Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Repurposing Disulfiram as a Chemo-Therapeutic Sensitizer: Molecular Targets and Mechanisms

Author(s): Feilong Sun, Hongzhi Wang, Jinfu Nie and Bo Hong*

Volume 22, Issue 17, 2022

Published on: 24 June, 2022

Page: [2920 - 2926] Pages: 7

DOI: 10.2174/1871520621666220415102553

Price: $65

Abstract

Currently, chemotherapy is still the main strategy for cancer treatment. However, chemotherapy resistance remains a challenge. Disulfiram (DSF) is an FDA-approved medicine for the treatment of alcoholism; however, it was later revealed to have anticancer properties. Importantly, numerous studies have shown that DSF can be employed as a chemotherapeutic sensitizer to enhance the anticancer efficacy of chemo-drugs in a variety of cancers. Furthermore, the combinations of DSF and chemo-drugs have been tested in clinical trials. In the review, we summarized the possible molecular targets and mechanisms of DSF to reverse chemo-resistance. We also further discussed the opportunities and challenges of DSF as a chemo-therapeutic sensitizer. In conclusion, DSF could be a potentially repurposed drug that sensitizes cancer cells to chemotherapy in the clinic.

Keywords: Disulfiram, chemo-therapy, chemo-therapy sensitizer, anticancer mechanisms, molecular targets, drug resistance.

Graphical Abstract

[1]
Qu, Y.; Tan, H.Y.; Chan, Y.T.; Jiang, H.; Wang, N.; Wang, D. The functional role of long noncoding RNA in resistance to anticancer treat-ment. Ther. Adv. Med. Oncol., 2020, 12, 1758835920927850.
[http://dx.doi.org/10.1177/1758835920927850] [PMID: 32536982]
[2]
Wenmaekers, S.; Viergever, B.J.; Kumar, G.; Kranenburg, O.; Black, P.C.; Daugaard, M.; Meijer, R.P. A Potential role for HUWE1 in mod-ulating cisplatin sensitivity. Cells, 2021, 10(5), 1262.
[http://dx.doi.org/10.3390/cells10051262] [PMID: 34065298]
[3]
Zou, R.; Wang, Y.; Ye, F.; Zhang, X.; Wang, M.; Cui, S. Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clin. Transl. Oncol., 2021, 23(11), 2237-2252.
[http://dx.doi.org/10.1007/s12094-021-02637-2] [PMID: 34002348]
[4]
Haider, T.; Pandey, V.; Banjare, N.; Gupta, P.N.; Soni, V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep., 2020, 72(5), 1125-1151.
[http://dx.doi.org/10.1007/s43440-020-00138-7] [PMID: 32700248]
[5]
Jiao, Y.; Hannafon, B.N.; Ding, W.Q. Disulfiram’s anticancer activity: Evidence and mechanisms. Anticancer. Agents Med. Chem., 2016, 16(11), 1378-1384.
[http://dx.doi.org/10.2174/1871520615666160504095040] [PMID: 27141876]
[6]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[7]
Skrott, Z.; Majera, D.; Gursky, J.; Buchtova, T.; Hajduch, M.; Mistrik, M.; Bartek, J. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene, 2019, 38(40), 6711-6722.
[http://dx.doi.org/10.1038/s41388-019-0915-2] [PMID: 31391554]
[8]
Yip, N.C.; Fombon, I.S.; Liu, P.; Brown, S.; Kannappan, V.; Armesilla, A.L.; Xu, B.; Cassidy, J.; Darling, J.L.; Wang, W. Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer, 2011, 104(10), 1564-1574.
[http://dx.doi.org/10.1038/bjc.2011.126] [PMID: 21487404]
[9]
Viola-Rhenals, M.; Patel, K.R.; Jaimes-Santamaria, L.; Wu, G.; Liu, J.; Dou, Q.P. Recent advances in antabuse (Disulfiram): The im-portance of its metal-binding ability to its anticancer activity. Curr. Med. Chem., 2018, 25(4), 506-524.
[http://dx.doi.org/10.2174/0929867324666171023161121] [PMID: 29065820]
[10]
Terashima, Y.; Toda, E.; Itakura, M.; Otsuji, M.; Yoshinaga, S.; Okumura, K.; Shand, F.H.W.; Komohara, Y.; Takeda, M.; Kokubo, K.; Chen, M.C.; Yokoi, S.; Rokutan, H.; Kofuku, Y.; Ohnishi, K.; Ohira, M.; Iizasa, T.; Nakano, H.; Okabe, T.; Kojima, H.; Shimizu, A.; Kanegasaki, S.; Zhang, M.R.; Shimada, I.; Nagase, H.; Terasawa, H.; Matsushima, K. Targeting FROUNT with disulfiram suppresses mac-rophage accumulation and its tumor-promoting properties. Nat. Commun., 2020, 11(1), 609.
[http://dx.doi.org/10.1038/s41467-020-14338-5] [PMID: 32001710]
[11]
Lun, X.; Wells, J.C.; Grinshtein, N.; King, J.C.; Hao, X.; Dang, N.H.; Wang, X.; Aman, A.; Uehling, D.; Datti, A.; Wrana, J.L.; Easaw, J.C.; Luchman, A.; Weiss, S.; Cairncross, J.G.; Kaplan, D.R.; Robbins, S.M.; Senger, D.L. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. Clin. Cancer Res., 2016, 22(15), 3860-3875.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1798] [PMID: 27006494]
[12]
Allensworth, J.L.; Evans, M.K.; Bertucci, F.; Aldrich, A.J.; Festa, R.A.; Finetti, P.; Ueno, N.T.; Safi, R.; McDonnell, D.P.; Thiele, D.J.; Van Laere, S.; Devi, G.R. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor ef-ficacy in inflammatory breast cancer. Mol. Oncol., 2015, 9(6), 1155-1168.
[http://dx.doi.org/10.1016/j.molonc.2015.02.007] [PMID: 25769405]
[13]
Falls-Hubert, K.C.; Butler, A.L.; Gui, K.; Anderson, M.; Li, M.; Stolwijk, J.M.; Rodman, S.N., III; Solst, S.R.; Tomanek-Chalkley, A.; Searby, C.C.; Sheffield, V.C.; Sandfort, V.; Schmidt, H.; McCormick, M.L.; Wels, B.R.; Allen, B.G.; Buettner, G.R.; Schultz, M.K.; Spitz, D.R. Disulfiram causes selective hypoxic cancer cell toxicity and radio-chemo-sensitization via redox cycling of copper. Free Radic. Biol. Med., 2020, 150, 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.01.186] [PMID: 32032663]
[14]
Khairnar, S.I.; Mahajan, U.B.; Patil, K.R.; Patel, H.M.; Shinde, S.D.; Goyal, S.N.; Belemkar, S.; Ojha, S.; Patil, C.R. Disulfiram and its cop-per chelate attenuate cisplatin-induced acute nephrotoxicity in rats via reduction of oxidative stress and inflammation. Biol. Trace Elem. Res., 2020, 193(1), 174-184.
[http://dx.doi.org/10.1007/s12011-019-01683-w] [PMID: 30825159]
[15]
Fong, W.; To, K.K.W. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell. Mol. Life Sci., 2019, 76(17), 3383-3406.
[http://dx.doi.org/10.1007/s00018-019-03134-0] [PMID: 31087119]
[16]
Mohammad, I.S.; Teng, C.; Chaurasiya, B.; Yin, L.; Wu, C.; He, W. Drug-delivering-drug approach-based codelivery of paclitaxel and disulfiram for treating multidrug-resistant cancer. Int. J. Pharm., 2019, 557, 304-313.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.067] [PMID: 30599232]
[17]
Mohammad, I.S.; He, W.; Yin, L. A smart paclitaxel-disulfiram nanococrystals for efficient MDR reversal and enhanced apoptosis. Pharm. Res., 2018, 35(4), 77.
[http://dx.doi.org/10.1007/s11095-018-2370-0] [PMID: 29488114]
[18]
Kita, Y.; Hamada, A.; Saito, R.; Teramoto, Y.; Tanaka, R.; Takano, K.; Nakayama, K.; Murakami, K.; Matsumoto, K.; Akamatsu, S.; Ya-masaki, T.; Inoue, T.; Tabata, Y.; Okuno, Y.; Ogawa, O.; Kobayashi, T. Systematic chemical screening identifies disulfiram as a repur-posed drug that enhances sensitivity to cisplatin in bladder cancer: A summary of preclinical studies. Br. J. Cancer, 2019, 121(12), 1027-1038.
[http://dx.doi.org/10.1038/s41416-019-0609-0] [PMID: 31673101]
[19]
Duan, X.; Xiao, J.; Yin, Q.; Zhang, Z.; Yu, H.; Mao, S.; Li, Y. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano, 2013, 7(7), 5858-5869.
[http://dx.doi.org/10.1021/nn4010796] [PMID: 23734880]
[20]
Wang, W.; McLeod, H.L.; Cassidy, J. Disulfiram-mediated inhibition of NF-kappaB activity enhances cytotoxicity of 5-fluorouracil in human colorectal cancer cell lines. Int. J. Cancer, 2003, 104(4), 504-511.
[http://dx.doi.org/10.1002/ijc.10972] [PMID: 12584750]
[21]
Liu, P.; Brown, S.; Goktug, T.; Channathodiyil, P.; Kannappan, V.; Hugnot, J.P.; Guichet, P.O.; Bian, X.; Armesilla, A.L.; Darling, J.L.; Wang, W. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br. J. Cancer, 2012, 107(9), 1488-1497.
[http://dx.doi.org/10.1038/bjc.2012.442] [PMID: 23033007]
[22]
Song, W.; Tang, Z.; Shen, N.; Yu, H.; Jia, Y.; Zhang, D.; Jiang, J.; He, C.; Tian, H.; Chen, X. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. J. Control. Release, 2016, 231, 94-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.039] [PMID: 26928530]
[23]
Cong, J.; Wang, Y.; Zhang, X.; Zhang, N.; Liu, L.; Soukup, K.; Michelakos, T.; Hong, T.; DeLeo, A.; Cai, L.; Sabbatino, F.; Ferrone, S.; Lee, H.; Levina, V.; Fuchs, B.; Tanabe, K.; Lillemoe, K.; Ferrone, C.; Wang, X. A novel chemoradiation targeting stem and nonstem pan-creatic cancer cells by repurposing disulfiram. Cancer Lett., 2017, 409, 9-19.
[http://dx.doi.org/10.1016/j.canlet.2017.08.028] [PMID: 28864067]
[24]
Harrington, B.S.; Ozaki, M.K.; Caminear, M.W.; Hernandez, L.F.; Jordan, E.; Kalinowski, N.J.; Goldlust, I.S.; Guha, R.; Ferrer, M.; Thom-as, C.; Shetty, J.; Tran, B.; Wong, N.; House, C.D.; Annunziata, C.M. Drugs targeting tumor-initiating cells prolong survival in a post-surgery, post-chemotherapy ovarian cancer relapse model. Cancers (Basel), 2020, 12(6), E1645.
[http://dx.doi.org/10.3390/cancers12061645] [PMID: 32575908]
[25]
Rolle, F.; Bincoletto, V.; Gazzano, E.; Rolando, B.; Lollo, G.; Stella, B.; Riganti, C.; Arpicco, S. Coencapsulation of disulfiram and doxoru-bicin in liposomes strongly reverses multidrug resistance in breast cancer cells. Int. J. Pharm., 2020, 580, 119191.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119191] [PMID: 32142738]
[26]
Jangra, A.; Choi, S.A.; Yang, J.; Koh, E.J.; Phi, J.H.; Lee, J.Y.; Wang, K.C.; Kim, S.K. Disulfiram potentiates the anticancer effect of cispla-tin in atypical teratoid/rhabdoid tumors (AT/RT). Cancer Lett., 2020, 486, 38-45.
[http://dx.doi.org/10.1016/j.canlet.2020.05.006] [PMID: 32428661]
[27]
Huang, J.; Campian, J.L.; Gujar, A.D.; Tran, D.D.; Lockhart, A.C.; DeWees, T.A.; Tsien, C.I.; Kim, A.H. A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy. J. Neurooncol., 2016, 128(2), 259-266.
[http://dx.doi.org/10.1007/s11060-016-2104-2] [PMID: 26966095]
[28]
Nechushtan, H.; Hamamreh, Y.; Nidal, S.; Gotfried, M.; Baron, A.; Shalev, Y.I.; Nisman, B.; Peretz, T.; Peylan-Ramu, N. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist, 2015, 20(4), 366-367.
[http://dx.doi.org/10.1634/theoncologist.2014-0424] [PMID: 25777347]
[29]
Huang, J.; Chaudhary, R.; Cohen, A.L.; Fink, K.; Goldlust, S.; Boockvar, J.; Chinnaiyan, P.; Wan, L.; Marcus, S.; Campian, J.L. A multi-center phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J. Neurooncol., 2019, 142(3), 537-544.
[http://dx.doi.org/10.1007/s11060-019-03125-y] [PMID: 30771200]
[30]
Huang, J.; Campian, J.L.; Gujar, A.D.; Tsien, C.; Ansstas, G.; Tran, D.D.; DeWees, T.A.; Lockhart, A.C.; Kim, A.H. Final results of a phase I dose-escalation, dose-expansion study of adding disulfiram with or without copper to adjuvant temozolomide for newly diag-nosed glioblastoma. J. Neurooncol., 2018, 138(1), 105-111.
[http://dx.doi.org/10.1007/s11060-018-2775-y] [PMID: 29374809]
[31]
Makena, M.R.; Ranjan, A.; Thirumala, V.; Reddy, A.P. Cancer stem cells: Road to therapeutic resistance and strategies to overcome re-sistance. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165339.
[http://dx.doi.org/10.1016/j.bbadis.2018.11.015] [PMID: 30481586]
[32]
Kim, J.Y.; Cho, Y.; Oh, E.; Lee, N.; An, H.; Sung, D.; Cho, T.M.; Seo, J.H. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett., 2016, 379(1), 39-48.
[http://dx.doi.org/10.1016/j.canlet.2016.05.026] [PMID: 27238567]
[33]
Triscott, J.; Rose Pambid, M.; Dunn, S.E. Concise review: Bullseye: Targeting cancer stem cells to improve the treatment of gliomas by repurposing disulfiram. Stem Cells, 2015, 33(4), 1042-1046.
[http://dx.doi.org/10.1002/stem.1956] [PMID: 25588723]
[34]
Moreb, J.S.; Ucar, D.; Han, S.; Amory, J.K.; Goldstein, A.S.; Ostmark, B.; Chang, L.J. The enzymatic activity of human aldehyde dehydro-genases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem. Biol. Interact., 2012, 195(1), 52-60.
[http://dx.doi.org/10.1016/j.cbi.2011.10.007] [PMID: 22079344]
[35]
Liu, P.; Kumar, I.S.; Brown, S.; Kannappan, V.; Tawari, P.E.; Tang, J.Z.; Jiang, W.; Armesilla, A.L.; Darling, J.L.; Wang, W. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br. J. Cancer, 2013, 109(7), 1876-1885.
[http://dx.doi.org/10.1038/bjc.2013.534] [PMID: 24008666]
[36]
Cvek, B. Comment on ‘cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells’. Br. J. Cancer, 2013, 108(4), 993.
[http://dx.doi.org/10.1038/bjc.2013.18] [PMID: 23340448]
[37]
Schmidtova, S.; Kalavska, K.; Gercakova, K.; Cierna, Z.; Miklikova, S.; Smolkova, B.; Buocikova, V.; Miskovska, V.; Durinikova, E.; Burikova, M.; Chovanec, M.; Matuskova, M.; Mego, M.; Kucerova, L. Disulfiram overcomes cisplatin resistance in human embryonal carcinoma cells. Cancers (Basel), 2019, 11(9), E1224.
[http://dx.doi.org/10.3390/cancers11091224] [PMID: 31443351]
[38]
Huo, Q.; Zhu, J.; Niu, Y.; Shi, H.; Gong, Y.; Li, Y.; Song, H.; Liu, Y. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int. J. Nanomedicine, 2017, 12, 8631-8647.
[http://dx.doi.org/10.2147/IJN.S144452] [PMID: 29270012]
[39]
Arnesano, F.; Natile, G. Interference between copper transport systems and platinum drugs. Semin. Cancer Biol., 2021, 76, 173-188.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.023] [PMID: 34058339]
[40]
Guo, X.; Xu, B.; Pandey, S.; Goessl, E.; Brown, J.; Armesilla, A.L.; Darling, J.L.; Wang, W. Disulfiram/copper complex inhibiting NFkap-paB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines. Cancer Lett., 2010, 290(1), 104-113.
[http://dx.doi.org/10.1016/j.canlet.2009.09.002] [PMID: 19782464]
[41]
Tuy, K.; Rickenbacker, L.; Hjelmeland, A.B. Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biol., 2021, 44, 101953.
[http://dx.doi.org/10.1016/j.redox.2021.101953] [PMID: 34052208]
[42]
Hassani, S.; Ghaffari, P.; Chahardouli, B.; Alimoghaddam, K.; Ghavamzadeh, A.; Alizadeh, S.; Ghaffari, S.H. Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of relat-ed genes. Biomed. Pharmacother., 2018, 99, 561-569.
[http://dx.doi.org/10.1016/j.biopha.2018.01.109] [PMID: 29902866]
[43]
Dalla Pozza, E.; Donadelli, M.; Costanzo, C.; Zaniboni, T.; Dando, I.; Franchini, M.; Arpicco, S.; Scarpa, A.; Palmieri, M. Gemcitabine response in pancreatic adenocarcinoma cells is synergistically enhanced by dithiocarbamate derivatives. Free Radic. Biol. Med., 2011, 50(8), 926-933.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.001] [PMID: 21236335]
[44]
Jia, Y.; Huang, T. Overview of Antabuse® (Disulfiram) in radiation and cancer biology. Cancer Manag. Res., 2021, 13, 4095-4101.
[http://dx.doi.org/10.2147/CMAR.S308168] [PMID: 34045896]
[45]
Wu, W.; Yu, L.; Jiang, Q.; Huo, M.; Lin, H.; Wang, L.; Chen, Y.; Shi, J. Enhanced tumor-specific disulfiram chemotherapy by In situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition. J. Am. Chem. Soc., 2019, 141(29), 11531-11539.
[http://dx.doi.org/10.1021/jacs.9b03503] [PMID: 31251050]
[46]
Lelièvre, P.; Sancey, L.; Coll, J.L.; Deniaud, A.; Busser, B. The multifaceted roles of copper in cancer: A trace metal element with dysregu-lated metabolism, but also a target or a bullet for therapy. Cancers (Basel), 2020, 12(12), E3594.
[http://dx.doi.org/10.3390/cancers12123594] [PMID: 33271772]
[47]
Baltaci, A.K.; Dundar, T.K.; Aksoy, F.; Mogulkoc, R. Changes in the serum levels of trace elements before and after the operation in thy-roid cancer patients. Biol. Trace Elem. Res., 2017, 175(1), 57-64.
[http://dx.doi.org/10.1007/s12011-016-0768-2] [PMID: 27263537]
[48]
Saleh, S.A.K.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum levels of selenium, zinc, copper, manganese, and iron in prostate can-cer patients. Curr. Urol., 2020, 14(1), 44-49.
[http://dx.doi.org/10.1159/000499261] [PMID: 32398996]
[49]
Juloski, J.T. Rakic, A.; Ćuk, V.V.; Ćuk, V.M.; Stefanović, S.; Nikolić, D.; Janković, S.; Trbovich, A.M.; De Luka, S.R. Colorectal cancer and trace elements alteration. J. Trace Elem. Med. Biol., 2020, 59, 126451.
[http://dx.doi.org/10.1016/j.jtemb.2020.126451] [PMID: 31954212]
[50]
Mao, S.; Huang, S. Zinc and copper levels in bladder cancer: A systematic review and meta-analysis. Biol. Trace Elem. Res., 2013, 153(1-3), 5-10.
[http://dx.doi.org/10.1007/s12011-013-9682-z] [PMID: 23640281]
[51]
Pavithra, V.; Sathisha, T.G.; Kasturi, K.; Mallika, D.S.; Amos, S.J.; Ragunatha, S. Serum levels of metal ions in female patients with breast cancer. J. Clin. Diagn. Res., 2015, 9(1), BC25-c27.
[http://dx.doi.org/10.7860/JCDR/2015/11627.5476] [PMID: 25737978]
[52]
Majumder, S.; Chatterjee, S.; Pal, S.; Biswas, J.; Efferth, T.; Choudhuri, S.K. The role of copper in drug-resistant murine and human tu-mors. Biometals, 2009, 22(2), 377-384.
[http://dx.doi.org/10.1007/s10534-008-9174-3] [PMID: 18956143]
[53]
Babak, M.V.; Ahn, D. Modulation of intracellular copper levels as the mechanism of action of anticancer copper complexes: Clinical rele-vance. Biomedicines, 2021, 9(8), 852.
[http://dx.doi.org/10.3390/biomedicines9080852] [PMID: 34440056]
[54]
Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer, 2022, 22(2), 102-113.
[PMID: 34764459]
[55]
Yoshii, J.; Yoshiji, H.; Kuriyama, S.; Ikenaka, Y.; Noguchi, R.; Okuda, H.; Tsujinoue, H.; Nakatani, T.; Kishida, H.; Nakae, D.; Gomez, D.E.; De Lorenzo, M.S.; Tejera, A.M.; Fukui, H. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int. J. Cancer, 2001, 94(6), 768-773.
[http://dx.doi.org/10.1002/ijc.1537] [PMID: 11745476]
[56]
Matsubara, T.; Saura, R.; Hirohata, K.; Ziff, M. Inhibition of human endothelial cell proliferation in vitro and neovascularization in vivo by D-penicillamine. J. Clin. Invest., 1989, 83(1), 158-167.
[http://dx.doi.org/10.1172/JCI113853] [PMID: 2463265]
[57]
Liu, Y.L.; Bager, C.L.; Willumsen, N.; Ramchandani, D.; Kornhauser, N.; Ling, L.; Cobham, M.; Andreopoulou, E.; Cigler, T.; Moore, A.; LaPolla, D.; Fitzpatrick, V.; Ward, M.; Warren, J.D.; Fischbach, C.; Mittal, V.; Vahdat, L.T. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer, 2021, 7(1), 108.
[http://dx.doi.org/10.1038/s41523-021-00313-w] [PMID: 34426581]
[58]
Shriwas, O.; Arya, R.; Mohanty, S.; Mohapatra, P.; Kumar, S.; Rath, R.; Kaushik, S.R.; Pahwa, F.; Murmu, K.C.; Majumdar, S.K.D.; Muduly, D.K.; Dixit, A.; Prasad, P.; Nanda, R.K.; Dash, R. RRBP1 rewires cisplatin resistance in oral squamous cell carcinoma by regulat-ing hippo pathway. Br. J. Cancer, 2021, 124(12), 2004-2016.
[http://dx.doi.org/10.1038/s41416-021-01336-7] [PMID: 33762722]
[59]
Das, N.; Mahapatra, A.; Sarkar, S. Disulfiram induced psychosis: Revisiting an age-old entity. Asian J. Psychiatr., 2017, 30, 94-95.
[http://dx.doi.org/10.1016/j.ajp.2017.08.011] [PMID: 28843144]
[60]
Tawari, P.E.; Wang, Z.; Najlah, M.; Tsang, C.W.; Kannappan, V.; Liu, P.; McConville, C.; He, B.; Armesilla, A.L.; Wang, W. The cytotoxic mechanisms of disulfiram and copper(ii) in cancer cells. Toxicol. Res. (Camb.), 2015, 4(6), 1439-1442.
[http://dx.doi.org/10.1039/c5tx00210a] [PMID: 27708770]
[61]
Pan, Q.; Xie, L.; Liu, R.; Pu, Y.; Wu, D.; Gao, W.; Luo, K.; He, B. Two birds with one stone: Copper metal-organic framework as a carrier of disulfiram prodrug for cancer therapy. Int. J. Pharm., 2022, 612, 121351.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121351] [PMID: 34883206]
[62]
Chen, M.; Huang, Z.; Xia, M.; Ding, Y.; Shan, T.; Guan, Z.; Dai, X.; Xu, X.; Huang, Y.; Huang, M.; Zhao, C. Glutathione-responsive cop-per-disulfiram nanoparticles for enhanced tumor chemotherapy. J. Control. Release, 2022, 341, 351-363.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.041] [PMID: 34856225]
[63]
Lan, Q.H.; Du, C.C.; Yu, R.J.; Zhai, J.; Shi, Y.; Kou, L.; Xiao, J.; Lu, C.T.; Zhao, Y.Z.; Yao, Q. Disulfiram-loaded copper sulfide nanopar-ticles for potential anti-glioma therapy. Int. J. Pharm., 2021, 607, 120978.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120978] [PMID: 34371152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy