Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Role of Caffeine in the Age-related Neurodegenerative Diseases: A Review

Author(s): Miroslav Pohanka*

Volume 22, Issue 21, 2022

Published on: 25 May, 2022

Page: [2726 - 2735] Pages: 10

DOI: 10.2174/1389557522666220413103529

Price: $65

Abstract

Caffeine, a simple purine alkaloid with the proper chemical name 1,3,7-trimethylpurine- 2,6-dione, is an abundant compound present in coffee, food and drugs. It interacts with various pathways of which antagonism of adenosine receptors is the most significant but the other physiological pathways can be influenced by caffeine as well. Interaction with glutamate and dopamine neurotransmission pathways, competition with other substrates on cytochrome P450, non-competitive inhibition of acetylcholinesterase, blocking of nicotinic acetylcholine receptor and competitive inhibition of cyclic nucleotide phosphodiesterase can be mentioned. Because of caffeine availability in foods, beverages and drugs, it has practical relevance even if the effect is weak. Intake of coffee containing edibles for a long period or even for a substantial part of life makes caffeine´s impact significant. Low acute and chronic toxicity of caffeine is another important specification. The discoveries from the last few years point to the fact that caffeine would interfere with the progression of some age-related neurodegenerative disorders like Alzheimer’s and Parkinson’s diseases and dementia with Lewy bodies. In this review article, the recent findings about caffeine´s impact on neurodegenerative diseases are presented and important facts about the caffeine effect, including the substantial discoveries, are described.

Keywords: Adenosine, ageing, Alzheimer’s disease, coffee, dementia, neurological disorder, Parkinson’s disease, receptor, senescence.

Graphical Abstract

[1]
Lima-Silva, A.E.; Cristina-Souza, G.; Silva-Cavalcante, M.D.; Bertuzzi, R.; Bishop, D.J. Caffeine during high-intensity whole-body exercise: An integrative approach beyond the central nervous system. Nutrients, 2021, 13(8), 15.
[http://dx.doi.org/10.3390/nu13082503] [PMID: 34444663]
[2]
Roehrs, T.; Roth, T. Caffeine: Sleep and daytime sleepiness. Sleep Med. Rev., 2008, 12(2), 153-162.
[http://dx.doi.org/10.1016/j.smrv.2007.07.004] [PMID: 17950009]
[3]
Porciúncula, L.O.; Sallaberry, C.; Mioranzza, S.; Botton, P.H.S.; Rosemberg, D.B. The Janus face of caffeine. Neurochem. Int., 2013, 63(6), 594-609.
[http://dx.doi.org/10.1016/j.neuint.2013.09.009] [PMID: 24055856]
[4]
Yang, A.; Palmer, A.A.; de Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl.), 2010, 211(3), 245-257.
[http://dx.doi.org/10.1007/s00213-010-1900-1] [PMID: 20532872]
[5]
Beer, C.P.; Beer, D. Caffeine: The forgotten variable. Int. J. Psychiatry Clin. Pract., 2001, 5(4), 231-236.
[http://dx.doi.org/10.1080/13651500152732991] [PMID: 24921690]
[6]
Smith, A. Effects of caffeine on human behavior. Food Chem. Toxicol., 2002, 40(9), 1243-1255.
[http://dx.doi.org/10.1016/S0278-6915(02)00096-0] [PMID: 12204388]
[7]
Barrea, L.; Pugliese, G.; Frias-Toral, E.; El Ghoch, M.; Castellucci, B.; Chapela, S.P.; Carignano, M.L.A.; Laudisio, D.; Savastano, S.; Colao, A.; Muscogiuri, G. Coffee consumption, health benefits and side effects: A narrative review and update for dietitians and nutritionists. Crit. Rev. Food Sci. Nutr., 2021, 24, 1-24.
[http://dx.doi.org/10.1080/10408398.2021.1963207] [PMID: 34455881]
[8]
Anonymous, 2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[9]
Hebert, L.E.; Beckett, L.A.; Scherr, P.A.; Evans, D.A. Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Dis. Assoc. Disord., 2001, 15(4), 169-173.
[http://dx.doi.org/10.1097/00002093-200110000-00002] [PMID: 11723367]
[10]
Schröppel, H.; Baumann, A.; Fichter, M.; Meller, I. Incidence of dementia in the elderly: Review of age and sex effects. Eur. Psychiatry, 1996, 11(2), 68-80.
[http://dx.doi.org/10.1016/0924-9338(96)84783-3] [PMID: 19698427]
[11]
Knopman, D.S.; Roberts, R.O.; Pankratz, V.S.; Cha, R.H.; Rocca, W.A.; Mielke, M.M.; Boeve, B.F.; Tangalos, E.G.; Ivnik, R.J.; Geda, Y.E.; Petersen, R.C. Incidence of dementia among participants and nonparticipants in a longitudinal study of cognitive aging. Am. J. Epidemiol., 2014, 180(4), 414-423.
[http://dx.doi.org/10.1093/aje/kwu103] [PMID: 24859276]
[12]
Rudnitskaya, E.A.; Kozlova, T.A.; Burnyasheva, A.O.; Stefanova, N.A.; Kolosova, N.G. Glia not neurons: Uncovering brain dysmaturation in a rat model of Alzheimer’s disease. Biomedicines, 2021, 9(7), 18.
[http://dx.doi.org/10.3390/biomedicines9070823] [PMID: 34356887]
[13]
Wahmane, S.A.; Achbani, A.; Elatiqi, M.; Belmouden, A.; Nejmeddine, M. A meta-analysis of the prevalence of the mutation LRRK2 G2019S in patients with Parkinson’s disease in Africa. Gene Rep., 2021, 24, 6.
[http://dx.doi.org/10.1016/j.genrep.2021.101284]
[14]
Wu, K.M.; Zhang, Y.R.; Huang, Y.Y.; Dong, Q.; Tan, L.; Yu, J.T. The role of the immune system in Alzheimer’s disease. Ageing Res. Rev., 2021, 70, 101409.
[http://dx.doi.org/10.1016/j.arr.2021.101409] [PMID: 34273589]
[15]
Onyango, I.G.; Bennett, J.P.; Stokin, G.B. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen. Res., 2021, 16(8), 1467-1482.
[http://dx.doi.org/10.4103/1673-5374.303007] [PMID: 33433460]
[16]
Balin, B.J.; Hudson, A.P. Etiology and pathogenesis of late-onset Alzheimer’s disease. Curr. Allergy Asthma Rep., 2014, 14(3), 417.
[http://dx.doi.org/10.1007/s11882-013-0417-1] [PMID: 24429902]
[17]
Jiang, T.; Yu, J.T.; Tian, Y.; Tan, L. Epidemiology and etiology of Alzheimer’s disease: From genetic to non-genetic factors. Curr. Alzheimer Res., 2013, 10(8), 852-867.
[http://dx.doi.org/10.2174/15672050113109990155] [PMID: 23919770]
[18]
Smith, A.R.; Mill, J.; Lunnon, K. The molecular etiology of Alzheimer’s disease. Brain Pathol., 2020, 30(5), 964-965.
[PMID: 32654324]
[19]
Jevtic, S.; Sengar, A.S.; Salter, M.W.; McLaurin, J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res. Rev., 2017, 40, 84-94.
[http://dx.doi.org/10.1016/j.arr.2017.08.005] [PMID: 28941639]
[20]
Ashraf, G.M.; Tarasov, V.V.; Makhmutova, A.; Chubarev, V.N.; Avila-Rodriguez, M.; Bachurin, S.O.; Aliev, G. The possibility of an infectious etiology of Alzheimer disease. Mol. Neurobiol., 2019, 56(6), 4479-4491.
[http://dx.doi.org/10.1007/s12035-018-1388-y] [PMID: 30338482]
[21]
Fujiwara, Y.; Kabuta, C.; Sano, T.; Murayama, S.; Saito, Y.; Kabuta, T. Pathology-associated change in levels and localization of SIDT2 in postmortem brains of Parkinson’s disease and dementia with Lewy bodies patients. Neurochem. Int., 2022, 152, 105243.
[http://dx.doi.org/10.1016/j.neuint.2021.105243] [PMID: 34800582]
[22]
Pena-DIaz, S.; Ventura, S. One ring is sufficient to inhibit α-synuclein aggregation. Neural Regen. Res., 2022, 17(3), 508-511.
[http://dx.doi.org/10.4103/1673-5374.320973] [PMID: 34380879]
[23]
Laing, K.K.; Simoes, S.; Baena-Caldas, G.P.; Lao, P.J.; Kothiya, M.; Igwe, K.C.; Chesebro, A.G.; Houck, A.L.; Pedraza, L.; Hernández, A.I.; Li, J.; Zimmerman, M.E.; Luchsinger, J.A.; Barone, F.C.; Moreno, H.; Brickman, A.M.; Alzheimers Dis Neuroimaging, I. Cerebrovascular disease promotes tau pathology in Alzheimer’s disease. Brain Commun., 2020, 2(2), a132.
[http://dx.doi.org/10.1093/braincomms/fcaa132] [PMID: 33215083]
[24]
DeVos, S.L.; Corjuc, B.T.; Oakley, D.H.; Nobuhara, C.K.; Bannon, R.N.; Chase, A.; Commins, C.; Gonzalez, J.A.; Dooley, P.M.; Frosch, M.P.; Hyman, B.T. Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front. Neurosci., 2018, 12, 267.
[http://dx.doi.org/10.3389/fnins.2018.00267] [PMID: 29740275]
[25]
Ju, Y.; Tam, K.Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2022, 17(3), 543-549.
[http://dx.doi.org/10.4103/1673-5374.320970] [PMID: 34380884]
[26]
Tanaka, H.; Mizojiri, K. Drug-protein binding and blood-brain barrier permeability. J. Pharmacol. Exp. Ther., 1999, 288(3), 912-918.
[PMID: 10027826]
[27]
Inoue, D.; Furubayashi, T.; Tanaka, A.; Sakane, T.; Sugano, K. Effect of cerebrospinal fluid circulation on nose-to-brain direct delivery and distribution of caffeine in rats. Mol. Pharm., 2020, 17(11), 4067-4076.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00495] [PMID: 32955898]
[28]
Pemathilaka, R.L.; Caplin, J.D.; Aykar, S.S.; Montazami, R.; Hashemi, N.N. Placenta-on-a-chip: In vitro study of caffeine transport across placental barrier using liquid chromatography mass spectrometry. Glob. Chall., 2019, 3(3), 1800112.
[http://dx.doi.org/10.1002/gch2.201800112] [PMID: 31565368]
[29]
Eigenmann, D.E.; Jähne, E.A.; Smieško, M.; Hamburger, M.; Oufir, M. Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model. Anal. Bioanal. Chem., 2016, 408(8), 2095-2107.
[http://dx.doi.org/10.1007/s00216-016-9313-6] [PMID: 26790872]
[30]
Ribeiro, J.A.; Sebastião, A.M. Caffeine and adenosine. J. Alzheimers Dis., 2010, 20(s1)(Suppl. 1), S3-S15.
[http://dx.doi.org/10.3233/JAD-2010-1379] [PMID: 20164566]
[31]
Vincenzi, F.; Pasquini, S.; Borea, P.A.; Varani, K. Targeting adenosine receptors: A potential pharmacological avenue for acute and chronic pain. Int. J. Mol. Sci., 2020, 21(22), 21.
[http://dx.doi.org/10.3390/ijms21228710] [PMID: 33218074]
[32]
Bednarska-Szczepaniak, K.; Mieczkowski, A.; Kierozalska, A.; Pavlović Saftić, D.; Głąbała, K.; Przygodzki, T.; Stańczyk, L.; Karolczak, K.; Watała, C.; Rao, H.; Gao, Z.G.; Jacobson, K.A.; Leśnikowski, Z.J. Synthesis and evaluation of adenosine derivatives as A1, A2A, A2B and A3 adenosine receptor ligands containing boron clusters as phenyl isosteres and selective A3 agonists. Eur. J. Med. Chem., 2021, 223, 113607.
[http://dx.doi.org/10.1016/j.ejmech.2021.113607] [PMID: 34171656]
[33]
Wolska, N.; Rozalski, M. Blood platelet adenosine receptors as potential targets for anti-platelet therapy. Int. J. Mol. Sci., 2019, 20(21), E5475.
[http://dx.doi.org/10.3390/ijms20215475] [PMID: 31684173]
[34]
Alnouri, M.W.; Jepards, S.; Casari, A.; Schiedel, A.C.; Hinz, S.; Müller, C.E. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal., 2015, 11(3), 389-407.
[http://dx.doi.org/10.1007/s11302-015-9460-9] [PMID: 26126429]
[35]
Liu, Y.J.; Chen, J.; Li, X.; Zhou, X.; Hu, Y.M.; Chu, S.F.; Peng, Y.; Chen, N.H. Research progress on adenosine in central nervous system diseases. CNS Neurosci. Ther., 2019, 25(9), 899-910.
[http://dx.doi.org/10.1111/cns.13190] [PMID: 31334608]
[36]
Pasquini, S.; Contri, C.; Borea, P.A.; Vincenzi, F.; Varani, K. Adenosine and inflammation: Here, there and everywhere. Int. J. Mol. Sci., 2021, 22(14), 7685.
[http://dx.doi.org/10.3390/ijms22147685] [PMID: 34299305]
[37]
Leiva, A.; Guzmán-Gutiérrez, E.; Contreras-Duarte, S.; Fuenzalida, B.; Cantin, C.; Carvajal, L.; Salsoso, R.; Gutiérrez, J.; Pardo, F.; Sobrevia, L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol. Aspects Med., 2017, 55, 26-44.
[http://dx.doi.org/10.1016/j.mam.2017.01.007] [PMID: 28153452]
[38]
Rudich, N.; Ravid, K.; Sagi-Eisenberg, R. Mast cell adenosine receptors function: A focus on the a3 adenosine receptor and inflammation. Front. Immunol., 2012, 3, 134.
[http://dx.doi.org/10.3389/fimmu.2012.00134] [PMID: 22675325]
[39]
Layland, J.; Carrick, D.; Lee, M.; Oldroyd, K.; Berry, C. Adenosine: Physiology, pharmacology, and clinical applications. JACC Cardiovasc. Interv., 2014, 7(6), 581-591.
[http://dx.doi.org/10.1016/j.jcin.2014.02.009] [PMID: 24835328]
[40]
Coppi, E.; Cherchi, F.; Lucarini, E.; Ghelardini, C.; Pedata, F.; Jacobson, K.A.; Di Cesare Mannelli, L.; Pugliese, A.M.; Salvemini, D. Uncovering the mechanisms of adenosine receptor-mediated pain control: Focus on the A3 receptor subtype. Int. J. Mol. Sci., 2021, 22(15), 7952.
[http://dx.doi.org/10.3390/ijms22157952] [PMID: 34360719]
[41]
Cronstein, B.M. Adenosine receptors and wound healing, revised. ScientificWorldJournal, 2006, 6, 984-991.
[http://dx.doi.org/10.1100/tsw.2006.194] [PMID: 16921444]
[42]
Hofer, M.; Pospisil, M.; Weiterova, L.; Hoferova, Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules, 2011, 16(1), 675-685.
[http://dx.doi.org/10.3390/molecules16010675] [PMID: 21242946]
[43]
Albrecht-Küpper, B.E.; Leineweber, K.; Nell, P.G. Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal., 2012, 8(S1)(Suppl. 1), 91-99.
[http://dx.doi.org/10.1007/s11302-011-9274-3] [PMID: 22081230]
[44]
Zhan, E.; McIntosh, V.J.; Lasley, R.D.; Adenosine, A. Adenosine A2A and A2B receptors are both required for adenosine A1 receptor-mediated cardioprotection. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(3), H1183-H1189.
[http://dx.doi.org/10.1152/ajpheart.00264.2011] [PMID: 21743001]
[45]
Liu, J.; Reid, A.R.; Sawynok, J. Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline. Eur. J. Pharmacol., 2013, 698(1-3), 213-219.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.042] [PMID: 23142373]
[46]
Edman, M.C.; Andersson, S.V.; Delbro, D.; Gierow, J.P. Functional expression of the adenosine A1 receptor in rabbit lacrimal gland. Exp. Eye Res., 2008, 86(1), 110-117.
[http://dx.doi.org/10.1016/j.exer.2007.09.014] [PMID: 17998138]
[47]
Elmenhorst, D.; Garibotto, V.; Prescher, A.; Bauer, A. Adenosine A(1) receptors in human brain and transfected CHO cells: Inhibition of [(3)H]CPFPX binding by adenosine and caffeine. Neurosci. Lett., 2011, 487(3), 415-420.
[http://dx.doi.org/10.1016/j.neulet.2010.10.068] [PMID: 21056087]
[48]
Graham, T.E.; Rush, J.W.; van Soeren, M.H. Caffeine and exercise: Metabolism and performance. Can. J. Appl. Physiol., 1994, 19(2), 111-138.
[http://dx.doi.org/10.1139/h94-010] [PMID: 8081318]
[49]
Solinas, M.; Ferré, S.; You, Z.B.; Karcz-Kubicha, M.; Popoli, P.; Goldberg, S.R. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J. Neurosci., 2002, 22(15), 6321-6324.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06321.2002] [PMID: 12151508]
[50]
Vanattou-Saïfoudine, N.; Gossen, A.; Harkin, A.; Neuropsychopharmacology Res, G. A role for adenosine A(1) receptor blockade in the ability of caffeine to promote MDMA “Ecstasy”-induced striatal dopamine release. Eur. J. Pharmacol., 2011, 650(1), 220-228.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.012] [PMID: 20951694]
[51]
Salmi, P.; Chergui, K.; Fredholm, B.B. Adenosine-dopamine interactions revealed in knockout mice. J. Mol. Neurosci., 2005, 26(2-3), 239-244.
[http://dx.doi.org/10.1385/JMN:26:2-3:239] [PMID: 16012197]
[52]
Manalo, R.V.M.; Medina, P.M.B. Caffeine protects dopaminergic neurons from dopamine-induced neurodegeneration via synergistic adenosine-dopamine D2-like receptor interactions in transgenic Caenorhabditis elegans. Front. Neurosci., 2018, 12, 137.
[http://dx.doi.org/10.3389/fnins.2018.00137] [PMID: 29563862]
[53]
Kall, M.A.; Clausen, J. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man. Hum. Exp. Toxicol., 1995, 14(10), 801-807.
[http://dx.doi.org/10.1177/096032719501401004] [PMID: 8562120]
[54]
Furge, L.L.; Fletke, K.J. HPLC determination of caffeine and paraxanthine in urine: An assay for cytochrome P450 1A2 activity. Biochem. Mol. Biol. Educ., 2007, 35(2), 138-144.
[http://dx.doi.org/10.1002/bmb.28] [PMID: 21591074]
[55]
Simon, T.; Becquemont, L.; Hamon, B.; Nouyrigat, E.; Chodjania, Y.; Poirier, J.M.; Funck-Brentano, C.; Jaillon, P. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers. Br. J. Clin. Pharmacol., 2001, 52(5), 601-604.
[http://dx.doi.org/10.1046/j.0306-5251.2001.01494.x] [PMID: 11736870]
[56]
Tassaneeyakul, W.; Mohamed, Z.; Birkett, D.J.; McManus, M.E.; Veronese, M.E.; Tukey, R.H.; Quattrochi, L.C.; Gonzalez, F.J.; Miners, J.O. Caffeine as a probe for human cytochromes P450: Validation using cDNA-expression, immunoinhibition and microsomal kinetic and inhibitor techniques. Pharmacogenetics, 1992, 2(4), 173-183.
[http://dx.doi.org/10.1097/00008571-199208000-00004] [PMID: 1306118]
[57]
Guo, J.; Zhu, X.; Badawy, S.; Ihsan, A.; Liu, Z.; Xie, C.; Wang, X. Metabolism and mechanism of human cytochrome P450 enzyme 1A2. Curr. Drug Metab., 2021, 22(1), 40-49.
[http://dx.doi.org/10.2174/1389200221999210101233135] [PMID: 33397254]
[58]
Ursing, C.; Wikner, J.; Brismar, K.; Röjdmark, S. Caffeine raises the serum melatonin level in healthy subjects: An indication of melatonin metabolism by cytochrome P450(CYP)1A2. J. Endocrinol. Invest., 2003, 26(5), 403-406.
[http://dx.doi.org/10.1007/BF03345194] [PMID: 12906366]
[59]
Polachini, C.R.N.; Spanevello, R.M.; Schetinger, M.R.C.; Morsch, V.M. Cholinergic and purinergic systems: A key to multiple sclerosis? J. Neurol. Sci., 2018, 392, 8-21.
[http://dx.doi.org/10.1016/j.jns.2018.06.020] [PMID: 30097157]
[60]
Pohanka, M. Pharmacological influencing of the cholinergic anti-inflammatory pathway in infectious diseases and inflammatory pathologies. Mini Rev. Med. Chem., 2021, 21(6), 660-669.
[http://dx.doi.org/10.2174/1389557520666201117111715] [PMID: 33208075]
[61]
Khuanjing, T.; Palee, S.; Chattipakorn, S.C.; Chattipakorn, N. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiol. (Oxf.), 2020, 228(2), e13396.
[http://dx.doi.org/10.1111/apha.13396] [PMID: 31595611]
[62]
Hulse, E.J.; Haslam, J.D.; Emmett, S.R.; Woolley, T. Organophosphorus nerve agent poisoning: Managing the poisoned patient. Br. J. Anaesth., 2019, 123(4), 457-463.
[http://dx.doi.org/10.1016/j.bja.2019.04.061] [PMID: 31248646]
[63]
Franjesevic, A.J.; Sillart, S.B.; Beck, J.M.; Vyas, S.; Callam, C.S.; Hadad, C.M. Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry, 2019, 25(21), 5337-5371.
[http://dx.doi.org/10.1002/chem.201805075] [PMID: 30444932]
[64]
Pohanka, M.; Dobes, P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci., 2013, 14(5), 9873-9882.
[http://dx.doi.org/10.3390/ijms14059873] [PMID: 23698772]
[65]
Pohanka, M. The perspective of caffeine and caffeine derived compounds in therapy. Bratisl. Lek Listy, 2015, 116(9), 520-530.
[http://dx.doi.org/10.4149/BLL_2015_106] [PMID: 26435014]
[66]
Pohanka, M. The effects of caffeine on the cholinergic system. Mini Rev. Med. Chem., 2014, 14(6), 543-549.
[http://dx.doi.org/10.2174/1389557514666140529223436] [PMID: 24873820]
[67]
Fabiani, C.; Murray, A.P.; Corradi, J.; Antollini, S.S. A novel pharmacological activity of caffeine in the cholinergic system. Neuropharmacology, 2018, 135, 464-473.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.041] [PMID: 29614315]
[68]
Spoto, G.; Papponetti, M.; Barbacane, R.C.; Repola, D.; Conti, P.; Berardi, S. Caffeine, theophylline and bamifylline are similar as competitive inhibitors of 3′,5′-cyclic amp phosphodiesterase in vitro. Int. J. Immunopathol. Pharmacol., 1997, 10(2), 153-158.
[69]
Berardi, S.; Papponetti, M.; Conti, P.; Spoto, G. Bamifylline similar to theophylline and caffeine is a competitive inhibitor of the cyclic nucleotide phosphodiesterase V. Int. J. Immunopathol. Pharmacol., 1996, 9(1), 29-32.
[http://dx.doi.org/10.1177/039463209600900106]
[70]
Aronsen, L.; Orvoll, E.; Lysaa, R.; Ravna, A.W.; Sager, G. Modulation of high affinity ATP-dependent cyclic nucleotide transporters by specific and non-specific cyclic nucleotide phosphodiesterase inhibitors. Eur. J. Pharmacol., 2014, 745, 249-253.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.051] [PMID: 25445042]
[71]
Abusnina, A.; Lugnier, C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell. Signal., 2017, 39, 55-65.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.018] [PMID: 28754627]
[72]
Mokra, D.; Mokry, J.; Matasova, K. Phosphodiesterase inhibitors: Potential role in the respiratory distress of neonates. Pediatr. Pulmonol., 2018, 53(9), 1318-1325.
[http://dx.doi.org/10.1002/ppul.24082] [PMID: 29905405]
[73]
Singh, N.; Shreshtha, A.K.; Thakur, M.S.; Patra, S. Xanthine scaffold: Scope and potential in drug development. Heliyon, 2018, 4(10), e00829.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00829] [PMID: 30302410]
[74]
Saboury, A.A.; Divsalar, A.; Ataie, G.; Amanlou, M.; Moosavi-Movahedi, A.A.; Hakimelahi, G.H. Inhibition study of adenosine deaminase by caffeine using spectroscopy and isothermal titration calorimetry. Acta Biochim. Pol., 2003, 50(3), 849-855.
[http://dx.doi.org/10.18388/abp.2003_3676] [PMID: 14515165]
[75]
Zhao, Y.; Ren, J.; Hillier, J.; Lu, W.; Jones, E.Y. Caffeine inhibits Notum activity by binding at the catalytic pocket. Commun. Biol., 2020, 3(1), 555.
[http://dx.doi.org/10.1038/s42003-020-01286-5] [PMID: 33033363]
[76]
Jee, H.J.; Lee, S.G.; Bormate, K.J.; Jung, Y.S. Effect of caffeine consumption on the risk for neurological and psychiatric disorders: Sex differences in human. Nutrients, 2020, 12(10), E3080.
[http://dx.doi.org/10.3390/nu12103080] [PMID: 33050315]
[77]
Cappelletti, S.; Piacentino, D.; Fineschi, V.; Frati, P.; Cipolloni, L.; Aromatario, M. Caffeine-related deaths: Manner of deaths and categories at risk. Nutrients, 2018, 10(5), E611.
[http://dx.doi.org/10.3390/nu10050611] [PMID: 29757951]
[78]
Jones, A.W. Review of caffeine-related fatalities along with postmortem blood concentrations in 51 poisoning deaths. J. Anal. Toxicol., 2017, 41(3), 167-172.
[http://dx.doi.org/10.1093/jat/bkx011] [PMID: 28334840]
[79]
Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a factor influencing the functioning of the human body-friend or foe? Nutrients, 2021, 13(9), 3088.
[http://dx.doi.org/10.3390/nu13093088] [PMID: 34578966]
[80]
Zhang, R.C.; Madan, C.R. How does caffeine influence memory? Drug, experimental, and demographic factors. Neurosci. Biobehav. Rev., 2021, 131, 525-538.
[http://dx.doi.org/10.1016/j.neubiorev.2021.09.033] [PMID: 34563564]
[81]
De Sanctis, V.; Soliman, N.; Soliman, A.T.; Elsedfy, H.; Di Maio, S.; El Kholy, M.; Fiscina, B. Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: A significant public health hazard. Acta Biomed., 2017, 88(2), 222-231.
[PMID: 28845841]
[82]
Wolk, B.J.; Ganetsky, M.; Babu, K.M. Toxicity of energy drinks. Curr. Opin. Pediatr., 2012, 24(2), 243-251.
[http://dx.doi.org/10.1097/MOP.0b013e3283506827] [PMID: 22426157]
[83]
Yubero-Lahoz, S.; Pardo, R.; Farre, M.; Mathuna, B.O.; Torrens, M.; Mustata, C.; Perez-Mañá, C.; Langohr, K.; Carbó, M.L.; de la Torre, R. Changes in CYP1A2 activity in humans after 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) administration using caffeine as a probe drug. Drug Metab. Pharmacokinet., 2012, 27(6), 605-613.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-032] [PMID: 22673010]
[84]
Londzin, P.; Zamora, M.; Kąkol, B.; Taborek, A.; Folwarczna, J. Potential of caffeine in Alzheimer’s disease-A review of experimental studies. Nutrients, 2021, 13(2), 537.
[http://dx.doi.org/10.3390/nu13020537] [PMID: 33562156]
[85]
Śliwińska, S.; Jeziorek, M. The role of nutrition in Alzheimer’s disease. Rocz. Panstw. Zakl. Hig., 2021, 72(1), 29-39.
[PMID: 33882663]
[86]
Zhou, X.; Zhang, L. The neuroprotective effects of moderate and regular caffeine consumption in Alzheimer’s disease. Oxid. Med. Cell. Longev., 2021, 2021, 5568011.
[http://dx.doi.org/10.1155/2021/5568011] [PMID: 34447487]
[87]
Carman, A.J.; Dacks, P.A.; Lane, R.F.; Shineman, D.W.; Fillit, H.M. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease. J. Nutr. Health Aging, 2014, 18(4), 383-392.
[http://dx.doi.org/10.1007/s12603-014-0021-7] [PMID: 24676319]
[88]
Haller, S.; Montandon, M.L.; Rodriguez, C.; Moser, D.; Toma, S.; Hofmeister, J.; Sinanaj, I.; Lovblad, K.O.; Giannakopoulos, P. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment. J. Alzheimers Dis., 2014, 41(1), 101-112.
[http://dx.doi.org/10.3233/JAD-132360] [PMID: 24577471]
[89]
Zhang, Y.; Yang, H.; Li, S.; Cao, Z.; Li, W.D.; Yan, T.; Wang, Y. Association of coffee and genetic risk with incident dementia in middle-aged and elderly adults. Nutr. Neurosci., 2021, 10, 1-10.
[http://dx.doi.org/10.1080/1028415X.2021.1966868] [PMID: 34424144]
[90]
Laurent, C.; Eddarkaoui, S.; Derisbourg, M.; Leboucher, A.; Demeyer, D.; Carrier, S.; Schneider, M.; Hamdane, M.; Müller, C.E.; Buée, L.; Blum, D. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol. Aging, 2014, 35(9), 2079-2090.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.027] [PMID: 24780254]
[91]
Machado, M.L.; Arantes, L.P.; da Silveira, T.L.; Zamberlan, D.C.; Cordeiro, L.M.; Obetine, F.B.B.; da Silva, A.F.; da Cruz, I.B.M.; Soares, F.A.A.; Oliveira, R.P. Ilex paraguariensis extract provides increased resistance against oxidative stress and protection against Amyloid beta-induced toxicity compared to caffeine in Caenorhabditis elegans. Nutr. Neurosci., 2021, 24(9), 697-709.
[http://dx.doi.org/10.1080/1028415X.2019.1671694] [PMID: 31595831]
[92]
Kim, S.; Moon, G.J.; Kim, H.J.; Kim, D.G.; Kim, J.; Nam, Y.; Sharma, C.; Leem, E.; Lee, S.; Kim, K.S.; Ha, C.M.; McLean, C.; Jin, B.K.; Shin, W.H.; Kim, D.W.; Oh, Y.S.; Hong, C.W.; Kim, S.R. Control of hippocampal prothrombin kringle-2 (pKr-2) expression reduces neurotoxic symptoms in five familial Alzheimer’s disease mice. Br. J. Pharmacol., 2022, 179(5), 998-1016.
[PMID: 34524687]
[93]
Negida, A.; Elfil, M.; Attia, A.; Farahat, E.; Gabr, M.; Essam, A.; Attia, D.; Ahmed, H. Caffeine; the forgotten potential for Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2017, 16(6), 652-657.
[http://dx.doi.org/10.2174/1871527315666161107091149] [PMID: 27823571]
[94]
Chen, J.F.; Schwarzschild, M.A. Do caffeine and more selective adenosine A2A receptor antagonists protect against dopaminergic neurodegeneration in Parkinson’s disease? Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S45-S53.
[http://dx.doi.org/10.1016/j.parkreldis.2020.10.024] [PMID: 33349580]
[95]
Ren, X.; Chen, J.F. Caffeine and Parkinson’s disease: Multiple benefits and emerging mechanisms. Front. Neurosci., 2020, 14, 602697.
[http://dx.doi.org/10.3389/fnins.2020.602697] [PMID: 33390888]
[96]
Kolodkin, A.N.; Sharma, R.P.; Colangelo, A.M.; Ignatenko, A.; Martorana, F.; Jennen, D.; Bried, J.J.; Brady, N.; Barberis, M.; Mondeel, T.; Papa, M.; Kumar, V.; Peters, B.; Skupin, A.; Alberghina, L.; Balling, R.; Westerhoff, H.V. ROS networks: Designs, aging, Parkinson’s disease and precision therapies. NPJ Syst. Biol. Appl., 2020, 6(1), 20.
[http://dx.doi.org/10.1038/s41540-020-00150-w] [PMID: 32561750]
[97]
Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: Insight into the role of Nrf-2 and A2AR signaling. Antioxidants, 2020, 9(9), 21.
[http://dx.doi.org/10.3390/antiox9090902] [PMID: 32971922]
[98]
Burn, D.J. Cortical Lewy body disease and Parkinson’s disease dementia. Curr. Opin. Neurol., 2006, 19(6), 572-579.
[http://dx.doi.org/10.1097/01.wco.0000247607.34697.a2] [PMID: 17102696]
[99]
Kosaka, K. Lewy body disease and dementia with Lewy bodies. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2014, 90(8), 301-306.
[http://dx.doi.org/10.2183/pjab.90.301] [PMID: 25311140]
[100]
Sharp, M.E.; Marder, K.S.; Côté, L.; Clark, L.N.; Nichols, W.C.; Vonsattel, J.P.; Alcalay, R.N. Parkinson’s disease with Lewy bodies associated with a heterozygous PARKIN dosage mutation. Mov. Disord., 2014, 29(4), 566-568.
[http://dx.doi.org/10.1002/mds.25792] [PMID: 24375549]
[101]
Mezey, E.; Dehejia, A.M.; Harta, G.; Tresser, N.; Suchy, S.F.; Nussbaum, R.L.; Brownstein, M.J.; Polymeropoulos, M.H. Alpha synuclein is present in Lewy bodies in sporadic Parkinson’s disease. Mol. Psychiatry, 1998, 3(6), 493-499.
[http://dx.doi.org/10.1038/sj.mp.4000446] [PMID: 9857974]
[102]
Tsuboi, Y.; Dickson, D.W. Dementia with Lewy bodies and Parkinson’s disease with dementia: Are they different? Parkinsonism Relat. Disord., 2005, 11(Suppl. 1), S47-S51.
[http://dx.doi.org/10.1016/j.parkreldis.2004.10.014] [PMID: 15885629]
[103]
Colloby, S.; O’Brien, J. Functional imaging in Parkinson’s disease and dementia with Lewy bodies. J. Geriatr. Psychiatry Neurol., 2004, 17(3), 158-163.
[http://dx.doi.org/10.1177/0891988704267468] [PMID: 15312279]
[104]
Volta, M.; Lavdas, A.A.; Obergasteiger, J.; Überbacher, C.; Picard, A.; Pramstaller, P.P.; Hicks, A.A.; Corti, C. Elevated levels of alpha-synuclein blunt cellular signal transduction downstream of Gq protein-coupled receptors. Cell. Signal., 2017, 30, 82-91.
[http://dx.doi.org/10.1016/j.cellsig.2016.11.012] [PMID: 27871937]
[105]
Bakshi, R.; Macklin, E.A.; Hung, A.Y.; Hayes, M.T.; Hyman, B.T.; Wills, A.M.; Gomperts, S.N.; Growdon, J.H.; Ascherio, A.; Scherzer, C.R.; Schwarzschild, M.A. Associations of lower caffeine intake and plasma urate levels with idiopathic Parkinson’s disease in the harvard biomarkers study. J. Parkinsons Dis., 2020, 10(2), 505-510.
[http://dx.doi.org/10.3233/JPD-191882] [PMID: 32250320]
[106]
Ascherio, A.; Zhang, S.M.M.; Hernán, M.A.; Kawachi, I.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann. Neurol., 2001, 50(1), 56-63.
[http://dx.doi.org/10.1002/ana.1052] [PMID: 11456310]
[107]
Simon, D.K.; Wu, C.; Tilley, B.C.; Lohmann, K.; Klein, C.; Payami, H.; Wills, A.M.; Aminoff, M.J.; Bainbridge, J.; Dewey, R.; Hauser, R.A.; Schaake, S.; Schneider, J.S.; Sharma, S.; Singer, C.; Tanner, C.M.; Truong, D.; Wei, P.; Wong, P.S.; Yang, T. Caffeine, creatine, GRIN2A and Parkinson’s disease progression. J. Neurol. Sci., 2017, 375, 355-359.
[http://dx.doi.org/10.1016/j.jns.2017.02.032] [PMID: 28320167]
[108]
Popat, R.A.; Van Den Eeden, S.K.; Tanner, C.M.; Kamel, F.; Umbach, D.M.; Marder, K.; Mayeux, R.; Ritz, B.; Ross, G.W.; Petrovitch, H.; Topol, B.; McGuire, V.; Costello, S.; Manthripragada, A.D.; Southwick, A.; Myers, R.M.; Nelson, L.M. Coffee, ADORA2A, and CYP1A2: The caffeine connection in Parkinson’s disease. Eur. J. Neurol., 2011, 18(5), 756-765.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03353.x] [PMID: 21281405]
[109]
Hong, C.T.; Chan, L.; Bai, C.H. The effect of caffeine on the risk and progression of Parkinson’s disease: A meta-analysis. Nutrients, 2020, 12(6), 12.
[http://dx.doi.org/10.3390/nu12061860] [PMID: 32580456]
[110]
Yan, R.; Zhang, J.; Park, H.J.; Park, E.S.; Oh, S.; Zheng, H.; Junn, E.; Voronkov, M.; Stock, J.B.; Mouradian, M.M. Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson’s disease and DLB. Proc. Natl. Acad. Sci. USA, 2018, 115(51), E12053-E12062.
[http://dx.doi.org/10.1073/pnas.1813365115] [PMID: 30509990]
[111]
Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. Protective effects of the caffeine against neurodegenerative diseases. Curr. Med. Chem., 2019, 26(27), 5137-5151.
[http://dx.doi.org/10.2174/0929867324666171009104040] [PMID: 28990513]
[112]
Herden, L.; Weissert, R. The impact of coffee and caffeine on multiple sclerosis compared to other neurodegenerative diseases. Front. Nutr., 2018, 5, 133.
[http://dx.doi.org/10.3389/fnut.2018.00133] [PMID: 30622948]
[113]
Driver-Dunckley, E.; Adler, C.H.; Hentz, J.G.; Dugger, B.N.; Shill, H.A.; Caviness, J.N.; Sabbagh, M.N.; Beach, T.G.; Arizona Parkinson Dis, C. Olfactory dysfunction in incidental Lewy body disease and Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(11), 1260-1262.
[http://dx.doi.org/10.1016/j.parkreldis.2014.08.006] [PMID: 25172126]
[114]
Tortosa, A.; López, E.; Ferrer, I. Bcl-2 and Bax proteins in Lewy bodies from patients with Parkinson’s disease and Diffuse Lewy body disease. Neurosci. Lett., 1997, 238(1-2), 78-80.
[http://dx.doi.org/10.1016/S0304-3940(97)00837-9] [PMID: 9464659]
[115]
Jacobson, K.A.; Gao, Z.G.; Matricon, P.; Eddy, M.T.; Carlsson, J.; Adenosine, A. Adenosine A2A receptor antagonists: From caffeine to selective non-xanthines. Br. J. Pharmacol., 2020, bph.15103. [Online ahead of print].
[http://dx.doi.org/10.1111/bph.15103] [PMID: 32424811]
[116]
Faudone, G.; Arifi, S.; Merk, D. The medicinal chemistry of caffeine. J. Med. Chem., 2021, 64(11), 7156-7178.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00261] [PMID: 34019396]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy