Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Investigating Biological Properties of Zinc Oxide/Curcumin Nanocomposites Synthesized from Stachys byzantina Extract by Green Synthesis

Author(s): Hosseinian Elham, Safarkar Roya*, Hosseinian Adalat and Pourfaraj Hanieh

Volume 26, Issue 3, 2023

Published on: 27 July, 2022

Page: [517 - 526] Pages: 10

DOI: 10.2174/1386207325666220408093646

Price: $65

Abstract

Aim and Objective: Nanotechnology attempts to solve the problem of antibiotic resistance. Zinc oxide nanoparticles and curcumin have been shown to be antimicrobial agents and promising anticancer agents, both on their own as well as in combination, and this incorporation will likely improve these properties via a possible additive effect.

Materials and Methods: In this study, the synthesis of zinc oxide nanoparticles was done by the distilled extract of Stachys byzantina via the co-precipitation method, which is an economical and eco-friendly green synthesis method. Then, curcumin was loaded to zinc oxide nanoparticles. Antibacterial efficacy of the synthesized nanoparticles was evaluated against five intracellular bacteria; moreover, cytotoxicity was evaluated on breast cancer cells.

Results: To confirm the synthesis and characterization of the nanoparticles, some techniques, such as XRD, FTIR, FESEM, and EDX were used. In addition, the antimicrobial activity of biosynthetic zinc oxide/curcumin nanocomposites was evaluated against selected bacterial strains. The uniform spherical nature of the zinc oxide nanoparticles was observed in the FESEM images, with the particle sizes ranging from 20 to 40 nm. The EDX spectrum showed the presence of C, O, and Zn and curcumin uptake on zinc oxide nanoparticles.

Conclusion: The zinc oxide/curcumin nanocomposites demonstrated an effective antibacterial effect in the disk diffusion method against five bacterial species. Furthermore, the zinc oxide/ curcumin nanocomposites showed a significant inhibitory effect on the growth of breast cancer cells in the MTT test. Thus, it seems that the synthesized zinc oxide/curcumin nanocomposites have promising high potential antimicrobial and cytotoxic effects.

Keywords: Stachys byzantina, zinc oxide nanoparticles, curcumin, antibacterial effect, cytotoxic property.

[1]
Nagati, V.; Koyyati, R.; Donda, M.R.; Alwala, J.; Kundle, K.R.; Padigya, P.R. Green synthesis and characterization of silver nanoparticles from cajanus cajan leaf extract and its antibacterial activity. Int. J. Nanomater. Biostruc., 2012, 2, 39-43.
[2]
Schwartzberg, L.S.; Arena, F.P.; Mintzer, D.M.; Epperson, A.L.; Walker, M.S. Phase II multicenter trial of albumin-bound paclitaxel and capecitabine in first-line treatment of patients with metastatic breast cancer. Clin. Breast Cancer, 2012, 12(2), 87-93.
[http://dx.doi.org/10.1016/j.clbc.2011.10.004] [PMID: 22154117]
[3]
Souri, M.; Hoseinpour, V.; Shakeri, A.; Ghaemi, N. Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnol., 2018, 12(6), 822-827.
[http://dx.doi.org/10.1049/iet-nbt.2017.0145] [PMID: 30104457]
[4]
Jamdagni, P.; Khatri, P.; Rana, J.S. Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int. Nano Lett., 2016, 6(3), 139-146.
[http://dx.doi.org/10.1007/s40089-015-0177-0]
[5]
Thovhogi, N.; Park, E.; Manikandan, E.; Maaza, M.; Gurib-Fakim, A. Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus sabdariffa flower extract. J. Alloys Compd., 2016, 655, 314-320.
[http://dx.doi.org/10.1016/j.jallcom.2015.09.063]
[6]
Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties. J. Alloys Compd., 2015, 646, 425-430.
[http://dx.doi.org/10.1016/j.jallcom.2015.05.242]
[7]
Mobeen Amanulla, A.; Jasmine Shahina, S.K.; Sundaram, R.; Maria Magdalane, C.; Kaviyarasu, K.; Letsholathebe, D.; Mohamed, S.B.; Kennedy, J.; Maaza, M. Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4 - Co3O4 nanocomposites and its syn-thesis and characterization. J. Photochem. Photobiol. B, 2018, 183, 233-241.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.034] [PMID: 29729632]
[8]
Espitia, P.J.; Soares, N.D.; Dos Reis Coimbra, J.S.; deAndrade, N.J.; Cruz, R.S.; Medeiros, E.A. Zinc oxide nanoparticles: synthesis, anti-microbial activity and food packaging applications. Food Bioprocess Technol., 2012, 5(5), 1447-1464.
[http://dx.doi.org/10.1007/s11947-012-0797-6]
[9]
Serpone, N.; Dondi, D.; Albini, A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg. Chim. Acta, 2007, 360(3), 794-802.
[http://dx.doi.org/10.1016/j.ica.2005.12.057]
[10]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nano-particles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[11]
Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol., 2009, 29(1), 69-78.
[http://dx.doi.org/10.1002/jat.1385] [PMID: 18756589]
[12]
Zadeh, G.R.S.; Hosseini, M.; Kermani, T.; Ataiee, M.; Akhbari, S. Breast cancer and the related factors: a case control study. J. Birjand. Univ. Med. Sci., 2011, 18, 191-199.
[13]
Sharifzadeh, M.; Sharifzadeh, K.; Khanavi, M.; Hadjiakhoond, A.; Shafiee, A. Anti-inflammatory activity of aerial parts of Stachys setifera and Stachys persica. Int. J. Pharmacol., 2005, 1, 132-137.
[http://dx.doi.org/10.3923/ijp.2005.132.137]
[14]
Maleki, N.; Garjani, A.; Nazemiyeh, H.; Nilfouroushan, N.; Eftekhar Sadat, A.T.; Allameh, Z.; Hasannia, N. Potent anti-inflammatory ac-tivities of hydroalcoholic extract from aerial parts of Stachys inflata on rats. J. Ethnopharmacol., 2001, 75(2-3), 213-218.
[http://dx.doi.org/10.1016/S0378-8741(01)00194-5] [PMID: 11297854]
[15]
Bodeker, G. Traditional health system: valuing biodiversity for human health and wellbeing.In: Cultural and Spiritual Values in Biodiver-sity; Posey, D.A., Ed.; Silen: Bulgaria, 2000, pp. 261-284.
[16]
Jamzad, Z.; Ingrouille, M.; Simmonds, M.S. Three new species of Nepeta (Lamiaceae) from Iran. Taxon, 2003, 52(1), 93-98.
[http://dx.doi.org/10.2307/3647304]
[17]
Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The artemisia L. Genus: A review of bioactive essential oils. Molecules, 2012, 17(3), 2542-2566.
[http://dx.doi.org/10.3390/molecules17032542] [PMID: 22388966]
[18]
Rashid, K.; Sil, P.C. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats. Toxicol. Appl. Pharmacol., 2015, 282(3), 297-310.
[http://dx.doi.org/10.1016/j.taap.2014.12.003] [PMID: 25541178]
[19]
Dhivya, R.; Ranjani, J.; Bowen, P.K.; Rajendhran, J.; Mayandi, J.; Annaraj, J. Biocompatible curcumin loaded PMMA-PEG/ZnO nanocom-posite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater. Sci. Eng. C, 2017, 80, 59-68.
[http://dx.doi.org/10.1016/j.msec.2017.05.128] [PMID: 28866205]
[20]
Upendra, R.S.; Khandelwal, P.; Reddy, A.H. Turmeric powder (Curcuma longa Linn.) as an antifungal agent in plant tissue culture studies. Int. J. Eng. Sci., 2011, 3, 7899-7904.
[21]
Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel), 2020, 13(7), 153.
[http://dx.doi.org/10.3390/ph13070153] [PMID: 32708619]
[22]
Mathew, D.; Hsu, W.L. Antiviral potential of curcumin. J. Funct. Foods, 2018, 40, 692-699.
[http://dx.doi.org/10.1016/j.jff.2017.12.017]
[23]
Safarkar, R.; Ebrahimzadeh Rajaei, G.; Khalili Arjagi, S. The study of antibacterial properties of iron oxide Ramalina sinensis. Asian J. Nanosci. Mater., 2020, 3, 157-166.
[24]
Seifi Mansour, S.; Ezzatzadeh, E.; Safarkar, R. In vitro evaluation of its antimicrobial effect of the synthesized Fe3O4 nanoparticles using Persea americana extract as a green approach on two standard strains. Asian J. Green Chem., 2019, 3, 353-365.
[25]
Xu, T.; Yang, J.; Liu, J.; Fu, Q. Surface modification of multi-walled carbon nanotubes by O2 plasma. Appl. Surf. Sci., 2007, 253(22), 8945-8951.
[http://dx.doi.org/10.1016/j.apsusc.2007.05.028]
[26]
Grasset, F.; Saito, N.; Li, D.; Park, D.; Sakaguchi, I.; Ohashi, N.; Haneda, H.; Roisnel, T.; Mornet, S.; Duguet, E. Surface modification of Zinc Oxide nanoparticles by aminopropyltriethoxysilane. J. Alloys Compd., 2003, 360(1-2), 298-311.
[http://dx.doi.org/10.1016/S0925-8388(03)00371-2]
[27]
Ramani, M.; Ponnusamy, S.; Muthamizhchelvan, C. From zinc oxide nanoparticles to microflowers: A study of growth kinetics and bio-cidal activity. Mater. Sci. Eng. C, 2012, 32(8), 2381-2389.
[http://dx.doi.org/10.1016/j.msec.2012.07.011]
[28]
Seil, J.T.; Webster, T.J. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater., 2011, 7(6), 2579-2584.
[http://dx.doi.org/10.1016/j.actbio.2011.03.018] [PMID: 21421087]
[29]
Zhang, L.; Jiang, Y.; Ding, Y.; Daskalakis, Y.; Jeuken, L.; Povey, M.; O’neill, A.J.; York, D.W. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res., 2010, 12(5), 1625-1636.
[http://dx.doi.org/10.1007/s11051-009-9711-1]
[30]
Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jimenez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[31]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[32]
Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18(17), 6679-6686.
[http://dx.doi.org/10.1021/la0202374]
[33]
Perera, W.P.; Dissanayake, R.K.; Ranatunga, U.I.; Hettiarachchi, N.M.; Perera, K.D.; Unagolla, J.M.; De Silva, R.T.; Pahalagedara, L.R. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Advances, 2020, 10(51), 30785-30795.
[http://dx.doi.org/10.1039/D0RA05755J]
[34]
Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kim, Y.C.; Lee, D.S.; Shin, D.W.; Kweon, K.T.; Kwon, D.Y. Syner-gistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine, 2013, 20(8-9), 714-718.
[http://dx.doi.org/10.1016/j.phymed.2013.02.006] [PMID: 23537748]
[35]
Selvakumari, D.; Deepa, R.; Mahalakshmi, V.; Subhashini, P.; Lakshminarayan, N. Anti cancer activity of ZnO nanoparticles on MCF7 (breast cancer cell) and A549 (lung cancer cell). ARPN J. Eng. Appl. Sci., 2015, 10, 5418-5421.
[36]
Kurita, T.; Makino, Y. Novel curcumin oral delivery systems. Anticancer Res., 2013, 33(7), 2807-2821.
[PMID: 23780965]
[37]
Kundu, M.; Sadhukhan, P.; Ghosh, N.; Chatterjee, S.; Manna, P.; Das, J.; Sil, P.C. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J. Adv. Res., 2019, 18, 161-172.
[http://dx.doi.org/10.1016/j.jare.2019.02.036] [PMID: 31032117]
[38]
Bansal, S.S.; Goel, M.; Aqil, F.; Vadhanam, M.V.; Gupta, R.C. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev. Res. (Phila.), 2011, 4(8), 1158-1171.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0006] [PMID: 21546540]
[39]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[40]
Mullaicharam, A.R.; Maheswaran, A. Pharmacological effects of curcumin. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(2), 92.
[http://dx.doi.org/10.4103/2231-0738.95930]
[41]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[42]
Wan, G.; Ruan, L.; Yin, Y.; Yang, T.; Ge, M.; Cheng, X. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int. J. Nanomedicine, 2016, 11, 3789-3800.
[http://dx.doi.org/10.2147/IJN.S104166] [PMID: 27574420]
[43]
Djurišić, A.B.; Leung, Y.H.; Ng, A.M.; Xu, X.Y.; Lee, P.K.; Degger, N.; Wu, R.S. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small, 2015, 11(1), 26-44.
[http://dx.doi.org/10.1002/smll.201303947] [PMID: 25303765]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy