Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Literature Review on the Use of Herbal Extracts in the Treatment of Non- Alcoholic Fatty Liver Disease

Author(s): Yutian Wang, Junzi Wu* and Anhua Shi*

Volume 22, Issue 11, 2022

Published on: 18 July, 2022

Page: [1123 - 1145] Pages: 23

DOI: 10.2174/1871530322666220408123746

Price: $65

Abstract

Background: Non-alcoholic fatty liver disease is a common chronic liver injury disease, and its incidence is rapidly increasing across the globe, thus becoming a serious threat to human health. So far, the clinical prevention and treatment of non-alcoholic fatty liver disease mainly include single-targeted drug therapy, surgical treatment and lifestyle changes. However, these treatments cannot completely address the complex pathogenesis of non-alcoholic fatty liver disease and have various side effects. Recent studies reveal that many herbal extracts are found to have potential anti-non-alcoholic fatty liver disease activities.

Objective: This paper presents a review on herbal extracts used for the treatment of non-alcoholic fatty liver disease in experimental studies to provide a theoretical basis for their clinical application in the treatment of non-alcoholic fatty liver disease and for new drug development.

Methods: Scientific papers were retrieved by searching the PubMed database up to Feb 2021 using the following keywords: ‘non-alcoholic fatty liver disease’, ‘herbal extracts’ (‘flavonoids’, ‘saponins’, ‘quinones’, ‘phenolic compounds’, ‘alkaloids’, ‘polysaccharides’, ‘ginkgolide B’, ‘schizandrin B’, ‘ursolic acid’) and ‘mechanism’.

Results: The pharmacological effects and mechanisms of many herbal extracts can reverse the adverse health effects of non-alcoholic fatty liver disease.

Conclusion: In vitro and in vivo experimental studies indicated that herbal extracts can improve the symptoms of non-alcoholic fatty liver disease by inhibiting inflammation, antioxidant stress, improvement of lipid metabolism and insulin sensitivity and regulating intestinal bacteria flora. However, there needs to be sufficient data from human clinical trials to prove their efficacy and safety.

Keywords: Herbal extracts, non-alcoholic fatty liver disease, treatment, mechanism, pharmacological effects, liver injury, insulin sensitivity, clinical trial.

« Previous
Graphical Abstract

[1]
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 2017, 49(2), 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[2]
Than, N.N.; Newsome, P.N. A concise review of non-alcoholic fatty liver disease. Atherosclerosis, 2015, 239(1), 192-202.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.01.001] [PMID: 25617860]
[3]
Bugianesi, E.; Marietti, M. Non-alcoholic fatty liver disease (NAFLD). Recenti Prog. Med., 2016, 107(7), 360-368.
[PMID: 27571466]
[4]
Mantovani, A.; Petracca, G.; Beatrice, G.; Csermely, A.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: a meta-analysis of observational cohort studies. Gut, 2021, 71(4)
[http://dx.doi.org/10.1136/gutjnl-2021-324191]
[5]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[6]
Day, C.P.; James, O.F. Steatohepatitis: a tale of two “hits”? Gastroenterology, 1998, 114(4), 842-845.
[http://dx.doi.org/10.1016/S0016-5085(98)70599-2] [PMID: 9547102]
[7]
Noureddin, M.; Sanyal, A.J. Pathogenesis of NASH: the impact of multiple pathways. Curr. Hepatol. Rep., 2018, 17(4), 350-360.
[http://dx.doi.org/10.1007/s11901-018-0425-7] [PMID: 31380156]
[8]
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[9]
Angulo, P. NAFLD, obesity, and bariatric surgery. Gastroenterology, 2006, 130(6), 1848-1852.
[http://dx.doi.org/10.1053/j.gastro.2006.03.041] [PMID: 16697746]
[10]
Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol., 2017, 67(4), 829-846.
[http://dx.doi.org/10.1016/j.jhep.2017.05.016] [PMID: 28545937]
[11]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[12]
Xu, Y.; Guo, W.; Zhang, C.; Chen, F.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Front. Pharmacol., 2020, 11, 601.
[http://dx.doi.org/10.3389/fphar.2020.00601] [PMID: 32477116]
[13]
Liu, C.; Liao, J.Z.; Li, P.Y. Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease. World J. Gastroenterol., 2017, 23(11), 1964-1973.
[http://dx.doi.org/10.3748/wjg.v23.i11.1964] [PMID: 28373762]
[14]
Tohge, T.; de Souza, L.P.; Fernie, A.R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot., 2017, 68(15), 4013-4028.
[http://dx.doi.org/10.1093/jxb/erx177] [PMID: 28922752]
[15]
Murahari, M.; Singh, V.; Chaubey, P.; Suvarna, V. A Critical review on anticancer mechanisms of natural flavonoid Puerarin. Anticancer. Agents Med. Chem., 2020, 20(6), 678-686.
[http://dx.doi.org/10.2174/1871520620666200227091811] [PMID: 32106804]
[16]
García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552.
[http://dx.doi.org/10.1007/s00011-009-0037-3] [PMID: 19381780]
[17]
Cho, D.Y.; Lee, M.K.; Kim, E.A.; Lee, S.Y. Analysis of the isoflavone content, antioxidant activity, and SDS-PAGE of cheese analogs produced with different proteolysis and soymilk residue contents. J. Korean Soc. Appl. Biol. Chem., 2015, 58(4), 501-509.
[http://dx.doi.org/10.1007/s13765-015-0064-4]
[18]
Fan, W.; Qian, S.; Qian, P.; Li, X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. Int. J. Mol. Cell. Virol., 2016, 220, 112-116.
[http://dx.doi.org/10.1016/j.virusres.2016.04.021] [PMID: 27126774]
[19]
Romanová, D.; Vachálková, A.; Cipák, L.; Ovesná, Z.; Rauko, P. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma, 2001, 48(2), 104-107.
[PMID: 11478688]
[20]
Seelinger, G.; Merfort, I.; Schempp, C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med., 2008, 74(14), 1667-1677.
[http://dx.doi.org/10.1055/s-0028-1088314] [PMID: 18937165]
[21]
Abu-Elsaad, N.; El-Karef, A. Protection against nonalcoholic steatohepatitis through targeting IL-18 and IL-1alpha by luteolin. Pharmacol. Rep., 2019, 71(4), 688-694.
[http://dx.doi.org/10.1016/j.pharep.2019.03.009] [PMID: 31207429]
[22]
Kwon, E.Y.; Kim, S.Y.; Choi, M.S. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients, 2018, 10(8), e2612.
[http://dx.doi.org/10.3390/nu10080979] [PMID: 30060507]
[23]
Yin, Y.; Gao, L.; Lin, H.; Wu, Y.; Han, X.; Zhu, Y.; Li, J. Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. Biochem. Biophys. Res. Commun., 2017, 482(4), 720-726.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.101] [PMID: 27888103]
[24]
Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur. J. Pharmacol., 2016, 773, 13-23.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.002] [PMID: 26801071]
[25]
Singh, J.P.; Selvendiran, K.; Banu, S.M.; Padmavathi, R.; Sakthisekaran, D. Protective role of Apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats. Phytomedicine, 2004, 11(4), 309-314.
[http://dx.doi.org/10.1078/0944711041495254] [PMID: 15185843]
[26]
Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants, 2019, 8(2), 35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[27]
Lu, J.; Meng, Z.; Cheng, B.; Liu, M.; Tao, S.; Guan, S. Apigenin reduces the excessive accumulation of lipids induced by palmitic acid via the AMPK signaling pathway in HepG2 cells. Exp. Ther. Med., 2019, 18(4), 2965-2971.
[http://dx.doi.org/10.3892/etm.2019.7905] [PMID: 31572539]
[28]
Un, J.; Yun, Y.C. Myung,Sook.C; apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients, 2016, 8(5), 305.
[http://dx.doi.org/10.3390/nu8050305]
[29]
Lv, Y.; Gao, X.; Luo, Y.; Fan, W.; Shen, T.; Ding, C.; Yao, M.; Song, S.; Yan, L. Apigenin ameliorates HFD-induced NAFLD through regulation of the XO/NLRP3 pathways. J. Nutr. Biochem., 2019, 71, 110-121.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.015] [PMID: 31325892]
[30]
Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem. Pharmacol., 2017, 136, 136-149.
[http://dx.doi.org/10.1016/j.bcp.2017.04.014] [PMID: 28414138]
[31]
Yang, J.Y.; Li, M.; Zhang, C.L.; Liu, D. Pharmacological properties of baicalin on liver diseases: a narrative review. Pharmacol. Rep., 2021, 73(5), 1230-1239.
[http://dx.doi.org/10.1007/s43440-021-00227-1] [PMID: 33595821]
[32]
Xi, Y.; Wu, M.; Li, H.; Dong, S.; Luo, E.; Gu, M.; Shen, X.; Jiang, Y.; Liu, Y.; Liu, H. Baicalin attenuates high fat diet-induced obesity and liver dysfunction: dose-response and potential role of CaMKKβ/AMPK/ACC pathway. Cell. Physiol. Biochem., 2015, 35(6), 2349-2359.
[http://dx.doi.org/10.1159/000374037] [PMID: 25896320]
[33]
Sun, W.; Liu, P.; Wang, T.; Wang, X.; Zheng, W.; Li, J. Baicalein reduces hepatic fat accumulation by activating AMPK in oleic acid-induced HepG2 cells and high-fat diet-induced non-insulin-resistant mice. Food Funct., 2020, 11(1), 711-721.
[http://dx.doi.org/10.1039/C9FO02237F] [PMID: 31909773]
[34]
Xi, Y.L.; Li, H.X.; Chen, C.; Liu, Y.Q.; Lv, H.M.; Dong, S.Q.; Luo, E.F.; Gu, M.B.; Liu, H. Baicalin attenuates high fat diet-induced insulin resistance and ectopic fat storage in skeletal muscle, through modulating the protein kinase B/Glycogen synthase kinase 3 beta pathway. Chin. J. Nat. Med., 2016, 14(1), 48-55.
[PMID: 26850346]
[35]
Zhang, J.; Zhang, H.; Deng, X.; Zhang, N.; Liu, B.; Xin, S.; Li, G.; Xu, K. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice. Life Sci., 2018, 192, 46-54.
[http://dx.doi.org/10.1016/j.lfs.2017.11.027] [PMID: 29158052]
[36]
Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145, 187-196.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[37]
Song, Y.; Wu, W.; Sheng, L.; Jiang, B.; Li, X.; Cai, K. Chrysin ameliorates hepatic steatosis induced by a diet deficient in methionine and choline by inducing the secretion of hepatocyte nuclear factor 4α-dependent very low-density lipoprotein. J. Biochem. Mol. Toxicol., 2020, 34(7), e22497.
[http://dx.doi.org/10.1002/jbt.22497] [PMID: 32220030]
[38]
Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; Nassiri-Asl, M. Review of the effects of vitexin in oxidative stress-related diseases. Food Sci. Nutr., 2020, 8(6), 2569-2580.
[http://dx.doi.org/10.1002/fsn3.1567] [PMID: 32566174]
[39]
Inamdar, S.; Joshi, A.; Malik, S.; Boppana, R.; Ghaskadbi, S. Vitexin alleviates non-alcoholic fatty liver disease by activating AMPK in high fat diet fed mice. Biochem. Biophys. Res. Commun., 2019, 519(1), 106-112.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.139] [PMID: 31472955]
[40]
Maalik, A.; Khan, F.; Mumtaz, A.; Mehmood, A.; Azhar, S.; Atif, M.; Karim, S.; Altaf, Y.; Tariq, I. Pharmacological applications of quercetin and its derivatives: A short review. Trop. J. Pharm. Res., 2014, 13(9), 1561-1566.
[http://dx.doi.org/10.4314/tjpr.v13i9.26]
[41]
Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res., 2019, 33(12), 3140-3152.
[http://dx.doi.org/10.1002/ptr.6486] [PMID: 31452288]
[42]
Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[43]
Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol., 2018, 114, 52-60.
[http://dx.doi.org/10.1016/j.fct.2018.02.019] [PMID: 29438776]
[44]
Xu, Y.; Han, J.; Dong, J.; Fan, X.; Cai, Y.; Li, J.; Wang, T.; Zhou, J.; Shang, J. Metabolomics characterizes the effects and mechanisms of quercetin in nonalcoholic fatty liver disease development. Int. J. Mol. Sci., 2019, 20(5), 1220.
[http://dx.doi.org/10.3390/ijms20051220]
[45]
Teng, D.; Luan, X. Research progress of isorhamnetin in pharma codynamics. Clin. J. Tradit. Chin. Med., 2016, 28(04), 593-596.
[46]
Ganbold, M.; Owada, Y.; Ozawa, Y.; Shimamoto, Y.; Ferdousi, F.; Tominaga, K.; Zheng, Y.W.; Ohkohchi, N.; Isoda, H. Isorhamnetin alleviates steatosis and fibrosis in mice with nonalcoholic steatohepatitis. Sci. Rep., 2019, 9(1), 16210.
[http://dx.doi.org/10.1038/s41598-019-52736-y] [PMID: 31700054]
[47]
Zheng, P.; Ji, G.; Ma, Z.; Liu, T.; Xin, L.; Wu, H.; Liang, X.; Liu, J. Therapeutic effect of puerarin on non-alcoholic rat fatty liver by improving leptin signal transduction through JAK2/STAT3 pathways. Am. J. Chin. Med., 2009, 37(1), 69-83.
[http://dx.doi.org/10.1142/S0192415X09006692] [PMID: 19222113]
[48]
Wang, S.; Yang, F.J.; Shang, L.C.; Zhang, Y.H.; Zhou, Y.; Shi, X.L. Puerarin protects against high-fat high-sucrose diet-induced non-alcoholic fatty liver disease by modulating PARP-1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother. Res., 2019, 33(9), 2347-2359.
[http://dx.doi.org/10.1002/ptr.6417] [PMID: 31273855]
[49]
Kang, O.H.; Kim, S.B.; Mun, S.H.; Seo, Y.S.; Hwang, H.C.; Lee, Y.M.; Lee, H.S.; Kang, D.G.; Kwon, D.Y. Puerarin ameliorates hepatic steatosis by activating the PPARα and AMPK signaling pathways in hepatocytes. Int. J. Mol. Med., 2015, 35(3), 803-809.
[http://dx.doi.org/10.3892/ijmm.2015.2074] [PMID: 25605057]
[50]
Mohamed Salih, S.; Nallasamy, P.; Muniyandi, P.; Periyasami, V.; Carani Venkatraman, A. Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. J. Diabetes, 2009, 1(4), 278-287.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00045.x] [PMID: 20923528]
[51]
Deng, M.; Chen, H.; Long, J.; Song, J.; Xie, L.; Li, X. Calycosin: a review of its pharmacological effects and application prospects. Expert Rev. Anti Infect. Ther., 2021, 19(7), 911-925.
[http://dx.doi.org/10.1080/14787210.2021.1863145] [PMID: 33346681]
[52]
Duan, X.; Meng, Q.; Wang, C.; Liu, Z.; Sun, H.; Huo, X.; Sun, P.; Ma, X.; Peng, J.; Liu, K. Effects of calycosin against high-fat diet-induced nonalcoholic fatty liver disease in mice. J. Gastroenterol. Hepatol., 2018, 33(2), 533-542.
[http://dx.doi.org/10.1111/jgh.13884] [PMID: 28699662]
[53]
Alsanea, S.; Gao, M.; Liu, D. Phloretin prevents high-fat diet-induced obesity and improves metabolic homeostasis. AAPS J., 2017, 19(3), 797-805.
[http://dx.doi.org/10.1208/s12248-017-0053-0] [PMID: 28197827]
[54]
Wang, X.; Hasegawa, J.; Kitamura, Y.; Wang, Z.; Matsuda, A.; Shinoda, W.; Miura, N.; Kimura, K. Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. J. Pharmacol. Sci., 2011, 117(3), 129-138.
[http://dx.doi.org/10.1254/jphs.11097FP] [PMID: 21979313]
[55]
Kim, M.S.; Hur, H.J.; Kwon, D.Y.; Hwang, J.T. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol. Cell. Endocrinol., 2012, 358(1), 127-134.
[http://dx.doi.org/10.1016/j.mce.2012.03.013] [PMID: 22476082]
[56]
Chen, J.; Liu, J.; Wang, Y.; Hu, X.; Zhou, F.; Hu, Y.; Yuan, Y.; Xu, Y. Wogonin mitigates nonalcoholic fatty liver disease via enhancing PPARα/AdipoR2, in vivo and in vitro. Biomed. Pharmacother., 2017, 91, 621-631.
[http://dx.doi.org/10.1016/j.biopha.2017.04.125] [PMID: 28486193]
[57]
Wang, Q.; Ou, Y.; Hu, G.; Wen, C.; Yue, S.; Chen, C.; Xu, L.; Xie, J.; Dai, H.; Xiao, H.; Zhang, Y.; Qi, R. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice. Br. J. Pharmacol., 2020, 177(8), 1806-1821.
[http://dx.doi.org/10.1111/bph.14938] [PMID: 31758699]
[58]
Zeng, X.; Yang, J.; Hu, O.; Huang, J.; Ran, L.; Chen, M.; Zhang, Y.; Zhou, X.; Zhang, J.Zh.Q. Dihydromyricetin ameliorates nonalcoholic fatty liver disease by improving mitochondrial respiratory capacity and redox homeostasis through modulation of SIRT3 signaling. Antioxid. Redox Signal., 2018, 2017, 7172.
[PMID: 29310441]
[59]
Xia, S.F.; Le, G.W.; Wang, P.; Qiu, Y.Y.; Jiang, Y.Y.; Tang, X. Regressive effect of myricetin on hepatic steatosis in mice fed a high-fat diet. Nutrients, 2016, 8(12), 799.
[http://dx.doi.org/10.3390/nu8120799] [PMID: 27973423]
[60]
Ni, X.; Wang, H. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD). Am. J. Transl. Res., 2016, 8(2), 1073-1081.
[PMID: 27158393]
[61]
Gaballah, H.H.; El-Horany, H.E.; Helal, D.S. Mitigative effects of the bioactive flavonol fisetin on high-fat/high-sucrose induced nonalcoholic fatty liver disease in rats. J. Cell. Biochem., 2019, 120(8), 12762-12774.
[http://dx.doi.org/10.1002/jcb.28544] [PMID: 30861601]
[62]
Leng, L.; Jiang, Z.Q.; Ji, G.Y. Effects of soybean isoflavone on liver lipid metabolism in nonalcoholic fatty liver rats. Chin. J. Prev. Med, 2011, 45(4), 335-339.
[PMID: 21624329]
[63]
Park, H.S.; Hur, H.J.; Kim, S.H.; Park, S.J.; Hong, M.J.; Sung, M.J.; Kwon, D.Y.; Kim, M.S. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice. Mol. Nutr. Food Res., 2016, 60(9), 1944-1955.
[http://dx.doi.org/10.1002/mnfr.201500689] [PMID: 27145114]
[64]
Liou, C.J.; Lee, Y.K.; Ting, N.C.; Chen, Y.L.; Shen, S.C.; Wu, S.J.; Huang, W.C. Protective effects of Licochalcone A ameliorates obesity and non-alcoholic fatty liver disease via promotion of the Sirt-1/AMPK pathway in mice fed a high-fat diet. Cells, 2019, 447(5), 8.
[65]
Bak, E.J.; Choi, K.C.; Jang, S.; Woo, G.H.; Yoon, H.G.; Na, Y.; Yoo, Y.J.; Lee, Y.; Jeong, Y.; Cha, J.H. Licochalcone F alleviates glucose tolerance and chronic inflammation in diet-induced obese mice through Akt and p38 MAPK. Clin. Nutr., 2016, 35(2), 414-421.
[http://dx.doi.org/10.1016/j.clnu.2015.03.005] [PMID: 25823386]
[66]
Wang, D.J.; Cai, Y.Q.; Pan, S.Z.; Zhang, L.Z.; Chen, Y.X.; Chen, F.M.; Jin, M.; Yan, M.X.; Li, X.D.; Chen, Z.Y. Effect of total flavone of haw leaves on nuclear factor erythroid-2 related factor and other related factors in nonalcoholic steatohepatitis rats. Chin. J. Integr. Med., 2018, 24(004), 265-271.
[http://dx.doi.org/10.1007/s11655-016-2450-0]
[67]
Wang, J.Q.; Li, J.; Zou, Y.H.; Cheng, W.M.; Lu, C.; Zhang, L.; Ge, J.F.; Huang, C.; Jin, Y.; Lv, X.W.; Hu, C.M.; Liu, L.P. Preventive effects of total flavonoids of Litsea coreana leve on hepatic steatosis in rats fed with high fat diet. J. Ethnopharmacol., 2009, 121(1), 54-60.
[http://dx.doi.org/10.1016/j.jep.2008.09.029] [PMID: 18977425]
[68]
Zhang, S.; Zheng, L.; Dong, D.; Xu, L.; Yin, L.; Qi, Y.; Han, X.; Lin, Y.; Liu, K.; Peng, J. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats. Food Chem., 2013, 141(3), 2108-2116.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.019] [PMID: 23870935]
[69]
Zhong, Y.; Song, B.; Zheng, C.; Zhang, S.; Yan, Z.; Tang, Z.; Kong, X.; Duan, Y.; Li, F. Yin; Zhong, Z.; Song, Bo; bing.Zheng, Chang; yu.Zhang, Shi; Fengna, Li Flavonoids from Mulberry leaves alleviates lipid dysmetabolism in high fat diet-fed mice: involvement of gut microbiota. Microorganisms, 2020, 8(6), 860.
[http://dx.doi.org/10.3390/microorganisms8060860]
[70]
Gao, Y.; Zhang, S.; Li, J.; Zhao, J.; Xiao, Q.; Zhu, Y.; Zhang, J.; Huang, W. Effect and mechanism of ginsenoside Rg1-regulating hepatic steatosis in HepG2 cells induced by free fatty acid. Biosci. Biotechnol. Biochem., 2020, 84(11), 2228-2240.
[http://dx.doi.org/10.1080/09168451.2020.1793293] [PMID: 32654591]
[71]
Shen, L.; Xiong, Y.; Wang, D.Q.; Howles, P.; Basford, J.E.; Wang, J.; Xiong, Y.Q.; Hui, D.Y.; Woods, S.C.; Liu, M. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J. Lipid Res., 2013, 54(5), 1430-1438.
[http://dx.doi.org/10.1194/jlr.M035907] [PMID: 23434611]
[72]
Xu, Y.; Yang, C.; Zhang, S.; Li, J.; Xiao, Q.; Huang, W. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol. Pharm. Bull., 2018, 41(11), 1638-1644.
[http://dx.doi.org/10.1248/bpb.b18-00132] [PMID: 30135326]
[73]
Razmovski-Naumovski, V.; Huang, T.H.; Tran, V.H.; Li, G.Q.; Duke, C.C.; Roufogalis, B.D. Chemistry and Pharmacology of Gynostemma pentaphyllum. Phytochem. Rev., 2005, 4(2-3), 197-219.
[http://dx.doi.org/10.1007/s11101-005-3754-4]
[74]
Huang, X.; Chen, W.; Yan, C.; Yang, R.; Chen, Q.; Xu, H.; Huang, Y. Gypenosides improve the intestinal microbiota of non-alcoholic fatty liver in mice and alleviates its progression. Biomed. Pharmacother., 2019, 118, 109258.
[http://dx.doi.org/10.1016/j.biopha.2019.109258] [PMID: 31545283]
[75]
He, Q.; Li, J.K.; Li, F.; Li, R.G.; Zhan, G.Q.; Li, G.; Du, W.X.; Tan, H.B. Mechanism of action of gypenosides on type 2 diabetes and non-alcoholic fatty liver disease in rats. World J. Gastroenterol., 2015, 21(7), 2058-2066.
[http://dx.doi.org/10.3748/wjg.v21.i7.2058] [PMID: 25717238]
[76]
Lee, J.H.; Oh, J.Y.; Kim, S.H.; Oh, I.J.; Lee, Y.H.; Lee, K.W.; Lee, W.H.; Kim, J.H. Pharmaceutical efficacy of Gypenoside LXXV on non-alcoholic steatohepatitis (NASH). Biomolecules, 2020, 10(10), 1426.
[http://dx.doi.org/10.3390/biom10101426] [PMID: 33050067]
[77]
Yuan, D.; Xiang, T.; Huo, Y.; Liu, C.; Wang, T.; Zhou, Z.; Dun, Y.; Zhao, H.; Zhang, C. Preventive effects of total saponins of Panax japonicus on fatty liver fibrosis in mice. Arch. Med. Sci., 2018, 14(2), 396-406.
[http://dx.doi.org/10.5114/aoms.2016.63260] [PMID: 29593815]
[78]
Gai, L.Y.; Gao, C.; Yuan, Y.; Shi, Y.; Liu, Z. The preventive effect of total saponins from Panax japonicus on inflammation and insulin resistance in adipose tissue of mice induced by a high-fat diet. J. Funct. Foods, 2021, 78.
[79]
Yao, H.; Tao, X.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Xu, Y.; Zheng, L.; Peng, J. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway. Pharmacol. Res., 2018, 131, 51-60.
[http://dx.doi.org/10.1016/j.phrs.2018.03.017] [PMID: 29574225]
[80]
Chen, S.; Li, X.; Liu, L.; Liu, C.; Han, X. Ophiopogonin D alleviates high-fat diet-induced metabolic syndrome and changes the structure of gut microbiota in mice. FASEB J., 2018, 32(3), 1139-1153.
[http://dx.doi.org/10.1096/fj.201700741RR] [PMID: 29084766]
[81]
Yuan, Y.L.; Lin, B.Q.; Zhang, C.F.; Cui, L.L.; Ruan, S.X.; Yang, Z.L.; Li, F.; Ji, D.; Timosaponin, B-I.I. Ameliorates palmitate-induced insulin resistance and inflammation via IRS-1/PI3K/Akt and IKK/NF-[formula: see text]B Pathways. Am. J. Chin. Med., 2016, 44(4), 755-769.
[http://dx.doi.org/10.1142/S0192415X16500415] [PMID: 27222060]
[82]
Wu, J.T.; Yang, G.W.; Qi, C.H.; Zhou, L.; Hu, J.G.; Wang, M.S. Anti-inflammatory activity of platycodin D on alcohol-induced fatty liver rats via tlr4-myd88-nf-κb signal path. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 176-183.
[http://dx.doi.org/10.21010/ajtcam.v13i4.23] [PMID: 28852734]
[83]
Oh, G.S.; Yoon, J.; Lee, G.G.; Oh, W.K.; Kim, S.W. 20(S)-protopanaxatriol inhibits liver X receptor α-mediated expression of lipogenic genes in hepatocytes. J. Pharmacol. Sci., 2015, 128(2), 71-77.
[http://dx.doi.org/10.1016/j.jphs.2015.05.007] [PMID: 26109499]
[84]
Liu, C.; Li, H.; Zhou, Z.; Li, J.; Chen, H.; Liu, Y.; Huang, C.; Fan, S. Protopanaxadiol alleviates obesity in high-fat diet-fed mice via activation of energy-sensing neuron in the paraventricular nucleus of hypothalamus. Biochem. Biophys. Res. Commun., 2019, 513(4), 1092-1099.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.031] [PMID: 31010683]
[85]
Liu, Y.L.; Zhang, Q.Z.; Wang, Y.R.; Fu, L.N.; Han, J.S.; Zhang, J.; Wang, B.M. Astragaloside IV improves high-fat diet-induced hepatic steatosis in nonalcoholic fatty liver disease rats by regulating inflammatory factors level via TLR4/NF-κB signaling pathway. Front. Pharmacol., 2021, 11(11), 605064.
[http://dx.doi.org/10.3389/fphar.2020.605064] [PMID: 33708118]
[86]
Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res., 2016, 30(8), 1207-1218.
[http://dx.doi.org/10.1002/ptr.5631] [PMID: 27188216]
[87]
Dong, H.; Lu, F.E.; Gao, Z.Q.; Xu, L.J.; Wang, K.F.; Zou, X. Effects of emodin on treating murine nonalcoholic fatty liver induced by high caloric laboratory chaw. World J. Gastroenterol., 2005, 11(9), 1339-1344.
[http://dx.doi.org/10.3748/wjg.v11.i9.1339] [PMID: 15761972]
[88]
Yu, L.; Gong, L.; Wang, C.; Hu, N.; Tang, Y.; Zheng, L.; Dai, X.; Li, Y. Radix Polygoni Multiflori and its main component emodin attenuate non-alcoholic fatty liver disease in zebrafish by regulation of AMPK signaling pathway. Drug Des. Devel. Ther., 2020, 14, 1493-1506.
[http://dx.doi.org/10.2147/DDDT.S243893] [PMID: 32346285]
[89]
Li, X.; Xu, Z.; Wang, S.; Guo, H.; Dong, S.; Wang, T.; Zhang, L.; Jiang, Z. Emodin ameliorates hepatic steatosis through endoplasmic reticulum-stress sterol regulatory element-binding protein 1c pathway in liquid fructose-feeding rats. Hepatol. Res., 2016, 46(3), E105-E117.
[http://dx.doi.org/10.1111/hepr.12538] [PMID: 26031413]
[90]
Jia, X.; Iwanowycz, S.; Wang, J.; Saaoud, F.; Yu, F.; Wang, Y.; Hu, J.; Chatterjee, S.; Wang, Q.; Fan, D. Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides. Exp. Biol. Med. (Maywood), 2014, 239(8), 1025-1035.
[http://dx.doi.org/10.1177/1535370214530247] [PMID: 24740873]
[91]
Sheng, X.; Wang, M.; Lu, M.; Xi, B.; Sheng, H.; Zang, Y.Q. Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab., 2011, 300(5), E886-E893.
[http://dx.doi.org/10.1152/ajpendo.00332.2010] [PMID: 21364120]
[92]
Zhang, J.; Kang, H.; Wang, L.; Zhao, X. Chrysophanol ameliorates high-fat diet-induced obesity and inflammation in neonatal rats. Pharmazie, 2018, 73(4), 228-233.
[PMID: 29609691]
[93]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[94]
Xu, Q.; Fan, Y.; Loor, J.J.; Liang, Y.; Lv, H.; Sun, X.; Jia, H.; Xu, C. Aloin protects mice from diet-induced non-alcoholic steatohepatitis via activation of Nrf2/HO-1 signaling. Food Funct., 2021, 12(2), 696-705.
[http://dx.doi.org/10.1039/D0FO02684K] [PMID: 33410857]
[95]
Huang, L.; Ding, W.; Wang, M.Q.; Wang, Z.G.; Chen, H.H.; Chen, W.; Yang, Q.; Lu, T.N.; Yang, Q.; He, J.M. Tanshinone IIA ameliorates non-alcoholic fatty liver disease through targeting peroxisome proliferator-activated receptor gamma and toll-like receptor 4. J. Int. Med. Res., 2019, 47(10), 5239-5255.
[http://dx.doi.org/10.1177/0300060519859750] [PMID: 31378113]
[96]
Gao, W.Y.; Chen, P.Y.; Hsu, H.J.; Lin, C.Y.; Wu, M.J.; Yen, J.H. Tanshinone IIA downregulates lipogenic gene expression and attenuates lipid accumulation through the modulation of LXRα/SREBP1 pathway in Hep G2 cells. Biomedicines, 2021, 9(3), 326.
[http://dx.doi.org/10.3390/biomedicines9030326] [PMID: 33806955]
[97]
Yang, G.L.; Jia, L.Q.; Wu, J.; Ma, Y.X.; Cao, H.M.; Song, N.; Zhang, N. Effect of tanshinone IIA on oxidative stress and apoptosis in a rat model of fatty liver. Exp. Ther. Med., 2017, 14(5), 4639-4646.
[http://dx.doi.org/10.3892/etm.2017.5162] [PMID: 29201162]
[98]
Andújar, I.; Ríos, J.L.; Giner, R.M.; Recio, M.C. Pharmacological properties of shikonin - a review of literature since 2002. Planta Med., 2013, 79(18), 1685-1697.
[http://dx.doi.org/10.1055/s-0033-1350934] [PMID: 24155261]
[99]
Yang, W.; Yang, M.; Yao, H.; Ma, Y.; Ren, X.; Teng, L.; Wang, T. Effects of shikonin from Zicao on high-fat diet-induced nonalcoholic fatty liver disease in rats. Pak. J. Pharm. Sci., 2020, 33(6), 2527-2533.
[PMID: 33867326]
[100]
Bettaieb, A.; Hosein, E.; Chahed, S.; Abdulaziz, A.; Kucera, H.R.; Gaikwad, N.W.; Haj, F.G. Decreased adiposity and enhanced glucose tolerance in shikonin treated mice. Obesity (Silver Spring), 2015, 23(11), 2269-2277.
[http://dx.doi.org/10.1002/oby.21263] [PMID: 26374090]
[101]
Gwon, S.Y.; Ahn, J.; Jung, C.H.; Moon, B.; Ha, T.Y. Shikonin attenuates hepatic steatosis by enhancing beta oxidation and energy expenditure via AMPK activation. Nutrients, 2020, 12(4), 1133.
[102]
Xue, W.; Fan, Z.; Li, Y.; Li, L.; Zhang, T.; Lu, J.; Ma, B.; Zhu, Z.; Lian, J.; Zhang, C.; Song, X.; Sun, D.; Zhai, Y.; Fan, R.; Cao, Y.; Deng, X.; Zhao, J. Alkannin inhibited hepatic inflammation in diabetic Db/Db mice. Cell. Physiol. Biochem., 2018, 45(6), 2461-2470.
[http://dx.doi.org/10.1159/000488264] [PMID: 29554661]
[103]
Chen, Y.; Feng, B.; Yuan, Y.; Hu, J.; Zhao, W.; Jiang, H.; Li, W.; Fan, Z.; Du, Z. Aloe emodin reduces cardiac inflammation induced by a high-fat diet through the TLR4 signaling pathway. Mediators Inflamm., 2020, 2020, 6318520.
[http://dx.doi.org/10.1155/2020/6318520] [PMID: 32089647]
[104]
Zeng, J.; Zhu, B.; Su, M. Autophagy is involved in acetylshikonin ameliorating non-alcoholic steatohepatitis through AMPK/mTOR pathway. Biochem. Biophys. Res. Commun., 2018, 503(3), 1645-1650.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.094] [PMID: 30055803]
[105]
Pai, S.A.; Munshi, R.P.; Panchal, F.H.; Gaur, I.S.; Mestry, S.N.; Gursahani, M.S.; Juvekar, A.R. Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress. Biomed. Pharmacother., 2019, 111, 686-694.
[http://dx.doi.org/10.1016/j.biopha.2018.12.139] [PMID: 30611993]
[106]
Singh, D.; Singh, R.; Singh, P.; Gupta, R.S. Effects of embelin on lipid peroxidation and free radical scavenging activity against liver damage in rats. Basic Clin. Pharmacol. Toxicol., 2009, 105(4), 243-248.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00429.x] [PMID: 19496777]
[107]
Handique, J.G.; Baruah, J.B. Polyphenolic compounds: an overview. ChemInform, 2003, 34(15)
[http://dx.doi.org/10.1002/chin.200315271]
[108]
Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta, 2015, 1852(6), 1071-1113.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.014] [PMID: 25652123]
[109]
Zhang, Y.; Chen, M.L.; Zhou, Y.; Yi, L.; Gao, Y.X.; Ran, L.; Chen, S.H.; Zhang, T.; Zhou, X.; Zou, D.; Wu, B.; Wu, Y.; Chang, H.; Zhu, J.D.; Zhang, Q.Y.; Mi, M.T. Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Mol. Nutr. Food Res., 2015, 59(8), 1443-1457.
[http://dx.doi.org/10.1002/mnfr.201500016] [PMID: 25943029]
[110]
Li, L.; Hai, J.; Li, Z.; Zhang, Y.; Peng, H.; Li, K.; Weng, X. Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease. Food Chem. Toxicol., 2014, 63, 166-173.
[http://dx.doi.org/10.1016/j.fct.2013.08.036] [PMID: 23978414]
[111]
Bujanda, L.; Hijona, E.; Larzabal, M.; Beraza, M.; Aldazabal, P.; García-Urkia, N.; Sarasqueta, C.; Cosme, A.; Irastorza, B.; González, A.; Arenas, J.I., Jr Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol., 2008, 8(1), 40.
[http://dx.doi.org/10.1186/1471-230X-8-40] [PMID: 18782455]
[112]
Wang, G.L.; Fu, Y.C.; Xu, W.C.; Feng, Y.Q.; Fang, S.R.; Zhou, X.H. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem. Biophys. Res. Commun., 2009, 380(3), 644-649.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.163] [PMID: 19285015]
[113]
Zeng, W.; Shan, W.; Gao, L.; Gao, D.; Hu, Y.; Wang, G.; Zhang, N.; Li, Z.; Tian, X.; Xu, W.; Peng, J.; Ma, X.; Yao, J. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci. Rep., 2015, 5(1), 16013.
[http://dx.doi.org/10.1038/srep16013] [PMID: 26525891]
[114]
Wang, Y.C.; Kong, W.Z.; Jin, Q.M.; Chen, J.; Dong, L. Effects of salvianolic acid B on liver mitochondria of rats with nonalcoholic steatohepatitis. World J. Gastroenterol., 2015, 21(35), 10104-10112.
[http://dx.doi.org/10.3748/wjg.v21.i35.10104] [PMID: 26401075]
[115]
Wang, P.; Xu, S.; Li, W.; Wang, F.; Yang, Z.; Jiang, L.; Wang, Q.; Huang, M.; Zhou, P. Salvianolic acid B inhibited PPARγ expression and attenuated weight gain in mice with high-fat diet-induced obesity. Cell. Physiol. Biochem., 2014, 34(2), 288-298.
[http://dx.doi.org/10.1159/000362999] [PMID: 25034045]
[116]
Gan, L.; Meng, Z.J.; Xiong, R.B.; Guo, J.Q.; Lu, X.C.; Zheng, Z.W.; Deng, Y.P.; Luo, B.D.; Zou, F.; Li, H. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice. Acta Pharmacol. Sin., 2015, 36(5), 597-605.
[http://dx.doi.org/10.1038/aps.2015.11] [PMID: 25891086]
[117]
Bae, U.J.; Park, J.; Park, I.W.; Chae, B.M.; Oh, M.R.; Jung, S.J.; Ryu, G.S.; Chae, S.W.; Park, B.H. Epigallocatechin-3-Gallate-Rich green tea extract ameliorates fatty liver and weight gain in mice fed a high fat diet by activating the sirtuin 1 and AMP activating protein kinase pathway. Am. J. Chin. Med., 2018, 46(3), 617-632.
[http://dx.doi.org/10.1142/S0192415X18500325] [PMID: 29595075]
[118]
Bose, M.; Lambert, J.D.; Ju, J.; Reuhl, K.R.; Shapses, S.A.; Yang, C.S. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J. Nutr., 2008, 138(9), 1677-1683.
[http://dx.doi.org/10.1093/jn/138.9.1677] [PMID: 18716169]
[119]
Xiao, J.; Ho, C.T.; Liong, E.C.; Nanji, A.A.; Leung, T.M.; Lau, T.Y.; Fung, M.L.; Tipoe, G.L. Epigallocatechin gallate attenuates fibrosis, oxidative stress, and inflammation in non-alcoholic fatty liver disease rat model through TGF/SMAD, PI3 K/Akt/FoxO1, and NF-kappa B pathways. Eur. J. Nutr., 2014, 53(1), 187-199.
[http://dx.doi.org/10.1007/s00394-013-0516-8] [PMID: 23515587]
[120]
Xing, Y.W.; Lei, G.T.; Wu, Q.H.; Jiang, Y.; Huang, M.X. Procyanidin B2 protects against diet-induced obesity and non-alcoholic fatty liver disease via the modulation of the gut microbiota in rabbits. World J. Gastroenterol., 2019, 25(8), 955-966.
[http://dx.doi.org/10.3748/wjg.v25.i8.955] [PMID: 30833801]
[121]
Su, H.; Li, Y.; Hu, D.; Xie, L.; Ke, H.; Zheng, X.; Chen, W. Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radic. Biol. Med., 2018, 126, 269-286.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.024] [PMID: 30142454]
[122]
Wu, Q.; Li, S.; Li, X.; Sui, Y.; Yang, Y.; Dong, L.; Xie, B.; Sun, Z. Inhibition of advanced glycation endproduct formation by lotus seedpod oligomeric procyanidins through RAGE-MAPK signaling and NF-κB activation in high-fat-diet rats. J. Agric. Food Chem., 2015, 63(31), 6989-6998.
[http://dx.doi.org/10.1021/acs.jafc.5b01082] [PMID: 26207852]
[123]
Yan, H.; Gao, Y.Q.; Zhang, Y.; Wang, H.; Liu, G.S.; Lei, J.Y. Chlorogenic acid alleviates autophagy and insulin resistance by suppressing JNK pathway in a rat model of nonalcoholic fatty liver disease. J. Biosci., 2018, 43(2), 287-294.
[http://dx.doi.org/10.1007/s12038-018-9746-5] [PMID: 29872017]
[124]
Tuzcu, Z.; Orhan, C.; Sahin, N.; Juturu, V.; Sahin, K. Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxid. Med. Cell. Longev., 2017, 2017, 1583098.
[http://dx.doi.org/10.1155/2017/1583098] [PMID: 28396714]
[125]
Liu, Q.; Pan, R.; Ding, L.; Zhang, F.; Hu, L.; Ding, B.; Zhu, L.; Xia, Y.; Dou, X. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Int. Immunopharmacol., 2017, 49, 132-141.
[http://dx.doi.org/10.1016/j.intimp.2017.05.026] [PMID: 28577437]
[126]
Lee, D.E.; Lee, S.J.; Kim, S.J.; Lee, H.S.; Kwon, O.S. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation. Nutrients, 2019, 11(11), 2702.
[http://dx.doi.org/10.3390/nu11112702] [PMID: 31717261]
[127]
Qu, L.L.; Yu, B.; Li, Z.; Jiang, W.X.; Jiang, J.D.; Kong, W.J. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother. Res., 2016, 30(3), 402-411.
[http://dx.doi.org/10.1002/ptr.5541] [PMID: 26634892]
[128]
Kuo, N.C.; Huang, S.Y.; Yang, C.Y.; Shen, H.H.; Lee, Y.M. Involvement of HO-1 and autophagy in the protective effect of magnolol in hepatic steatosis-induced NLRP3 inflammasome activation in vivo and in vitro. Antioxidants, 2020, 9(10), 924.
[http://dx.doi.org/10.3390/antiox9100924] [PMID: 32992548]
[129]
Xu, H.; Chen, G.F.; Ma, Y.S.; Zhang, H.W.; Zhou, Y.; Liu, G.H.; Chen, D.Y.; Ping, J.; Liu, Y.H.; Mou, X.; Fu, D. Hepatic proteomic changes and Sirt1/AMPK signaling activation by oxymatrine treatment in rats with non-alcoholic steatosis. Front. Pharmacol., 2020, 11, 216.
[http://dx.doi.org/10.3389/fphar.2020.00216] [PMID: 32210812]
[130]
Shi, L.J.; Shi, L.; Song, G.Y.; Zhang, H.F.; Hu, Z.J.; Wang, C.; Zhang, D.H. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (SREBF1) and activation of peroxisome proliferator activated receptor alpha (PPARA). Eur. J. Pharmacol., 2013, 714(1-3), 89-95.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.013] [PMID: 23791610]
[131]
Shi, L.; Shi, L.; Zhang, H.; Hu, Z.; Wang, C.; Zhang, D.; Song, G. Oxymatrine ameliorates non-alcoholic fatty liver disease in rats through peroxisome proliferator-activated receptor-α activation. Mol. Med. Rep., 2013, 8(2), 439-445.
[132]
Zhang, H. Ren; Yang, L.; Wang, Y.; Huang, W. Oxymatrine alleviatesd hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci., 2020, 257.
[133]
Kumar, A. Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol., 2015, 761, 288-297.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.068] [PMID: 26092760]
[134]
Wang, L.; Jia, Z.; Wang, B.; Zhang, B. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway. Turk. J. Gastroenterol., 2020, 31(12), 902-909.
[http://dx.doi.org/10.5152/tjg.2020.19568] [PMID: 33626003]
[135]
Deng, Y.; Tang, K.; Chen, R.; Nie, H.; Liang, S.; Zhang, J.; Zhang, Y.; Yang, Q. Berberine attenuates hepatic oxidative stress in rats with non-alcoholic fatty liver disease via the Nrf2/ARE signalling pathway. Exp. Ther. Med., 2019, 17(3), 2091-2098.
[http://dx.doi.org/10.3892/etm.2019.7208] [PMID: 30867696]
[136]
Zhao, L.; Cang, Z.; Sun, H.; Nie, X.; Wang, N.; Lu, Y. Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease. BMC Endocr. Disord., 2017, 17(1), 13.
[http://dx.doi.org/10.1186/s12902-017-0165-7] [PMID: 28241817]
[137]
Xing, L.J.; Zhang, L.; Liu, T.; Hua, Y.Q.; Zheng, P.Y.; Ji, G. Berberine reducing insulin resistance by up-regulating IRS-2 mRNA expression in nonalcoholic fatty liver disease (NAFLD) rat liver. Eur. J. Pharmacol., 2011, 668(3), 467-471.
[http://dx.doi.org/10.1016/j.ejphar.2011.07.036] [PMID: 21839075]
[138]
Yuan, X.; Wang, J.; Tang, X.; Li, Y.; Xia, P.; Gao, X. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J. Transl. Med, 2015, 13(13, 24), 24.
[http://dx.doi.org/10.1186/s12967-015-0383-6]
[139]
Ge, C.X.; Yu, R.; Xu, M.X.; Li, P.Q.; Fan, C.Y.; Li, J.M.; Kong, L.D. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur. J. Pharmacol., 2016, 770, 154-164.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.043] [PMID: 26593707]
[140]
Deminice, R.; da Silva, R.P.; Lamarre, S.G.; Kelly, K.B.; Jacobs, R.L.; Brosnan, M.E.; Brosnan, J.T. Betaine supplementation prevents fatty liver induced by a high-fat diet: effects on one-carbon metabolism. Amino Acids, 2015, 47(4), 839-846.
[http://dx.doi.org/10.1007/s00726-014-1913-x] [PMID: 25577261]
[141]
Zhang, W.; Wang, L.W.; Wang, L.K.; Li, X.; Zhang, H.; Luo, L.P.; Song, J.C.; Gong, Z.J. Betaine protects against high-fat-diet-induced liver injury by inhibition of high-mobility group box 1 and Toll-like receptor 4 expression in rats. Dig. Dis. Sci., 2013, 58(11), 3198-3206.
[http://dx.doi.org/10.1007/s10620-013-2775-x] [PMID: 23861108]
[142]
Chen, W.; Zhang, X.; Xu, M.; Jiang, L.; Zhou, M.; Liu, W.; Chen, Z.; Wang, Y.; Zou, Q.; Wang, L. Betaine prevented high-fat diet-induced NAFLD by regulating the FGF10/AMPK signaling pathway in ApoE-/- mice. Eur. J. Nutr., 2021, 60(3), 1655-1668.
[http://dx.doi.org/10.1007/s00394-020-02362-6] [PMID: 32808060]
[143]
Zhang, D.F.; Zhang, F.; Zhang, J.; Zhang, R.M.; Li, R. Protection effect of trigonelline on liver of rats with non-alcoholic fatty liver diseases. Asian Pac. J. Trop. Med., 2015, 8(8), 651-654.
[http://dx.doi.org/10.1016/j.apjtm.2015.07.012] [PMID: 26321519]
[144]
Cui, H.; Li, Y.; Cao, M.; Liao, J.; Liu, X.; Miao, J.; Fu, H.; Song, R.; Wen, W.; Zhang, Z.; Wang, H. Untargeted metabolomic analysis of the effects and mechanism of nuciferine treatment on rats with nonalcoholic fatty liver disease. Front. Pharmacol., 2020, 11(11), 858.
[http://dx.doi.org/10.3389/fphar.2020.00858] [PMID: 32581811]
[145]
Guo, F.; Yang, X.; Li, X.; Feng, R.; Guan, C.; Wang, Y.; Li, Y.; Sun, C. Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters. Plos One, 2013, 8(5), e63770.
[http://dx.doi.org/10.1371/journal.pone.0063770]
[146]
Zhang, C.; Deng, J.; Liu, D.; Tuo, X.; Xiao, L.; Lai, B.; Yao, Q.; Liu, J.; Yang, H.; Wang, N. Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARα/PPARγ coactivator-1α pathway. Br. J. Pharmacol., 2018, 175(22), 4218-4228.
[http://dx.doi.org/10.1111/bph.14482] [PMID: 30129056]
[147]
Qiang, X.; Xu, L.; Zhang, M.; Zhang, P.; Wang, Y.; Wang, Y.; Zhao, Z.; Chen, H.; Liu, X.; Zhang, Y. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress. Biochem. Biophys. Res. Commun., 2016, 472(4), 603-609.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.019] [PMID: 26970305]
[148]
Li, G.; Zhou, F.; Chen, Y.; Zhang, W.; Wang, N. Kukoamine A attenuates insulin resistance and fatty liver through downregulation of Srebp-1c. Biomed. Pharmacother., 2017, 89, 536-543.
[http://dx.doi.org/10.1016/j.biopha.2017.02.024] [PMID: 28254666]
[149]
Mi, K.S.; Yang, S.M.; Han, I.S. Capsaicin suppresses liver fat accumulation in high-fat diet-induced NAFLD mice. Anim. Cells Syst., 2020, 23, 1-6.
[150]
Choi, S.; Choi, Y.; Choi, Y.; Kim, S.; Jang, J.; Park, T. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem., 2013, 141(4), 3627-3635.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.028] [PMID: 23993530]
[151]
Song, C.Y.; Zeng, X.; Chen, S.W.; Hu, P.F.; Zheng, Z.W.; Ning, B.F.; Shi, J.; Xie, W.F.; Chen, Y.X. Sophocarpine alleviates non-alcoholic steatohepatitis in rats. J. Gastroenterol. Hepatol., 2011, 26(4), 765-774.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06561.x] [PMID: 21054517]
[152]
Ye, J.H.; Chao, J.; Chang, M.L.; Peng, W.H.; Cheng, H.Y.; Liao, J.W.; Pao, L.H. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Sci. Rep., 2016, 6(1), 33102.
[http://dx.doi.org/10.1038/srep33102] [PMID: 27612024]
[153]
Xu, Y.Y.; Xu, Y.S.; Wang, Y.; Wu, Q.; Lu, Y.F.; Liu, J.; Shi, J.S. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice. J. Pharm. Pharmacol., 2017, 69(10), 1409-1417.
[http://dx.doi.org/10.1111/jphp.12778] [PMID: 28722145]
[154]
Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. A review of the pharmacological action of Astragalus polysaccharide. Front. Pharmacol., 2020, 11, 349.
[http://dx.doi.org/10.3389/fphar.2020.00349] [PMID: 32265719]
[155]
Hong, Y.; Li, B.; Zheng, N.; Wu, G.; Ma, J.; Tao, X.; Chen, L.; Zhong, J.; Sheng, L.; Li, H. Integrated metagenomic and metabolomic analyses of the effect of Astragalus polysaccharides on alleviating high-fat diet-induced metabolic disorders. Front. Pharmacol., 2020, 11, 833.
[http://dx.doi.org/10.3389/fphar.2020.00833] [PMID: 32587515]
[156]
Gu, C.; Zeng, Y.; Tang, Z.; Wang, C.; He, Y.; Feng, X.; Zhou, L. Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male Sprague Dawley rats undergoing catch-up growth. Mol. Med. Rep., 2015, 12(5), 6451-6460.
[http://dx.doi.org/10.3892/mmr.2015.4245] [PMID: 26323321]
[157]
Mao, X.Q.; Yu, F.; Wang, N.; Wu, Y.; Zou, F.; Wu, K.; Liu, M.; Ouyang, J.P. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine, 2009, 16(5), 416-425.
[http://dx.doi.org/10.1016/j.phymed.2008.12.011] [PMID: 19201177]
[158]
Xiao, J.; Wang, F.; Liong, E.C.; So, K.F.; Tipoe, G.L. Lycium barbarum polysaccharides improve hepatic injury through NFkappa-B and NLRP3/6 pathways in a methionine choline deficient diet steatohepatitis mouse model. Int. J. Biol. Macromol, 2018, 120(B), 1480-1489.
[159]
Xiao, J.; Liong, E.C.; Ching, Y.P.; Chang, R.C.; Fung, M.L.; Xu, A.M.; So, K.F.; Tipoe, G.L. Lycium barbarum polysaccharides protect rat liver from non-alcoholic steatohepatitis-induced injury. Nutr. Diabetes, 2013, 3(7), e81.
[http://dx.doi.org/10.1038/nutd.2013.22]
[160]
Jia, L.; Li, W.; Li, J.; Li, Y.; Song, H.; Luan, Y.; Qi, H.; Ma, L.; Lu, X.; Yang, Y. Lycium barbarum polysaccharide attenuates high-fat diet-induced hepatic steatosis by up-regulating SIRT1 expression and deacetylase activity. Sci. Rep., 2016, 6(1), 36209.
[http://dx.doi.org/10.1038/srep36209] [PMID: 27824080]
[161]
Wang, C.M.; Yuan, R.S.; Zhuang, W.Y.; Sun, J.H.; Wu, J.Y.; Li, H.; Chen, J.G. Schisandra polysaccharide inhibits hepatic lipid accumulation by downregulating expression of SREBPs in NAFLD mice. Lipids Health Dis., 2016, 15(1), 195.
[http://dx.doi.org/10.1186/s12944-016-0358-5] [PMID: 27852305]
[162]
Zhang, X.; Li, J.; Yang, B.; Leng, Q.; Li, J.; Wang, X.; Lu, J.; Olatunji, O.J.; Tang, J. Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet-induced metabolic syndrome in rats. Chem. Biodivers., 2021, 18(5), e2100065.
[http://dx.doi.org/10.1002/cbdv.202100065] [PMID: 33738897]
[163]
Huang, Z.; Zhang, M.; Zhang, S.; Wang, Y.; Jiang, X. Structural characterization of polysaccharides from Cordyceps militaris and their hypolipidemic effects in high fat diet fed mice. RSC Advances, 2018, 8(71), 41012-41022.
[http://dx.doi.org/10.1039/C8RA09068H]
[164]
Xu, S.; Dou, Y.; Ye, B.; Wu, Q.; Wang, Y.; Hu, M.; Ma, F.; Rong, X.; Guo, J. Wu. Ganoderma lucidum polysaccharides improve insulin sensitivity by regulating inflammatory cytokines and gut microbiota composition in mice. J. Funct. Foods, 2017, 38, 545-552.
[http://dx.doi.org/10.1016/j.jff.2017.09.032]
[165]
Wang, K.; Cao, P.; Wang, H.; Tang, Z.; Wang, N.; Wang, J.; Zhang, Y. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci. Rep., 2016, 6(6), 26229.
[http://dx.doi.org/10.1038/srep26229] [PMID: 27189109]
[166]
Zhu, Z.; Zhu, B.; Sun, Y.; Ai, C.; Wang, L.; Wen, C.; Yang, J.; Song, S.; Liu, X. Sulfated polysaccharide from sea cucumber and its depolymerized derivative prevent obesity in association with modification of gut microbiota in high-fat diet-Fed Mice. Mol. Nutr. Food Res., 2018, 62(23), e1800446.
[http://dx.doi.org/10.1002/mnfr.201800446] [PMID: 30267558]
[167]
Xia, S.H.; Fang, D.C. Pharmacological action and mechanisms of ginkgolide B. Chin. Med. J. (Engl.), 2007, 120(10), 922-928.
[http://dx.doi.org/10.1097/00029330-200705020-00013] [PMID: 17543184]
[168]
Yang, Y.; Chen, J.; Gao, Q.; Shan, X.; Wang, J.; Lv, Z. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology, 2020, 445(445), 152599.
[http://dx.doi.org/10.1016/j.tox.2020.152599] [PMID: 32976958]
[169]
Luo, L.; Li, Y.; Wang, D.; Zhao, Y.; Wang, Y.; Li, F.; Fang, J.; Chen, H.; Fan, S.; Huang, C. Ginkgolide B lowers body weight and ameliorates hepatic steatosis in high-fat diet-induced obese mice correlated with pregnane X receptor activation. RSC Advances, 2017, 7(60), 37858-37866.
[http://dx.doi.org/10.1039/C7RA05621D]
[170]
Kwan, H.Y.; Niu, X.; Dai, W.; Tong, T.; Chao, X.; Su, T.; Chan, C.L.; Lee, K.C.; Fu, X.; Yi, H.; Yu, H.; Li, T.; Tse, A.K.; Fong, W.F.; Pan, S.Y.; Lu, A.; Yu, Z.L. Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers. Sci. Rep., 2015, 5(5), 9114.
[http://dx.doi.org/10.1038/srep09114] [PMID: 25766252]
[171]
Chu, J.H.; Wang, H.; Ye, Y.; Chan, P.K.; Pan, S.Y.; Fong, W.F.; Yu, Z.L. Inhibitory effect of schisandrin B on free fatty acid-induced steatosis in L-02 cells. World J. Gastroenterol., 2011, 17(19), 2379-2388.
[http://dx.doi.org/10.3748/wjg.v17.i19.2379] [PMID: 21633637]
[172]
Zhang, Y.; Zhou, Z.W.; Jin, H.; Hu, C.; He, Z.X.; Yu, Z.L.; Ko, K.M.; Yang, T.; Zhang, X.; Pan, S.Y.; Zhou, S.F. Schisandrin B inhibits cell growth and induces cellular apoptosis and autophagy in mouse hepatocytes and macrophages: implications for its hepatotoxicity. Drug Des. Devel. Ther., 2015, 9, 2001-2027.
[PMID: 25926716]
[173]
Lin, Y.N.; Wang, C.C.N.; Chang, H.Y.; Chu, F.Y.; Hsu, Y.A.; Cheng, W.K.; Ma, W.C.; Chen, C.J.; Wan, L.; Lim, Y.P. Ursolic acid, a novel liver X receptor α (LXRα) antagonist inhibiting ligand-induced nonalcoholic fatty liver and drug-induced lipogenesis. J. Agric. Food Chem., 2018, 66(44), 11647-11662.
[http://dx.doi.org/10.1021/acs.jafc.8b04116] [PMID: 30359008]
[174]
Li, J.S.; Wang, W.J.; Sun, Y.; Zhang, Y.H.; Zheng, L. Ursolic acid inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress. Food Funct., 2015, 6(5), 1643-1651.
[http://dx.doi.org/10.1039/C5FO00083A] [PMID: 25892149]
[175]
Meng, F.; Ning, H.; Sun, Z.; Huang, F.; Li, Y.; Chu, X.; Lu, H.; Sun, C.; Li, S. Ursolic acid protects hepatocytes against lipotoxicity through activating autophagy via an AMPK pathway. J. Funct. Foods, 2015, 17, 172-182.
[http://dx.doi.org/10.1016/j.jff.2015.05.029]
[176]
Li, S.; Liao, X.; Meng, F.; Wang, Y.; Sun, Z.; Guo, F.; Li, X.; Meng, M.; Li, Y.; Sun, C. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. Plos One, 2014, 9(1), e86724.
[http://dx.doi.org/10.1371/journal.pone.0086724]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy