria-Arteche, O.; Palacios-Espinosa, J.F.; Cortés-Benítez, F.; Leyte-Lugo, M.; Varela-Petrissans, B.; Quintana-Salazar, E.A.; Pérez-Villanueva, J. Design, synthesis and anticandidal evaluation of indazole and pyrazole derivatives. Pharmaceuticals (Basel), 2021, 14(3), 1-19.
[http://dx.doi.org/10.3390/ph14030176] [PMID: 33668364]
[53]
Kumar, K.P.; Vedavathi, P.; Subbaiah, K.V.; Reddy, D.V.R.; Raju, C.N. Design, synthesis, spectral characterization and bioactivity evaluation of new sulfonamide and carbamate derivatives of 5-nitro-1H-indazole. Org. Commun., 2017, 10(3), 239-249.
[http://dx.doi.org/10.25135/acg.oc.24.17.05.023]
[54]
Du, S.; Lu, H.; Yang, D.; Li, H.; Gu, X.; Wan, C.; Jia, C.; Wang, M.; Li, X.; Qin, Z. Synthesis, antifungal activity and QSAR of some novel carboxylic acid amides. Molecules, 2015, 20(3), 4071-4087.
[http://dx.doi.org/10.3390/molecules20034071] [PMID: 25749678]
[55]
Abbady, M.S.; Youssef, M.S.K. Synthesis and biological activity of some new pyridines, pyrans, and indazoles containing pyrazolone moiety. Med. Chem. Res., 2014, 23(7), 3558-3568.
[http://dx.doi.org/10.1007/s00044-014-0935-y]
[56]
Faidallah, H.M.; Khan, K.A.; Rostom, S.A.F.; Asiri, A.M. Synthesis and in vitro antitumor and antimicrobial activity of some 2,3-diaryl-7-methyl-4,5,6,7-tetrahydroindazole and 3,3a,4,5,6,7-hexahydroindazole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 495-508.
[http://dx.doi.org/10.3109/14756366.2011.653354] [PMID: 22329488]
[57]
Samadhiya, P.; Sharma, R.; Srivastava, S.K.; Srivastava, S.D. Synthesis of 2-azetidinone derivatives of 6-nitro-1h-indazole and their biological importance. Quim. Nova, 2012, 35(5), 914-919.
[http://dx.doi.org/10.1590/S0100-40422012000500010]
[58]
López-Vallejo, F.; Castillo, R.; Yépez-Mulia, L.; Medina-Franco, J.L. Benzotriazoles and indazoles are scaffolds with biological activity against Entamoeba histolytica. J. Biomol. Screen., 2011, 16(8), 862-868.
[http://dx.doi.org/10.1177/1087057111414902] [PMID: 21821786]
[59]
Anwar, A.; Mungroo, M.R.; Khan, S.; Fatima, I.; Rafique, R. Kanwal; Khan, K.M.; Siddiqui, R.; Khan, N.A. Novel azoles as antiparasitic remedies against brain-eating amoebae. Antibiotics (Basel), 2020, 9(4), 188.
[http://dx.doi.org/10.3390/antibiotics9040188] [PMID: 32316387]
[60]
Guha, R. On exploring structure-activity relationships. Methods Mol. Biol., 2013, 993, 81-94.
[http://dx.doi.org/10.1007/978-1-62703-342-8_6] [PMID: 23568465]
[61]
Phatak, S.S.; Stephan, C.C.; Cavasotto, C.N. High-throughput and in silico screenings in drug discovery. Expert Opin. Drug Discov., 2009, 4(9), 947-959.
[http://dx.doi.org/10.1517/17460440903190961] [PMID: 23480542]
[62]
Shou, W.Z. Current status and future directions of high-throughput ADME screening in drug discovery. J. Pharm. Anal., 2020, 10(3), 201-208.
[http://dx.doi.org/10.1016/j.jpha.2020.05.004] [PMID: 32612866]
[63]
Mayr, L.M.; Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol., 2009, 9(5), 580-588.
[http://dx.doi.org/10.1016/j.coph.2009.08.004] [PMID: 19775937]
[64]
Vincendeau, P.; Gobert, A.P.; Daulouède, S.; Moynet, D.; Mossalayi, M.D. Arginases in parasitic diseases. Trends Parasitol., 2003, 19(1), 9-12.
[http://dx.doi.org/10.1016/S1471-4922(02)00010-7] [PMID: 12488215]
[65]
McKerrow, J.H. Update on drug development targeting parasite cysteine proteases. PLoS Negl. Trop. Dis., 2018, 12(8), e0005850.
[http://dx.doi.org/10.1371/journal.pntd.0005850] [PMID: 30138309]
[66]
Siqueira-Neto, J.L.; Debnath, A.; McCall, L.I.; Bernatchez, J.A.; Ndao, M.; Reed, S.L.; Rosenthal, P.J. Cysteine proteases in protozoan parasites. PLoS Negl. Trop. Dis., 2018, 12(8), e0006512.
[http://dx.doi.org/10.1371/journal.pntd.0006512] [PMID: 30138453]
[67]
Canduri, F.; Perez, P.C.; Caceres, R.A.; de Azevedo, W.F., Jr Protein kinases as targets for antiparasitic chemotherapy drugs. Curr. Drug Targets, 2007, 8(3), 389-398.
[http://dx.doi.org/10.2174/138945007780058979] [PMID: 17348832]
[68]
Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4(9), 727-740.
[http://dx.doi.org/10.1038/nrd1824] [PMID: 16138106]
[69]
Loureiro, I.; Faria, J.; Santarem, N.; Smith, T.K.; Tavares, J.; Cordeiro-da-Silva, A. Potential drug targets in the pentose phosphate pathway of trypanosomatids. Curr. Med. Chem., 2018, 25(39), 5239-5265.
[http://dx.doi.org/10.2174/0929867325666171206094752] [PMID: 29210635]
[70]
D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Are carbonic anhydrases suitable targets to fight protozoan parasitic diseases? Curr. Med. Chem., 2018, 25(39), 5266-5278.
[http://dx.doi.org/10.2174/0929867325666180326160121] [PMID: 29589529]
[71]
Zhang, C.H.; Zhu, H.M. Advances in researches on β-carbonic anhydrases as anti-parasitic drug targets. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi, 2016, 28(1), 99-102.
[http://dx.doi.org/10.16250/j.32.1374.2015224] [PMID: 27356420]
[72]
Wang, Z.; Schaffer, N.E.; Kliewer, S.A.; Mangelsdorf, D.J. Nuclear receptors: Emerging drug targets for parasitic diseases. J. Clin. Invest., 2017, 127(4), 1165-1171.
[http://dx.doi.org/10.1172/JCI88890] [PMID: 28165341]
[73]
Zheng, W. Sirtuins as emerging anti-parasitic targets. Eur. J. Med. Chem., 2013, 59, 132-140.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.014] [PMID: 23220641]
[74]
de Moraes, J.; Geary, T.G. FDA-approved antiparasitic drugs in the 21st century: A success for helminthiasis? Trends Parasitol., 2020, 36(7), 573-575.
[http://dx.doi.org/10.1016/j.pt.2020.04.005] [PMID: 32387059]
[75]
New drugs approval report 2020, U.S. Food and drug administration. 2020. Available from: https://www.fda.gov/media/144982/download
[76]
Navarro, M.; Visbal, G. Metal-Based Antiparasitic Therapeutics.Trace Metals and Infectious Diseases; MIT Press: Cambridge, MA, 2016, pp. 161-172.
[http://dx.doi.org/10.7551/mitpress/9780262029193.003.0014]
[77]
Folliero, V.; Zannella, C.; Chianese, A.; Stelitano, D.; Ambrosino, A.; De Filippis, A.; Galdiero, M.; Franci, G.; Galdiero, M. Application of dendrimers for treating parasitic diseases. Pharmaceutics, 2021, 13(3), 1-22.
[http://dx.doi.org/10.3390/pharmaceutics13030343] [PMID: 33808016]
[78]
Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res., 2003, 90(0)(Suppl. 2), S55-S62.
[http://dx.doi.org/10.1007/s00436-002-0768-3] [PMID: 12937967]
[79]
Nweze, J.A.; Mbaoji, F.N.; Li, Y.M.; Yang, L.Y.; Huang, S.S.; Chigor, V.N.; Eze, E.A.; Pan, L.X.; Zhang, T.; Yang, D.F. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: A review of recent articles. Infect. Dis. Poverty, 2021, 10(1), 9.
[http://dx.doi.org/10.1186/s40249-021-00796-6] [PMID: 33482912]
[80]
Zumla, A.; Rao, M.; Wallis, R.S.; Kaufmann, S.H.E.; Rustomjee, R.; Mwaba, P.; Vilaplana, C.; Yeboah-Manu, D.; Chakaya, J.; Ippolito, G.; Azhar, E.; Hoelscher, M.; Maeurer, M. Host-directed therapies network consortium. Host-directed therapies for infectious diseases: Current status, recent progress, and future prospects. Lancet Infect. Dis., 2016, 16(4), e47-e63.
[http://dx.doi.org/10.1016/S1473-3099(16)00078-5] [PMID: 27036359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy