Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dihydrochalcones as Antitumor Agents

Author(s): Fabiola De Luca, Carla Di Chio, Maria Zappalà and Roberta Ettari*

Volume 29, Issue 30, 2022

Published on: 08 June, 2022

Page: [5042 - 5061] Pages: 20

DOI: 10.2174/0929867329666220415113219

Price: $65

Abstract

Dihydrochalcones are a class of secondary metabolites, possessing several biological properties such as antitumor, antioxidant, antibacterial, antidiabetic, estrogenic, anti-inflammatory, antithrombotic, antiviral, neuroprotective, and immunomodulatory properties; therefore, they are currently considered promising candidates in the drug discovery process. This review intends to debate their pharmacological actions with particular attention to their antitumor activity against a panel of cancer cell lines and to the description of the inhibition mechanisms of cell proliferation such as the regulation of angiogenesis, apoptosis, etc.

Keywords: Chalcones, dihydrochalcones, antitumor agents, cell lines, antioxidant, antibacterial.

[1]
Ibdah, M.; Martens, S.; Gang, D.R. Biosynthetic pathway and metabolic engineering of plant dihydrochalcones. J. Agric. Food Chem., 2018, 66(10), 2273-2280.
[http://dx.doi.org/10.1021/acs.jafc.7b04445] [PMID: 29171271]
[2]
Adamu, G.N.; Gosch, C.; Molitor, C.; Kampatsikas, I.; Hutabarat, O.; Miosic, S.; Rompel, A.; Halbwirth, H.; Spornberger, A.; Stich, K. Investigations on the formation of dihydrochalcones in apple (Malus sp.) leaves. Acta Hortic., 2019, (1242), 415-420.
[http://dx.doi.org/10.17660/ActaHortic.2019.1242.59]
[3]
Stompor, M.; Broda, D.; Bajek-Bil, A. Dihydrochalcones: Methods of acquisition and pharmacological properties - A first systematic review. Molecules, 2019, 24(24), 4468.
[http://dx.doi.org/10.3390/molecules24244468] [PMID: 31817526]
[4]
Zhang, T.T.; Yang, L.; Jiang, J.G. Effects of thonningianin A in natural foods on apoptosis and cell cycle arrest of HepG-2 human hepa-tocellular carcinoma cells. Food Funct., 2015, 6(8), 2588-2597.
[http://dx.doi.org/10.1039/C5FO00388A] [PMID: 26119846]
[5]
Choi, B.Y. Biochemical basis of anti-cancer-effects of phloretin - a natural dihydrochalcone. Molecules, 2019, 24(2), 278.
[http://dx.doi.org/10.3390/molecules24020278] [PMID: 30642127]
[6]
Ding, B.; Ding, Q.; Zhang, S.; Jin, Z.; Wang, Z.; Li, S.; Dou, X. Characterization of the anti-Staphylococcus aureus fraction from Penthorum chinense Pursh stems. BMC Complement. Altern. Med., 2019, 19(1), 219.
[http://dx.doi.org/10.1186/s12906-019-2632-3] [PMID: 31419969]
[7]
Huang, D.; Jiang, Y.; Chen, W.; Yao, F.; Huang, G.; Sun, L. Evaluation of hypoglycemic effects of polyphenols and extracts from Penthorum chinense. J. Ethnopharmacol., 2015, 163, 256-263.
[http://dx.doi.org/10.1016/j.jep.2015.01.014] [PMID: 25620384]
[8]
Alsanea, S.; Gao, M.; Liu, D. Phloretin prevents high-fat diet-induced obesity and improves metabolic homeostasis. AAPS J., 2017, 19(3), 797-805.
[http://dx.doi.org/10.1208/s12248-017-0053-0] [PMID: 28197827]
[9]
Shimamura, N.; Miyase, T.; Umehara, K.; Warashina, T.; Fujii, S. Phytoestrogens from Aspalathus linearis. Biol. Pharm. Bull., 2006, 29(6), 1271-1274.
[http://dx.doi.org/10.1248/bpb.29.1271] [PMID: 16755032]
[10]
Kang, B.C.; Kim, M.J.; Lee, S.; Choi, Y.A.; Park, P.H.; Shin, T.Y.; Kwon, T.K.; Khang, D.; Kim, S.H. Nothofagin suppresses mast cell-mediated allergic inflammation. Chem. Biol. Interact., 2019, 298, 1-7.
[http://dx.doi.org/10.1016/j.cbi.2018.10.025] [PMID: 30392763]
[11]
Ku, S.K.; Lee, W.; Kang, M.; Bae, J.S. Antithrombotic activities of aspalathin and nothofagin via inhibiting platelet aggregation and FI-Ia/FXa. Arch. Pharm. Res., 2015, 38(6), 1080-1089.
[http://dx.doi.org/10.1007/s12272-014-0501-7] [PMID: 25325928]
[12]
Mohammed, M.M.D.; Hamdy, A.H.A.; El-Fiky, N.M.; Mettwally, W.S.A.; El-Beih, A.A.; Kobayashi, N. Anti-influenza A virus activi-ty of a new dihydrochalcone diglycoside isolated from the Egyptian seagrass Thalassodendron ciliatum (Forsk.) den Hartog. Nat. Prod. Res., 2014, 28(6), 377-382.
[http://dx.doi.org/10.1080/14786419.2013.869694] [PMID: 24443884]
[13]
Phrutivorapongkul, A.; Lipipun, V.; Ruangrungsi, N.; Kirtikara, K.; Nishikawa, K.; Maruyama, S.; Watanabe, T.; Ishikawa, T. Studies on the chemical constituents of stem bark of Millettia leucantha: Isolation of new chalcones with cytotoxic, anti-herpes simplex virus and anti-inflammatory activities. Chem. Pharm. Bull. (Tokyo), 2003, 51(2), 187-190.
[http://dx.doi.org/10.1248/cpb.51.187] [PMID: 12576653]
[14]
Ghumatkar, P.J.; Patil, S.P.; Jain, P.D.; Tambe, R.M.; Sathaye, S. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice. Pharmacol. Biochem. Behav., 2015, 135, 182-191.
[http://dx.doi.org/10.1016/j.pbb.2015.06.005] [PMID: 26071678]
[15]
Barreca, D.; Currò, M.; Bellocco, E.; Ficarra, S.; Laganà, G.; Tellone, E.; Laura Giunta, M.; Visalli, G.; Caccamo, D.; Galtieri, A.; Ien-tile, R. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells. Biofactors, 2017, 43(4), 549-557.
[http://dx.doi.org/10.1002/biof.1358] [PMID: 28401997]
[16]
Lin, C.C.; Chu, C.L.; Ng, C.S.; Lin, C.Y.; Chen, D.Y.; Pan, I.H.; Huang, K.J. Immunomodulation of phloretin by impairing dendritic cell activation and function. Food Funct., 2014, 5(5), 997-1006.
[http://dx.doi.org/10.1039/c3fo60548e] [PMID: 24651121]
[17]
Baldisserotto, A.; Malisardi, G.; Scalambra, E.; Andreotti, E.; Romagnoli, C.; Vicentini, C.B.; Manfredini, S.; Vertuani, S. Synthesis, antioxidant and antimicrobial activity of a new phloridzin derivative for dermo-cosmetic applications. Molecules, 2012, 17(11), 13275-13289.
[http://dx.doi.org/10.3390/molecules171113275] [PMID: 23135632]
[18]
Wang, J.; Chung, M.H.; Xue, B.; Ma, H.; Ma, C.; Hattori, M. Estrogenic and antiestrogenic activities of phloridzin. Biol. Pharm. Bull., 2010, 33(4), 592-597.
[http://dx.doi.org/10.1248/bpb.33.592] [PMID: 20410591]
[19]
Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology, 2010, 115(2), 155-162.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[20]
Doroshow, J.H.; Davies, K.J.A. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J. Biol. Chem., 1986, 261(7), 3068-3074.
[http://dx.doi.org/10.1016/S0021-9258(17)35747-2] [PMID: 3005279]
[21]
Aryal, B.; Jeong, J.; Rao, V.A. Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote car-diotoxicity. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 2011-2016.
[http://dx.doi.org/10.1073/pnas.1321783111] [PMID: 24449919]
[22]
Singal, P.K.; Kirshenbaum, L.A. A relative deficit in antioxidant reserve may contribute in cardiac failure. Can. J. Cardiol., 1990, 6(2), 47-49.
[PMID: 2138050]
[23]
Ojha, S.; Al Taee, H.; Goyal, S.; Mahajan, U.B.; Patil, C.R.; Arya, D.S.; Rajesh, M. Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxid. Med. Cell. Longev., 2016, 20165724973
[http://dx.doi.org/10.1155/2016/5724973] [PMID: 27313831]
[24]
Smit, S.E.; Johnson, R.; Van Vuuren, M.A.; Huisamen, B. Myocardial glucose clearance by aspalathin treatment in young, mature, and obese insulin-resistant rats. Planta Med., 2018, 84(2), 75-82.
[http://dx.doi.org/10.1055/s-0043-117415] [PMID: 28772334]
[25]
Snijman, P.W.; Joubert, E.; Ferreira, D.; Li, X.C.; Ding, Y.; Green, I.R.; Gelderblom, W.C.A. Antioxidant activity of the dihydrochal-cones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallo-catechin gallate, and trolox. J. Agric. Food Chem., 2009, 57(15), 6678-6684.
[http://dx.doi.org/10.1021/jf901417k] [PMID: 19722573]
[26]
Shabalala, S.C.; Dludla, P.V.; Muller, C.J.F.; Nxele, X.; Kappo, A.P.; Louw, J.; Johnson, R. Aspalathin ameliorates doxorubicin-induced oxidative stress in H9c2 cardiomyoblasts. Toxicol. In Vitro, 2019, 55, 134-139.
[http://dx.doi.org/10.1016/j.tiv.2018.12.012] [PMID: 30576852]
[27]
Sciamarelli, A.; Tozzi, A.M.G.A.; Zornia, J.F. Gmel. (Leguminosae - papil-ionoideae - aeschynomeneae) no estado de São Paulo. Acta Bot. Bras., 1996, 10(2), 237-266.
[http://dx.doi.org/10.1590/S0102-33061996000200004]
[28]
Rojas, A.; Bah, M.; Rojas, J.I.; Serrano, V.; Pacheco, S. Spasmolytic activity of some plants used by the otomi indians of quéretaro (México) for the treatment of gastrointestinal disorders. Phytomedicine, 1999, 6(5), 367-371.
[http://dx.doi.org/10.1016/S0944-7113(99)80061-0] [PMID: 11962546]
[29]
Brahmachari, G.; Ghosh, S.; Mondal, S.; Jash, S.K.; Mandal, L.C.; Mondal, A. Cyclic voltammetric studies with plant extracts of some traditionally used Indian medicinal plants to evaluate their antioxidant potential. BCAIJ, 2009, 3(1), 32-35.
[30]
Arunkumar, R.; Nair, S.A.; Subramoniam, A. Induction of cell-specific apoptosis and protection of mice from cancer challenge by a steroid positive compound from Zornia diphylla (L.). Pers. J. Pharmacol. Pharmacother., 2012, 3(3), 233-241.
[http://dx.doi.org/10.4103/0976-500X.99420] [PMID: 23129958]
[31]
Belcavello, L.; Cunha, M.R.H.; Andrade, M.A.; Batitucci, M.C.P. Citotoxicidade e danos ao DNA induzidos pelo extrato de Zornia diphylla, uma planta medicinal. Nat. On Line, 2012, 10(3), 140-145.
[32]
Greetha, K.M.; Shilpa, S.; Murugan, V. Anticonvulsant activity of the methanolic extract of whole plant of Zornia diphylla (Linn). Pers. J. Pharm. Res., 2012, 5(7), 3670-3672.
[33]
Arunkumar, R.; Nair, S.A.; Rameshkumar, K.B.; Subramoniam, A. The essential oil constituents of Zornia diphylla (L.) Pers, and anti-inflammatory and antimicrobial activities of the oil. Rec. Nat. Prod., 2014, 8(4), 385-393.
[34]
Nascimento, Y.M.; Abreu, L.S.; Lima, R.M.; Silva, A.D.S.; Costa, V.C.O.; Melo, J.I.M.; Scotti, M.T.; Sobral, M.V.; Araujo, S.S.; Filho, M.A.G.; Silva, M.S.; Tavares, J.F. Zornioside, a dihydrochalcone C-glycoside, and other compounds from Zornia brasiliensis. Rev. Bras. Farmacogn., 2018, 28(2), 192-197.
[http://dx.doi.org/10.1016/j.bjp.2018.02.003]
[35]
Asuthkar, S.; Rao, J.S.; Gondi, C.S. Drugs in preclinical and early-stage clinical development for pancreatic cancer. Expert Opin. Investig. Drugs, 2012, 21(2), 143-152.
[http://dx.doi.org/10.1517/13543784.2012.651124] [PMID: 22217246]
[36]
Arumugam, T.; Ramachandran, V.; Fournier, K.F.; Wang, H.; Marquis, L.; Abbruzzese, J.L.; Gallick, G.E.; Logsdon, C.D.; McConkey, D.J.; Choi, W. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res., 2009, 69(14), 5820-5828.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2819] [PMID: 19584296]
[37]
Sakamoto, H.; Kitano, M.; Suetomi, Y.; Maekawa, K.; Takeyama, Y.; Kudo, M. Utility of contrast-enhanced endoscopic ultrasonogra-phy for diagnosis of small pancreatic carcinomas. Ultrasound Med. Biol., 2008, 34(4), 525-532.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.018] [PMID: 18045768]
[38]
Awale, S.; Lu, J.; Kalauni, S.K.; Kurashima, Y.; Tezuka, Y.; Kadota, S.; Esumi, H. Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res., 2006, 66(3), 1751-1757.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3143] [PMID: 16452235]
[39]
Nguyen, M.T.; Nguyen, N.T.; Nguyen, K.D.; Dau, H.T.; Nguyen, H.X.; Dang, P.H.; Le, T.M.; Nguyen Phan, T.H.; Tran, A.H.; Ngu-yen, B.D.; Ueda, J.Y.; Awale, S. Geranyl dihydrochalcones from Artocarpus altilis and their antiausteric activity. Planta Med., 2014, 80(2-3), 193-200.
[http://dx.doi.org/10.1055/s-0033-1360181] [PMID: 24431013]
[40]
Awale, S.; Nakashima, E.M.N.; Kalauni, S.K.; Tezuka, Y.; Kurashima, Y.; Lu, J.; Esumi, H.; Kadota, S. Angelmarin, a novel anti-cancer agent able to eliminate the tolerance of cancer cells to nutrient starvation. Bioorg. Med. Chem. Lett., 2006, 16(3), 581-583.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.046] [PMID: 16288865]
[41]
Awale, S.; Li, F.; Onozuka, H.; Esumi, H.; Tezuka, Y.; Kadota, S. Constituents of Brazilian red propolis and their preferential cytotoxic activity against human pancreatic PANC-1 cancer cell line in nutrient-deprived condition. Bioorg. Med. Chem., 2008, 16(1), 181-189.
[http://dx.doi.org/10.1016/j.bmc.2007.10.004] [PMID: 17950610]
[42]
Awale, S.; Linn, T.Z.; Li, F.; Tezuka, Y.; Myint, A.; Tomida, A.; Yamori, T.; Esumi, H.; Kadota, S. Identification of chrysoplenetin from Vitex negundo as a potential cytotoxic agent against PANC-1 and a panel of 39 human cancer cell lines (JFCR-39). Phytother. Res., 2011, 25(12), 1770-1775.
[http://dx.doi.org/10.1002/ptr.3441] [PMID: 21469236]
[43]
Awale, S.; Ueda, J.Y.; Athikomkulchai, S.; Abdelhamed, S.; Yokoyama, S.; Saiki, I.; Miyatake, R. Antiausterity agents from Uvaria dac and their preferential cytotoxic activity against human pancreatic cancer cell lines in a nutrient-deprived condition. J. Nat. Prod., 2012, 75(6), 1177-1183.
[http://dx.doi.org/10.1021/np300295h] [PMID: 22676269]
[44]
Awale, S.; Ueda, J.Y.; Athikomkulchai, S.; Dibwe, D.F.; Abdelhamed, S.; Yokoyama, S.; Saiki, I.; Miyatake, R. Uvaridacols E-H, highly oxygenated antiausterity agents from Uvaria dac. J. Nat. Prod., 2012, 75(11), 1999-2002.
[http://dx.doi.org/10.1021/np300596c] [PMID: 23092429]
[45]
Li, F.; Awale, S.; Zhang, H.; Tezuka, Y.; Esumi, H.; Kadota, S. Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line. J. Nat. Prod., 2009, 72(7), 1283-1287.
[http://dx.doi.org/10.1021/np9002433] [PMID: 19572611]
[46]
Win, N.N.; Awale, S.; Esumi, H.; Tezuka, Y.; Kadota, S. Bioactive secondary metabolites from Boesenbergia pandurata of Myanmar and their preferential cytotoxicity against human pancreatic cancer PANC-1 cell line in nutrient-deprived medium. J. Nat. Prod., 2007, 70(10), 1582-1587.
[http://dx.doi.org/10.1021/np070286m] [PMID: 17896818]
[47]
Win, N.N.; Awale, S.; Esumi, H.; Tezuka, Y.; Kadota, S. Panduratins D-I, novel secondary metabolites from rhizomes of Boesenbergia pandurata. Chem. Pharm. Bull. (Tokyo), 2008, 56(4), 491-496.
[http://dx.doi.org/10.1248/cpb.56.491] [PMID: 18379096]
[48]
Win, N.N.; Awale, S.; Esumi, H.; Tezuka, Y.; Kadota, S. Novel anticancer agents, kayeassamins A and B from the flower of Kayea assamica of Myanmar. Bioorg. Med. Chem. Lett., 2008, 18(16), 4688-4691.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.001] [PMID: 18640837]
[49]
Win, N.N.; Awale, S.; Esumi, H.; Tezuka, Y.; Kadota, S. Novel anticancer agents, kayeassamins C-I from the flower of Kayea assamica of Myanmar. Bioorg. Med. Chem., 2008, 16(18), 8653-8660.
[http://dx.doi.org/10.1016/j.bmc.2008.07.091] [PMID: 18725180]
[50]
Heidenreich, A.; Aus, G.; Bolla, M.; Joniau, S.; Matveev, V.B.; Schmid, H.P.; Zattoni, F. EAU guidelines on prostate cancer. Eur. Urol., 2008, 53(1), 68-80.
[http://dx.doi.org/10.1016/j.eururo.2007.09.002] [PMID: 17920184]
[51]
Zhou, J.; Geng, G.; Batist, G.; Wu, J.H. Syntheses and potential anti-prostate cancer activities of ionone-based chalcones. Bioorg. Med. Chem. Lett., 2009, 19(4), 1183-1186.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.089] [PMID: 19138519]
[52]
Lee, Y.M.; Lim, D.Y.; Choi, H.J.; Jung, J.I.; Chung, W.Y.; Park, J.H. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J. Med. Food, 2009, 12(1), 8-14.
[http://dx.doi.org/10.1089/jmf.2008.0039] [PMID: 19298190]
[53]
Fu, Y.; Hsieh, T.C.; Guo, J.; Kunicki, J.; Lee, M.Y.; Darzynkiewicz, Z.; Wu, J.M. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun., 2004, 322(1), 263-270.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.094] [PMID: 15313200]
[54]
Delmulle, L.; Bellahcène, A.; Dhooge, W.; Comhaire, F.; Roelens, F.; Huvaere, K.; Heyerick, A.; Castronovo, V.; De Keukeleire, D. Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine, 2006, 13(9-10), 732-734.
[http://dx.doi.org/10.1016/j.phymed.2006.01.001] [PMID: 16678392]
[55]
Jing, H.; Zhou, X.; Dong, X.; Cao, J.; Zhu, H.; Lou, J.; Hu, Y.; He, Q.; Yang, B. Abrogation of Akt signaling by Isobavachalcone con-tributes to its anti-proliferative effects towards human cancer cells. Cancer Lett., 2010, 294(2), 167-177.
[http://dx.doi.org/10.1016/j.canlet.2010.01.035] [PMID: 20167420]
[56]
Almasan, A.; Ashkenazi, A. Apo2L/TRAIL: Apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev., 2003, 14(3-4), 337-348.
[http://dx.doi.org/10.1016/S1359-6101(03)00029-7] [PMID: 12787570]
[57]
Wu, G.S. TRAIL as a target in anti-cancer therapy. Cancer Lett., 2009, 285(1), 1-5.
[http://dx.doi.org/10.1016/j.canlet.2009.02.029] [PMID: 19299078]
[58]
Zhang, L.; Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther., 2005, 12(3), 228-237.
[http://dx.doi.org/10.1038/sj.cgt.7700792] [PMID: 15550937]
[59]
Szliszka, E.; Czuba, Z.P.; Mazur, B.; Paradysz, A.; Król, W. Chalcones and dihydrochalcones augment TRAIL-mediated apoptosis in prostate cancer cells. Molecules, 2010, 15(8), 5336-5353.
[http://dx.doi.org/10.3390/molecules15085336] [PMID: 20714300]
[60]
Chen, Y.C.; Kung, F.L.; Tsai, I.L.; Chou, T.H.; Chen, I.S.; Guh, J.H. Cryptocaryone, a natural dihydrochalcone, induces apoptosis in human androgen independent prostate cancer cells by death receptor clustering in lipid raft and nonraft compartments. J. Urol., 2010, 183(6), 2409-2418.
[http://dx.doi.org/10.1016/j.juro.2010.01.065] [PMID: 20403609]
[61]
Shankar, S.; Chen, Q.; Siddiqui, I.; Sarva, K.; Srivastava, R.K. Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3,4;5-trihydroxystilbene): Molecular mechanisms and therapeutic potential. J. Mol. Signal., 2007, 2, 27-36.
[http://dx.doi.org/10.1186/1750-2187-2-7]
[62]
Szliszka, E.; Czuba, Z.P.; Mazur, B.; Sedek, L.; Paradysz, A.; Krol, W. Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int. J. Mol. Sci., 2009, 11(1), 1-13.
[http://dx.doi.org/10.3390/ijms11010001] [PMID: 20161998]
[63]
Tang, Y.; Li, X.; Liu, Z.; Simoneau, A.R.; Xie, J.; Zi, X. Flavokawain B, a kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int. J. Cancer, 2010, 127(8), 1758-1768.
[http://dx.doi.org/10.1002/ijc.25210] [PMID: 20112340]
[64]
Kim, N. Butein sensitizes human leukemia cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Arch. Pharm. Res., 2008, 31(9), 1179-1186.
[http://dx.doi.org/10.1007/s12272-001-1286-2] [PMID: 18806962]
[65]
Rachakhom, W.; Banjerdpongchai, R. Effect of calomelanone, a dihydrochalcone analogue, on human cancer apoptosis/regulated cell death in an in vitro model. BioMed Res. Int., 2020, 20204926821
[http://dx.doi.org/10.1155/2020/4926821] [PMID: 33415148]
[66]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[67]
Pietrocola, F.; Bravo-San Pedro, J.M.; Galluzzi, L.; Kroemer, G. Autophagy in natural and therapy-driven anticancer immunosurveil-lance. Autophagy, 2017, 13(12), 2163-2170.
[http://dx.doi.org/10.1080/15548627.2017.1310356] [PMID: 28598229]
[68]
Wan, B.; Zhu, J.; Chang, Q.; Zhou, H.; Shi, Z.; Min, L.; Cai, Y.; Guan, H. Alpha, 2;-dihydroxy-4,4;-dimethoxy-dihydrochalcone inhibits cell proliferation, invasion, and migration in gastric cancer in part via autophagy. Biomed. Pharmacother., 2018, 98, 709-718.
[http://dx.doi.org/10.1016/j.biopha.2017.12.081] [PMID: 29306208]
[69]
Li, Y.Y.; Feun, L.G.; Thongkum, A.; Tu, C.H.; Chen, S.M.; Wangpaichitr, M.; Wu, C.; Kuo, M.T.; Savaraj, N. Autophagic mechanism in anti-cancer immunity: Its pros and cons for cancer therapy. Int. J. Mol. Sci., 2017, 18(6), 1297.
[http://dx.doi.org/10.3390/ijms18061297] [PMID: 28629173]
[70]
Haidara, M.; Bourdy, G.; De Tommasi, N.; Braca, A.; Traore, K.; Giani, S.; Sanogo, R. Medicinal plants used in Mali for the treatment of malaria and liver diseases. Nat. Prod. Commun., 2016, 11(3), 339-352.
[http://dx.doi.org/10.1177/1934578X1601100309] [PMID: 27169180]
[71]
Lin, L.G.; Ung, C.O.; Feng, Z.L.; Huang, L.; Hu, H. Naturally occurring diterpenoid dimers: Source, biosynthesis, chemistry and bioac-tivities. Planta Med., 2016, 82(15), 1309-1328.
[http://dx.doi.org/10.1055/s-0042-114573] [PMID: 27542177]
[72]
Cazal, C.M.; Choosang, K.; Severino, V.G.; Soares, M.S.; Sarria, A.L.; Fernandes, J.B.; Silva, M.F.; Vieira, P.C.; Pakkong, P.; Al-meida, G.M.; Vasconcelos, M.H.; Nascimento, M.S.; Pinto, M.M. Evaluation of effect of triterpenes and limonoids on cell growth, cell cycle and apoptosis in human tumor cell line. Anticancer. Agents Med. Chem., 2010, 10(10), 769-776.
[http://dx.doi.org/10.2174/187152010794728620] [PMID: 21269253]
[73]
Zheng, Z.; Qiao, Z.; Gong, R.; Wang, Y.; Zhang, Y.; Ma, Y.; Zhang, L.; Lu, Y.; Jiang, B.; Li, G.; Dong, C.; Chen, W. Uvangoletin induces mitochondria-mediated apoptosis in HL-60 cells in vitro and in vivo without adverse reactions of myelosuppression, leucopenia and gastrointestinal tract disturbances. Oncol. Rep., 2016, 35(2), 1213-1221.
[http://dx.doi.org/10.3892/or.2015.4443] [PMID: 26717974]
[74]
Shen, J.; Zhu, X.; Wu, Z.; Shi, Y.; Wen, T. Uvangoletin, extracted from Sarcandra glabra, exerts anticancer activity by inducing au-tophagy and apoptosis and inhibiting invasion and migration on hepatocellular carcinoma cells. Phytomedicine, 2022, 94153793
[http://dx.doi.org/10.1016/j.phymed.2021.153793] [PMID: 34736000]
[75]
Ehrenkranz, J.R.L.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A review. Diabetes Metab. Res. Rev., 2005, 21(1), 31-38.
[http://dx.doi.org/10.1002/dmrr.532] [PMID: 15624123]
[76]
Biegeleisen, H. Phlorizin analogues and their use. U.S. Patent 3,523,937 1970.
[77]
Tian, L.; Cao, J.; Zhao, T.; Liu, Y.; Khan, A.; Cheng, G. The bioavailability, extraction, biosynthesis and distribution of natural dihydro-chalcone. Phloridzin. Int. J. Mol. Sci., 2021, 22(2), 962.
[http://dx.doi.org/10.3390/ijms22020962] [PMID: 33478062]
[78]
You, J.O.; Guo, P.; Auguste, D.T. A drug-delivery vehicle combining the targeting and thermal ablation of HER2+ breast-cancer cells with triggered drug release. Angew. Chem. Int. Ed. Engl., 2013, 52(15), 4141-4146.
[http://dx.doi.org/10.1002/anie.201209804] [PMID: 23494862]
[79]
Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnology, 2012, 10(1), 19.
[http://dx.doi.org/10.1186/1477-3155-10-19] [PMID: 22559747]
[80]
Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomedicine, 2012, 7, 2767-2781.
[PMID: 22745541]
[81]
Shah, M.; Badwaik, V.D.; Dakshinamurthy, R. Biological applications of gold nanoparticles. J. Nanosci. Nanotechnol., 2014, 14(1), 344-362.
[http://dx.doi.org/10.1166/jnn.2014.8900] [PMID: 24730267]
[82]
Payne, J.N.; Badwaik, V.D.; Waghwani, H.K.; Moolani, H.V.; Tockstein, S.; Thompson, D.H.; Dakshinamurthy, R. Development of dihydrochalcone-functionalized gold nanoparticles for augmented antineoplastic activity. Int. J. Nanomedicine, 2018, 13, 1917-1926.
[http://dx.doi.org/10.2147/IJN.S143506] [PMID: 29636609]
[83]
Malandrino, A.; Kamm, R.D.; Moeendarbary, E. In vitro modeling of mechanics in cancer metastasis. ACS Biomater. Sci. Eng., 2018, 4(2), 294-301.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00041] [PMID: 29457129]
[84]
Roomi, M.W.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in human female cancer cell lines. Oncol. Rep., 2012, 28(3), 768-776.
[http://dx.doi.org/10.3892/or.2012.1879] [PMID: 22736175]
[85]
Davidson, B.; Goldberg, I.; Liokumovich, P.; Kopolovic, J.; Gotlieb, W.H.; Lerner-Geva, L.; Reder, I.; Ben-Baruch, G.; Reich, R. Ex-pression of metalloproteinases and their inhibitors in adenocarcinoma of the uterine cervix. Int. J. Gynecol. Pathol., 1998, 17(4), 295-301.
[http://dx.doi.org/10.1097/00004347-199810000-00002] [PMID: 9785129]
[86]
Libra, M.; Scalisi, A.; Vella, N.; Clementi, S.; Sorio, R.; Stivala, F.; Spandidos, D.A.; Mazzarino, C. Uterine cervical carcinoma: Role of matrix metalloproteinases. (review) Int. J. Oncol., 2009, 34(4), 897-903.
[http://dx.doi.org/10.3892/ijo_00000215] [PMID: 19287946]
[87]
Xu, J.; Li, D.; Ke, Z.; Liu, R.; Maubach, G.; Zhuo, L. Cathepsin S is aberrantly overexpressed in human hepatocellular carcinoma. Mol. Med. Rep., 2009, 2(5), 713-718.
[PMID: 21475890]
[88]
Hsin, M.C.; Hsieh, Y.H.; Wang, P.H.; Ko, J.L.; Hsin, I.L.; Yang, S.F. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells. Cell Death Dis., 2017, 8(10)e3089
[http://dx.doi.org/10.1038/cddis.2017.459] [PMID: 28981104]
[89]
Vergara, D.; Simeone, P.; Franck, J.; Trerotola, M.; Giudetti, A.; Capobianco, L.; Tinelli, A.; Bellomo, C.; Fournier, I.; Gaballo, A.; Alberti, S.; Salzet, M.; Maffia, M. Translating epithelial mesenchymal transition markers into the clinic: Novel insights from proteomics. EuPA Open Proteom., 2016, 10, 31-41.
[http://dx.doi.org/10.1016/j.euprot.2016.01.003] [PMID: 29900098]
[90]
Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol., 2002, 29(6)(Suppl. 16), 15-18.
[http://dx.doi.org/10.1016/S0093-7754(02)70065-1] [PMID: 12516034]
[91]
Yang, Q.; Han, L.; Li, J.; Xu, H.; Liu, X.; Wang, X.; Pan, C.; Lei, C.; Chen, H.; Lan, X. Activation of Nrf2 by phloretin attenuates pal-mitic acid-induced endothelial cell oxidative stress via AMPK-dependent signaling. J. Agric. Food Chem., 2019, 67(1), 120-131.
[http://dx.doi.org/10.1021/acs.jafc.8b05025] [PMID: 30525573]
[92]
Wang, G.; Gao, Y.; Wang, H.; Wang, J.; Niu, X. Phloretin reduces cell injury and inflammation mediated by Staphylococcus aureus via targeting sortase B and the molecular mechanism. Appl. Microbiol. Biotechnol., 2018, 102(24), 10665-10674.
[http://dx.doi.org/10.1007/s00253-018-9376-8] [PMID: 30310962]
[93]
Jiao, A.; Yang, Z.; Fu, X.; Hua, X. Phloretin modulates human Th17/Treg cell differentiation in vitro via AMPK signaling. BioMed Res. Int., 2020, 20206267924
[http://dx.doi.org/10.1155/2020/6267924] [PMID: 32802861]
[94]
Nam, S.; Lee, S.Y.; Cho, H.J. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma. J. Colloid Interface Sci., 2017, 508, 112-120.
[http://dx.doi.org/10.1016/j.jcis.2017.08.030] [PMID: 28822860]
[95]
Xu, M.; Gu, W.; Shen, Z.; Wang, F. Anticancer activity of phloretin against human gastric cancer cell lines involves apoptosis, cell cycle arrest, and inhibition of cell invasion and JNK signalling pathway. Med. Sci. Monit., 2018, 24, 6551-6558.
[http://dx.doi.org/10.12659/MSM.910542] [PMID: 30224626]
[96]
Wu, K.H.; Ho, C.T.; Chen, Z.F.; Chen, L.C.; Whang-Peng, J.; Lin, T.N.; Ho, Y.S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J. Food Drug Anal., 2018, 26(1), 221-231.
[http://dx.doi.org/10.1016/j.jfda.2017.03.009] [PMID: 29389559]
[97]
Duan, H.; Wang, R.; Yan, X.; Liu, H.; Zhang, Y.; Mu, D.; Han, J.; Li, X. Phloretin induces apoptosis of human esophageal cancer via a mitochondria-dependent pathway. Oncol. Lett., 2017, 14(6), 6763-6768.
[http://dx.doi.org/10.3892/ol.2017.7037] [PMID: 29151915]
[98]
Hsiao, Y.H.; Hsieh, M.J.; Yang, S.F.; Chen, S.P.; Tsai, W.C.; Chen, P.N. Phloretin suppresses metastasis by targeting protease and inhibits cancer stemness and angiogenesis in human cervical cancer cells. Phytomedicine, 2019, 62152964
[http://dx.doi.org/10.1016/j.phymed.2019.152964] [PMID: 31153059]
[99]
Rao, J.S. Molecular mechanisms of glioma invasiveness: The role of proteases. Nat. Rev. Cancer, 2003, 3(7), 489-501.
[http://dx.doi.org/10.1038/nrc1121] [PMID: 12835669]
[100]
Cheng, Y.; Zhou, Y.; Jiang, W.; Yang, X.; Zhu, J.; Feng, D.; Wei, Y.; Li, M.; Yao, F.; Hu, W.; Xiao, W.; Ling, B. Significance of E-cadherin, -catenin, and vimentin expression as postoperative prognosis indicators in cervical squamous cell carcinoma. Hum. Pathol., 2012, 43(8), 1213-1220.
[http://dx.doi.org/10.1016/j.humpath.2011.08.025] [PMID: 22221700]
[101]
Han, G.; Lu, S.L.; Li, A.G.; He, W.; Corless, C.L.; Kulesz-Martin, M.; Wang, X.J. Distinct mechanisms of TGF-beta1-mediated epithe-lial-to-mesenchymal transition and metastasis during skin carcinogenesis. J. Clin. Invest., 2005, 115(7), 1714-1723.
[http://dx.doi.org/10.1172/JCI24399] [PMID: 15937546]
[102]
Roberts, A.B.; Wakefield, L.M. The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8621-8623.
[http://dx.doi.org/10.1073/pnas.1633291100] [PMID: 12861075]
[103]
Salter, D.W.; Custead-Jones, S.; Cook, J.S. Quercetin inhibits hexose transport in a human diploid fibroblast. J. Membr. Biol., 1978, 40(1), 67-76.
[http://dx.doi.org/10.1007/BF01909739] [PMID: 650675]
[104]
Gschwendt, M.; Horn, F.; Kittstein, W.; Fürstenberger, G.; Besemfelder, E.; Marks, F. Calcium and phospholipid-dependent protein kinase activity in mouse epidermis cytosol. Stimulation by complete and incomplete tumor promoters and inhibition by various com-pounds. Biochem. Biophys. Res. Commun., 1984, 124(1), 63-68.
[http://dx.doi.org/10.1016/0006-291X(84)90916-1] [PMID: 6238597]
[105]
Devi, M.A.; Das, N.P. In vitro effects of natural plant polyphenols on the proliferation of normal and abnormal human lymphocytes and their secretions of interleukin-2. Cancer Lett., 1993, 69(3), 191-196.
[http://dx.doi.org/10.1016/0304-3835(93)90174-8] [PMID: 8513446]
[106]
Nelson, J.A.S.; Falk, R.E. The efficacy of phloridzin and phloretin on tumor cell growth. Anticancer Res., 1993, 13(6A), 2287-2292.
[PMID: 8297148]
[107]
Wei, Y.Q.; Zhao, X.; Kariya, Y.; Fukata, H.; Teshigawara, K.; Uchida, A. Induction of apoptosis by quercetin: Involvement of heat shock protein. Cancer Res., 1994, 54(18), 4952-4957.
[PMID: 8069862]
[108]
McCabe, M.J., Jr; Orrenius, S. Genistein induces apoptosis in immature human thymocytes by inhibiting topoisomerase-II. Biochem. Biophys. Res. Commun., 1993, 194(2), 944-950.
[http://dx.doi.org/10.1006/bbrc.1993.1912] [PMID: 8393675]
[109]
Kan, O.; Baldwin, S.A.; Whetton, A.D. Apoptosis is regulated by the rate of glucose transport in an interleukin 3 dependent cell line. J. Exp. Med., 1994, 180(3), 917-923.
[http://dx.doi.org/10.1084/jem.180.3.917] [PMID: 8064240]
[110]
Blobel, G.A.; Orkin, S.H. Estrogen-induced apoptosis by inhibition of the erythroid transcription factor GATA-1. Mol. Cell. Biol., 1996, 16(4), 1687-1694.
[http://dx.doi.org/10.1128/MCB.16.4.1687] [PMID: 8657144]
[111]
Kobori, M.; Shinmoto, H.; Tsushida, T.; Shinohara, K. Phloretin-induced apoptosis in B16 melanoma 4A5 cells by inhibition of glucose transmembrane transport. Cancer Lett., 1997, 119(2), 207-212.
[http://dx.doi.org/10.1016/S0304-3835(97)00271-1] [PMID: 9570373]
[112]
Krupka, R.M. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. J. Membr. Biol., 1985, 83(1-2), 71-80.
[http://dx.doi.org/10.1007/BF01868739] [PMID: 4039758]
[113]
Sahagian, B.M. Active glucose uptake by strips of guinea pig intestine; competitive inhibition by phlorhizin and phloretin. Can. J. Biochem., 1965, 43(7), 851-858.
[http://dx.doi.org/10.1139/o65-097] [PMID: 5855659]
[114]
Center, M.M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O.; Bray, F. International variation in prostate cancer inci-dence and mortality rates. Eur. Urol., 2012, 61(6), 1079-1092.
[http://dx.doi.org/10.1016/j.eururo.2012.02.054] [PMID: 22424666]
[115]
Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H.K. Oxidative stress in prostate cancer. Cancer Lett., 2009, 282(2), 125-136.
[http://dx.doi.org/10.1016/j.canlet.2008.12.011] [PMID: 19185987]
[116]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[117]
Korswagen, H.C. Regulation of the Wnt/-catenin pathway by redox signaling. Dev. Cell, 2006, 10(6), 687-688.
[http://dx.doi.org/10.1016/j.devcel.2006.05.007] [PMID: 16740470]
[118]
Yu, X.; Wang, Y.; Jiang, M.; Bierie, B.; Roy-Burman, P.; Shen, M.M.; Taketo, M.M.; Wills, M.; Matusik, R.J. Activation of -Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate, 2009, 69(3), 249-262.
[http://dx.doi.org/10.1002/pros.20877] [PMID: 18991257]
[119]
Miller, J.R. The Wnts. Genome Biol., 2002, 3(1), S3001.
[PMID: 11806834]
[120]
Chesire, D.R.; Ewing, C.M.; Gage, W.R.; Isaacs, W.B. In vitro evidence for complex modes of nuclear -catenin signaling during pros-tate growth and tumorigenesis. Oncogene, 2002, 21(17), 2679-2694.
[http://dx.doi.org/10.1038/sj.onc.1205352] [PMID: 11965541]
[121]
Zhu, S.P.; Liu, G.; Wu, X.T.; Chen, F.X.; Liu, J.Q.; Zhou, Z.H.; Zhang, J.F.; Fei, S.J. The effect of phloretin on human T cells killing colon cancer SW-1116 cells. Int. Immunopharmacol., 2013, 15(1), 6-14.
[http://dx.doi.org/10.1016/j.intimp.2012.11.001] [PMID: 23174508]
[122]
Kim, U.; Kim, C.Y.; Lee, J.M.; Oh, H.; Ryu, B.; Kim, J.; Park, J.H. Phloretin inhibits the human prostate cancer cells through the gener-ation of reactive oxygen species. Pathol. Oncol. Res., 2020, 26(2), 977-984.
[http://dx.doi.org/10.1007/s12253-019-00643-y] [PMID: 30937835]
[123]
Shao, X.; Bai, N.; He, K.; Ho, C.T.; Yang, C.S.; Sang, S. Apple polyphenols, phloretin and phloridzin: New trapping agents of reactive dicarbonyl species. Chem. Res. Toxicol., 2008, 21(10), 2042-2050.
[http://dx.doi.org/10.1021/tx800227v] [PMID: 18774823]
[124]
Huang, W.C.; Wu, S.J.; Tu, R.S.; Lai, Y.R.; Liou, C.J. Phloretin inhibits interleukin-1-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-B signaling in human lung epithelial cells. Food Funct., 2015, 6(6), 1960-1967.
[http://dx.doi.org/10.1039/C5FO00149H] [PMID: 25996641]
[125]
Leu, J.I.J.; Dumont, P.; Hafey, M.; Murphy, M.E.; George, D.L. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol., 2004, 6(5), 443-450.
[http://dx.doi.org/10.1038/ncb1123] [PMID: 15077116]
[126]
Wang, H.; Jiang, Z.; Chen, H.; Wu, X.; Xiang, J.; Peng, J. MicroRNA-495 inhibits gastric cancer cell migration and invasion possibly via targeting high mobility group AT-hook 2 (HMGA2). Med. Sci. Monit., 2017, 23, 640-648.
[http://dx.doi.org/10.12659/MSM.898740] [PMID: 28159956]
[127]
Behzad, S.; Sureda, A.; Barreca, D.; Nabavi, S.F.; Rastrelli, L.; Nabavi, S. Health effects of phloretin: From chemistry to medicine. Phytochem. Rev., 2017, 16(3), 527-533.
[http://dx.doi.org/10.1007/s11101-017-9500-x]
[128]
Chung, M.J.; Sohng, J.K.; Choi, D.J.; Park, Y.I. Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells. Life Sci., 2013, 93(9-11), 401-408.
[http://dx.doi.org/10.1016/j.lfs.2013.07.019] [PMID: 23907072]
[129]
Ma, L.; Wang, R.; Nan, Y.; Li, W.; Wang, Q.; Jin, F. Phloretin exhibits an anticancer effect and enhances the anticancer ability of cispla-tin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int. J. Oncol., 2016, 48(2), 843-853.
[http://dx.doi.org/10.3892/ijo.2015.3304] [PMID: 26692364]
[130]
Liu, Y.; Fan, C.; Pu, L.; Wei, C.; Jin, H.; Teng, Y.; Zhao, M.; Yu, A.C.H.; Jiang, F.; Shu, J.; Li, F.; Peng, Q.; Kong, J.; Pan, B.; Zheng, L.; Huang, Y. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species. J. Neurooncol., 2016, 128(2), 217-223.
[http://dx.doi.org/10.1007/s11060-016-2107-z] [PMID: 26983952]
[131]
Qin, X.; Xing, Y.F.; Zhou, Z.; Yao, Y. Dihydrochalcone compounds isolated from crabapple leaves showed anticancer effects on human cancer cell lines. Molecules, 2015, 20(12), 21193-21203.
[http://dx.doi.org/10.3390/molecules201219754] [PMID: 26633321]
[132]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[133]
Tronina, T. Bartmaska, A.; Filip-Psurska, B.; Wietrzyk, J.; Poposki, J.; Huszcza, E. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro. Bioorg. Med. Chem., 2013, 21(7), 2001-2006.
[http://dx.doi.org/10.1016/j.bmc.2013.01.026] [PMID: 23434138]
[134]
Gerhäuser, C.; Alt, A.; Heiss, E.; Gamal-Eldeen, A.; Klimo, K.; Knauft, J.; Neumann, I.; Scherf, H.R.; Frank, N.; Bartsch, H.; Becker, H. Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer Ther., 2002, 1(11), 959-969.
[PMID: 12481418]
[135]
Vogel, S.; Heilmann, J. Synthesis, cytotoxicity, and antioxidative activity of minor prenylated chalcones from Humulus lupulus. J. Nat. Prod., 2008, 71(7), 1237-1241.
[http://dx.doi.org/10.1021/np800188b] [PMID: 18611049]
[136]
Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine, 2009, 16(4), 369-376.
[http://dx.doi.org/10.1016/j.phymed.2008.12.021] [PMID: 19201179]
[137]
Cho, Y.C.; Kim, H.J.; Kim, Y.J.; Lee, K.Y.; Choi, H.J.; Lee, I.S.; Kang, B.Y. Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int. Immunopharmacol., 2008, 8(4), 567-573.
[http://dx.doi.org/10.1016/j.intimp.2007.12.017] [PMID: 18328448]
[138]
Bhattacharya, S.; Virani, S.; Zavro, M.; Haas, G. Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupu-lus L.) constituents. Econ. Bot., 2003, 57(1), 118-125.
[http://dx.doi.org/10.1663/0013-0001(2003)057[0118:IOSMAO]2.0.CO;2]
[139]
Gerhäuser, C. Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res., 2005, 49(9), 827-831.
[http://dx.doi.org/10.1002/mnfr.200500091] [PMID: 16092071]
[140]
Buckwold, V.E.; Wilson, R.J.; Nalca, A.; Beer, B.B.; Voss, T.G.; Turpin, J.A.; Buckheit, R.W., III; Wei, J.; Wenzel-Mathers, M.; Wal-ton, E.M.; Smith, R.J.; Pallansch, M.; Ward, P.; Wells, J.; Chuvala, L.; Sloane, S.; Paulman, R.; Russell, J.; Hartman, T.; Ptak, R. Anti-viral activity of hop constituents against a series of DNA and RNA viruses. Antiviral Res., 2004, 61(1), 57-62.
[http://dx.doi.org/10.1016/S0166-3542(03)00155-4] [PMID: 14670594]
[141]
Wang, Q.; Ding, Z.H.; Liu, J.K.; Zheng, Y.T. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antiviral Res., 2004, 64(3), 189-194.
[http://dx.doi.org/10.1016/S0166-3542(04)00201-3] [PMID: 15550272]
[142]
Mizobuchi, S.; Sato, Y. Agric. A new flavanone with antifungal activity isolated from hops. Biol. Chem., 1984, 48(11), 2771-2775.
[143]
Li, R.; Kenyon, G.L.; Cohen, F.E.; Chen, X.; Gong, B.; Dominguez, J.N.; Davidson, E.; Kurzban, G.; Miller, R.E.; Nuzum, E.O.; Rosenthal, P.J.; McKerrow, J.H. In vitro antimalarial activity of chalcones and their derivatives. J. Med. Chem., 1995, 38(26), 5031-5037.
[http://dx.doi.org/10.1021/jm00026a010] [PMID: 8544179]
[144]
Herath, W.; Ferreira, D.; Khan, S.I.; Khan, I.A. Identification and biological activity of microbial metabolites of xanthohumol. Chem. Pharm. Bull. (Tokyo), 2003, 51(11), 1237-1240.
[http://dx.doi.org/10.1248/cpb.51.1237] [PMID: 14600365]
[145]
Frölich, S.; Schubert, C.; Bienzle, U.; Jenett-Siems, K. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humu-lus lupulus) and their interaction with haemin. J. Antimicrob. Chemother., 2005, 55(6), 883-887.
[http://dx.doi.org/10.1093/jac/dki099] [PMID: 15824094]
[146]
Miranda, C.L.; Stevens, J.F.; Helmrich, A.; Henderson, M.C.; Rodriguez, R.J.; Yang, Y.H.; Deinzer, M.L.; Barnes, D.W.; Buhler, D.R. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 1999, 37(4), 271-285.
[http://dx.doi.org/10.1016/S0278-6915(99)00019-8] [PMID: 10418944]
[147]
Lust, S.; Vanhoecke, B.; Janssens, A.; Philippe, J.; Bracke, M.; Offner, F. Xanthohumol kills B-chronic lymphocytic leukemia cells by an apoptotic mechanism. Mol. Nutr. Food Res., 2005, 49(9), 844-850.
[http://dx.doi.org/10.1002/mnfr.200500045] [PMID: 16144030]
[148]
Pan, L.; Becker, H.; Gerhäuser, C. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol. Nutr. Food Res., 2005, 49(9), 837-843.
[http://dx.doi.org/10.1002/mnfr.200500065] [PMID: 15995977]
[149]
Colgate, E.C.; Miranda, C.L.; Stevens, J.F.; Bray, T.M.; Ho, E. Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett., 2007, 246(1-2), 201-209.
[http://dx.doi.org/10.1016/j.canlet.2006.02.015] [PMID: 16563612]
[150]
Harikumar, K.B.; Kunnumakkara, A.B.; Ahn, K.S.; Anand, P.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Modification of the cysteine residues in Ikappa Balpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood, 2009, 113(9), 2003-2013.
[http://dx.doi.org/10.1182/blood-2008-04-151944] [PMID: 18952893]
[151]
Deeb, D.; Gao, X.; Jiang, H.; Arbab, A.S.; Dulchavsky, S.A.; Gautam, S.C. Growth inhibitory and apoptosis-inducing effects of xan-thohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res., 2010, 30(9), 3333-3339.
[PMID: 20944105]
[152]
Prawat, U.; Chairerk, O.; Phupornprasert, U.; Salae, A.W.; Tuntiwachwuttikul, P. Two new C-benzylated dihydrochalcone derivatives from the leaves of Melodorum siamensis. Planta Med., 2013, 79(1), 83-86.
[PMID: 23180340]
[153]
Seidel, V.; Bailleul, F.; Waterman, P.G. (Rel)-1β,2α-di-(2,4-dihydroxy-6-methoxybenzoyl)-3β, 4α-di-(4-methoxy-phenyl)-cyclobutane and other flavonoids from the aerial parts of Goniothalamus gardneri and Goniothalamus thwaitesii. Phytochemistry, 2000, 55(5), 439-446.
[http://dx.doi.org/10.1016/S0031-9422(00)00346-0] [PMID: 11140605]
[154]
Hammami, S.; Ben Jannet, H.; Bergaoui, A.; Ciavatta, L.; Cimino, G.; Mighri, Z. Isolation and structure elucidation of a flavanone, a flavanone glycoside and vomifoliol from Echiochilon fruticosum growing in Tunisia. Molecules, 2004, 9(7), 602-608.
[http://dx.doi.org/10.3390/90700602] [PMID: 18007460]
[155]
Singh, V.P.; Yadav, B.; Pandey, V.B. Flavanone glycosides from Alhagi pseudalhagi. Phytochemistry, 1999, 51(4), 587-590.
[http://dx.doi.org/10.1016/S0031-9422(99)00010-2] [PMID: 10389270]
[156]
Tanaka, R.; Matsunanga, S.; Sasaki, T. A new flavanone derivative from the leaves of Tsuga diversifolia. Planta Med., 1989, 55(6), 570-571.
[http://dx.doi.org/10.1055/s-2006-962100] [PMID: 17262481]
[157]
Silva, D.H.S.; Yoshida, M.; Kato, M.J. Flavonoids from Iryanthera sagotiana. Phytochemistry, 1997, 46(3), 579-582.
[http://dx.doi.org/10.1016/S0031-9422(97)00306-3]
[158]
Kodpinid, M.; Sadavongvivad, C.; Thebtaranonth, C.; Thebtaranonth, Y. Benzyl benzoates from the root of Uvaria purpurea. Phytochemistry, 1984, 23(1), 199-200.
[http://dx.doi.org/10.1016/0031-9422(84)83114-3]
[159]
Hu, L.H.; Zou, H.B.; Gong, J.X.; Li, H.B.; Yang, L.X.; Cheng, W.; Zhou, C.X.; Bai, H.; Guéritte, F.; Zhao, Y. Synthesis and biological evaluation of a natural ester sintenin and its synthetic analogues. J. Nat. Prod., 2005, 68(3), 342-348.
[http://dx.doi.org/10.1021/np0496441] [PMID: 15787433]
[160]
Sinz, A.; Matusch, R.; van Floris, E.; Santisuk, T.; Chaichana, S.; Reutrakul, V. Phenolic compounds from Anomianthus dulcis. Phytochemistry, 1999, 50(6), 1069-1072.
[http://dx.doi.org/10.1016/S0031-9422(98)00646-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy