Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Short Communication

Optimization of Pharmacophore of Novel Hybrid Nucleus of 1,3,4- oxadiazole-chalcone using Literature Findings and In silico Approach as EGFR Inhibitor

Author(s): Shital M. Patil* and Shashikant V. Bhandari

Volume 20, Issue 6, 2023

Published on: 09 June, 2022

Page: [779 - 791] Pages: 13

DOI: 10.2174/1570180819666220414102310

Price: $65

Abstract

Background: Cancer is a leading cause of death worldwide. EGFR is one of the important targets considered for current chemotherapeutic agents. The problem of drug resistance can be overcome by the use of hybrid molecules. A hybrid of 1,3,4-oxadiazole and chalcone has been proved to be an anti- EGFR inhibitor.

Objective: The aim of the study was to carry out pharmacophore optimization of the hybrid nucleus of 1,3,4- oxadiazole and chalcone by using literature findings and in-silico approach. A series of 24 substituted hybrid molecules of 2-(5-phenyl-1,3,4-oxadiazol-2-ylthio)-N-(4-((Z)-3-phenylacryloyl)phenyl)acetamide derivatives were subjected to 2D and 3D QSAR studies.

Methods: The survey of literature was carried out for selected hybrid nucleus using different available databases. The 2D QSAR was performed by using the MLR, PLS, and PCR methods, while 3D QSAR was performed using the KNN-MFA method.

Results: A summary of literature findings was prepared. For 2D QSAR, statistically significant model was obtained for the MLR method with r2=0.9128, q2=0.8065. For the 3D QSAR model, I was found to be significant with q2=0.834. The pharmacophoric requirements for inhibition of EGFR were optimized by use of the evidence attained after the generation of descriptors from QSAR studies and literature findings.

Conclusion: This optimized pharmacophore will be useful in further drug design process.

Keywords: EGFR inhibitors, quantitative structure activity relationship, 1, 3, 4-oxadiazole-chalcone hybrid, pharmacophore optimization, in silico studies, chemotherapeutic agents.

« Previous
Graphical Abstract

[1]
WHO. Cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on: 31st December 2021).
[2]
Xing, Ke.; Shen, L.L. Molecular targeted therapy of cancer: The progress and future prospect. Frontiers in Labor. Medi., 2017, 1, 69-75.
[3]
Tanaka, H.; Matsushima, H.; Mizumoto, N.; Takashima, A. Classification of chemotherapeutic agents based on their differential in vitro effects on dendritic cells. Cancer Res., 2009, 69(17), 6978-6986.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1101] [PMID: 19706756]
[4]
Yarden, Y.; Schlessinger, J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry, 1987, 26(5), 1443-1451.
[http://dx.doi.org/10.1021/bi00379a035] [PMID: 3494473]
[5]
Downward, J.; Parker, P.; Waterfield, M.D. Autophosphorylation sites on the epidermal growth factor receptor. Nature, 1984, 311(5985), 483-485.
[http://dx.doi.org/10.1038/311483a0] [PMID: 6090945]
[6]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[7]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol., 2005, 1, 2005-0010.
[http://dx.doi.org/10.1038/msb4100014]
[8]
Chang, Y.S.; Choi, C.M.; Lee, J.C. Mechanisms of epidermal growth factor receptor tyrosine kinase inhibitor resistance and strategies to overcome resistance in lung adenocarcinoma. Tuberc. Respir. Dis. (Seoul), 2016, 79(4), 248-256.
[http://dx.doi.org/10.4046/trd.2016.79.4.248] [PMID: 27790276]
[9]
Haley, J.D.; Gullick, W.J. EGFR signaling networks in cancer therapy; Humana Press: New Jersey, USA, 2017, pp. 1-393.
[10]
Patel, H.; Pawara, R.; Ansari, A.; Surana, S. Recent updates on third generation EGFR inhibitors and emergence of fourth generation EGFR inhibitors to combat C797S resistance. Eur. J. Med. Chem., 2017, 142, 32-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.027] [PMID: 28526474]
[11]
Abdelbaset, M.S.; Abdel-Aziz, M.; Ramadan, M.; Abdelrahman, M.H.; Abbas Bukhari, S.N.; Ali, T.F.S.; Abuo-Rahma, G.E.A. Discovery of novel thienoquinoline-2-carboxamide chalcone derivatives as antiproliferative EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem., 2019, 27(6), 1076-1086.
[http://dx.doi.org/10.1016/j.bmc.2019.02.012] [PMID: 30744932]
[12]
Armour, A.A.; Watkins, C.L. The challenge of targeting EGFR: Experience with gefitinib in nonsmall cell lung cancer. Eur. Respir. Rev., 2010, 19(117), 186-196.
[http://dx.doi.org/10.1183/09059180.00005110] [PMID: 20956191]
[13]
Yewale, C.; Baradia, D.; Vhora, I.; Patil, S.; Misra, A. Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials, 2013, 34(34), 8690-8707.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.100] [PMID: 23953842]
[14]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) Inhibitors against C797S resistance in nonsmall- cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310] [PMID: 29136465]
[15]
He, J.; Zhou, Z.; Sun, X.; Yang, Z.; Zheng, P.; Xu, S.; Zhu, W. The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur. J. Med. Chem., 2021, 210, 112995.
[http://dx.doi.org/10.1016/j.ejmech.2020.112995] [PMID: 33243531]
[16]
Abou-Zieda, H.A.; Bahaa, G.M.; Youssif Mamdouh, F.A.; Mohamed, Alaa; Hayallaha, M.; Abdel-Azize, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102-997.
[17]
Su, Z.; Yang, T.; Wang, J.; Lai, M.; Tong, L.; Wumaier, G.; Chen, Z.; Li, S.; Li, H.; Xie, H.; Zhao, Z. Design, synthesis and biological evaluation of potent EGFR kinase inhibitors against 19D/T790M/C797S mutation. Bioorg. Med. Chem. Lett., 2020, 30(16), 127327.
[http://dx.doi.org/10.1016/j.bmcl.2020.127327] [PMID: 32631532]
[18]
Jawaid, M.D.; Ahsan, A.; Zulphikar, A.K.; Rikeshwer, A.; Rafi, Md. D. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Biol. Chem., 2018, 78, 158-169.
[19]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[20]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005] [PMID: 28344479]
[21]
Chhajed, S.S.; Sonawane, S.S.; Upasani, C.D.; Kshirsagar, S.J.; Gupta, P.P. Design, synthesis and molecular modeling studies of few chalcone analogues of benzimidazole for epidermal growth factor receptor inhibitor in search of useful anticancer agent. Comput. Biol. Chem., 2016, 61, 138-144.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.02.001] [PMID: 26878127]
[22]
Fathi, M.A.A.; Abd El-Hafeez, A.A.; Abdelhamid, D.; Abbas, S.H.; Montano, M.M.; Abdel-Aziz, M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg. Chem., 2019, 84, 150-163.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.032] [PMID: 30502626]
[23]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[24]
Salahuddin, A.; Mazumder, A.; Yar, M.S.; Mazumder, R.; Chakraborthy, G.S.; Ahsan, M.J.; Rahman, M.U. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. Synth. Commun., 2017, 47(20), 1805-1847.
[http://dx.doi.org/10.1080/00397911.2017.1360911]
[25]
Bajaj, S.; Asati, V.; Singh, J.; Roy, P.P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur. J. Med. Chem., 2015, 97, 124-141.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.051] [PMID: 25965776]
[26]
Aboraia, A.S.; Abdel-Rahman, H.M.; Mahfouz, N.M.; El-Gendy, M.A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents. Bioorg. Med. Chem., 2006, 14(4), 1236-1246.
[http://dx.doi.org/10.1016/j.bmc.2005.09.053] [PMID: 16242340]
[27]
Mathew, B.; Suresh, J.; Anbazghagan, S.; Paulraj, J.; Krishnan, G.K. Heteroaryl chalcones: Mini review about their therapeutic voyage. Biomed. Prevent. Nutri., 2014, 4(3), 451-458.
[http://dx.doi.org/10.1016/j.bionut.2014.04.003]
[28]
Zhao, M.; Wang, L.; Zheng, L.; Zhang, M.; Qiu, C.; Zhang, Y.; Du, D.; Niu, B. 2D-QSAR and 3D-QSAR analyses for EGFR inhibitors. BioMed Res. Int., 2017, 2017, 4649191.
[http://dx.doi.org/10.1155/2017/4649191] [PMID: 28630865]
[29]
Asadollahi-Baboli, M. In silico evaluation, molecular docking and QSAR analysis of quinazoline-based EGFR-T790M inhibitors. Mol. Divers., 2016, 20(3), 729-739.
[http://dx.doi.org/10.1007/s11030-016-9672-0] [PMID: 27209475]
[30]
Noolvi, M.N.; Patel, H.M. A comparative QSAR analysis and molecular docking studies of quinazoline derivatives as tyrosine kinase (EGFR) inhibitors: A rational approach to anticancer drug design. J. Saudi Chem. Soc., 2013, 17(4), 361-379.
[http://dx.doi.org/10.1016/j.jscs.2011.04.017]
[31]
Nazari, M.; Tabatabai, S.A.; Rezaee, E. 2D & 3D-QSAR study on novel piperidine and piperazine derivatives as acetylcholinesterase enzyme inhibitors. Curr. Computeraided Drug Des., 2018, 14(4), 391-397.
[http://dx.doi.org/10.2174/1573409914666180726092800] [PMID: 30047333]
[32]
Niu, B.; Zhao, M.; Su, Q.; Zhang, M.; Lv, W.; Chen, Q.; Chen, F.; Chu, D.; Du, D.; Zhang, Y. 2D-SAR and 3D-QSAR analyses for acetylcholinesterase inhibitors. Mol. Divers., 2017, 21(2), 413-426.
[http://dx.doi.org/10.1007/s11030-017-9732-0] [PMID: 28275924]
[33]
Chitre, T.S.; Asgaonkar, K.D.; Patil, S.M.; Kumar, S.; Khedkar, V.M.; Garud, D.R. QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity. Comput. Biol. Chem., 2017, 68, 211-218.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.015] [PMID: 28411471]
[34]
V life MDS software Manual,
[35]
Sharma, M.C.; Kohli, D.V. Insight into the structural requirement of substituted quinazolinone biphenyl acylsulfonamides derivatives as Angiotensin II AT1 receptor antagonist: 2D and 3D QSAR approach. J. Saudi Chem. Soc., 2014, 18(1), 35-45.
[http://dx.doi.org/10.1016/j.jscs.2011.05.011]
[36]
Chitre, T.S.; Patil, S.M.; Sujalegaonkar, A.G.; Asgaonkar, K.D. Designing of Thiazolidin-4-one Pharmacophore using QSAR Studies for Anti-HIV Activity. Indian J. Pharm. Edu. Reser., 2021, 55(2), 581-589.
[http://dx.doi.org/10.5530/ijper.55.2.97]
[37]
Halgren, T.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies. J. Comput. Chem., 1996, 17(5-6), 553-586.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553:AID-JCC3>3.0.CO;2-T]
[38]
Bhadoriya, K.S.; Kumawat, N.K.; Bhavthankar, S.V.; Avchara, M.H.; Dhumal, D.M.; Patil, S.D.; Jain, S.V. Exploring 2D and 3D QSARs of benzimidazole derivatives as transient receptor potential melastatin 8 (TRPM8) antagonists using MLR and kNN-MFA methodology. J. Saudi Chem. Soc., 2016, 20, S256-S270.
[http://dx.doi.org/10.1016/j.jscs.2012.11.001]
[39]
Chitre, T.S.; Kathiravan, M.K.; Bothara, K.G.; Bhandari, S.V.; Jalnapurkar, R.R. Pharmacophore optimization and design of competitive inhibitors of thymidine monophosphate kinase through molecular modeling studies. Chem. Biol. Drug Des., 2011, 78(5), 826-834.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01200.x] [PMID: 21801308]
[40]
Khedkar, V.M.; Ambre, P.K.; Verma, J.; Shaikh, M.S.; Pissurlenkar, R.R.S.; Coutinho, E.C. Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors. J. Mol. Model., 2010, 16(7), 1251-1268.
[http://dx.doi.org/10.1007/s00894-009-0636-5] [PMID: 20069323]
[41]
Pratim Roy, P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules, 2009, 14(5), 1660-1701.
[http://dx.doi.org/10.3390/molecules14051660] [PMID: 19471190]
[42]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR models - strategies and importance. J. Drug Des. Discov., 2011, 2(3), 511-519.
[43]
Golbraikh, A.; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des., 2002, 16(5-6), 357-369.
[http://dx.doi.org/10.1023/A:1020869118689] [PMID: 12489684]
[44]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[45]
Danishuddin, K.; Khan, A.U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov. Today, 2016, 21(8), 1291-1302.
[http://dx.doi.org/10.1016/j.drudis.2016.06.013] [PMID: 27326911]
[46]
Khalil, N.A.; Kamal, A.M.; Emam, S.H. Design, synthesis, and antitumor activity of novel 5-pyridyl-1,3,4-oxadiazole derivatives against the breast cancer cell line MCF-7. Biol. Pharm. Bull., 2015, 38(5), 763-773.
[http://dx.doi.org/10.1248/bpb.b14-00867] [PMID: 25947922]
[47]
El-Sayed, N.A.; Nour, M.S.; Salem, M.A.; Arafa, R.K. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur. J. Med. Chem., 2019, 183, 111693.
[http://dx.doi.org/10.1016/j.ejmech.2019.111693] [PMID: 31539778]
[48]
Dash, S.; Kumar, B.A.; Singh, J.; Maiti, B.C.; Maity, T.K. Synthesis of some novel 3,5- disubstituted 1,3,4-oxadiazole derivatives and anticancer activity on EAC animal model. Med. Chem. Res., 2011, 20(8), 1206-1213.
[http://dx.doi.org/10.1007/s00044-010-9455-6]
[49]
Ahsan, M.J.; Rathod, V.P.S.; Singh, M.; Sharma, R.; Jadav, S.S.; Yasmin S., Salahuddin; Kumar, P. Synthesis, anticancer and molecular docking studies of 2-(4-chlorophenyl)-5-aryl-1,3,4- oxadiazole analogues. Med. Chem., 2013, 3(4), 294-297.
[50]
Mphahlele, M.J.; Maluleka, M.M.; Parbhoo, N.; Malindisa, S.T. Synthesis, evaluation for cytotoxicity and molecular docking studies of benzo[c]furan-chalcones for potential to inhibit tubulin polymerization and/or EGFR-tyrosine kinase phosphorylation. Int. J. Mol. Sci., 2018, 19(9), 2552-2569.
[http://dx.doi.org/10.3390/ijms19092552] [PMID: 30154363]
[51]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells. J. Mol. Struct., 2020, 1204, 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]

© 2024 Bentham Science Publishers | Privacy Policy