Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Grape Phytochemicals and Vitamin D in the Alleviation of Lung Disorders

Author(s): Kazuki Santa*

Volume 22, Issue 13, 2022

Published on: 20 August, 2022

Page: [1276 - 1292] Pages: 17

DOI: 10.2174/1871530322666220407002936

Price: $65

Abstract

Background: Typical lung diseases are pneumonia, asthma, sleep apnea syndrome (SA), interstitial pneumonia (IP), lung cancer, and chronic obstructive pulmonary disease (COPD). Coronavirus disease 2019 (COVID-19) is a type of viral pneumonia. Many researchers have reported that phytochemicals (chemical compounds produced by plants) and vitamin D are useful in stimulating our immunity. This review discusses the alleviation of lung diseases by grape phytochemicals and vitamin D.

Discussion: Pneumonia is an acute inflammation caused by the infection of pathogens; the worst case is a fatal cytokine storm in the lung. In asthma, allergens, tobacco smoke, or air pollution may cause seizures. Lung diseases caused by lung fibrosis may manifest chronic inflammation, progress into alveolar fibrosis, and cause respiratory malfunction. SA is a lifestyle disease related to obesity and metabolic syndrome. To alleviate these symptoms, changing the eating habit is one of the strategies. Improvement in the daily lifestyle reduces the risk of lung cancer. Self-management, including nutritional management and exercise, is very important for COPD patients in addition to pharmacotherapy.

Conclusion: The intake of grape phytochemicals and vitamin D prevents the progress of lung diseases. Both phytochemicals and vitamin D prevent the production of proinflammatory cytokine, TNF-α, that is responsible for inflammation and lung diseases. Daily intake of grape phytochemicals is important. The optimum vitamin D level in serum is > 30 ng/mL. For the prevention of lung diseases, upregulating immunity and maintaining good gut microbiota are important because gut microbiota change depending on what we eat.

Keywords: Vitamin D, phytochemicals, COVID-19, pneumonia, asthma, sleep apnea syndrome (SA), interstitial pneumonia (IP), lung cancer, chronic obstructive pulmonary disease (COPD), TNF-α.

Graphical Abstract

[1]
Chung, J.Y.; Thone, M.N.; Kwon, Y.J. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv. Drug Deliv. Rev., 2021, 170, 1-25.
[http://dx.doi.org/10.1016/j.addr.2020.12.011] [PMID: 33359141]
[2]
Nishimura, K. Lung health in Japan. Chron. Respir. Dis., 2006, 3(2), 104-105.
[http://dx.doi.org/10.1191/1479972306cd106rs] [PMID: 16729768]
[3]
Woodhead, M. Pneumonia in the elderly. J. Antimicrob. Chemother., 1994, 34(Suppl. A), 85-92.
[http://dx.doi.org/10.1093/jac/34.suppl_A.85]
[4]
Bourke, S.J. Interstitial lung disease: Progress and problems. Postgrad. Med. J., 2006, 82(970), 494-499.
[http://dx.doi.org/10.1136/pgmj.2006.046417] [PMID: 16891438]
[5]
George, P.M.; Wells, A.U.; Jenkins, R.G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir. Med., 2020, 8(8), 807-815.
[http://dx.doi.org/10.1016/S2213-2600(20)30225-3] [PMID: 32422178]
[6]
Shibata, S.; Miyake, K.; Tateishi, T.; Yoshikawa, S.; Yamanishi, Y.; Miyazaki, Y.; Inase, N.; Karasuyama, H. Basophils trigger emphysema development in a murine model of COPD through IL-4-mediated generation of MMP-12-producing macrophages. Proc. Natl. Acad. Sci. USA, 2018, 115(51), 13057-13062.
[http://dx.doi.org/10.1073/pnas.1813927115] [PMID: 30510003]
[7]
Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(6), L1005-L1028.
[http://dx.doi.org/10.1152/ajplung.2000.279.6.L1005] [PMID: 11076791]
[8]
Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers, 2017, 3(1), 17074.
[http://dx.doi.org/10.1038/nrdp.2017.74] [PMID: 29052582]
[9]
Liu, Q.; Jiang, J.X.; Liu, Y.N.; Ge, L.T.; Guan, Y.; Zhao, W.; Jia, Y.L.; Dong, X.W.; Sun, Y.; Xie, Q.M. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis. Toxicol. Lett., 2017, 273, 1-9.
[http://dx.doi.org/10.1016/j.toxlet.2017.03.012] [PMID: 28300665]
[10]
Tsujino, I.; Ushikoshi-Nakayama, R.; Yamazaki, T.; Matsumoto, N.; Saito, I. Pulmonary activation of vitamin D3 and preventive effect against interstitial pneumonia. J. Clin. Biochem. Nutr., 2019, 65(3), 245-251.
[http://dx.doi.org/10.3164/jcbn.19-48] [PMID: 31777427]
[11]
Tzilas, V.; Bouros, E.; Barbayianni, I.; Karampitsakos, T.; Kourtidou, S.; Ntassiou, M.; Ninou, I.; Aidinis, V.; Bouros, D.; Tzouvelekis, A. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm. Pharmacol. Ther., 2019, 55, 17-24.
[http://dx.doi.org/10.1016/j.pupt.2019.01.003] [PMID: 30659895]
[12]
Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients, 2013, 5(7), 2502-2521.
[http://dx.doi.org/10.3390/nu5072502] [PMID: 23857223]
[13]
Urata, S.; Maruyama, J.; Kishimoto-Urata, M.; Sattler, R.A.; Cook, R.; Lin, N.; Yamasoba, T.; Makishima, T.; Paessler, S. Regeneration profiles of olfactory epithelium after SARS-CoV-2 infection in golden syrian hamsters. ACS Chem. Neurosci., 2021, 12(4), 589-595.
[http://dx.doi.org/10.1021/acschemneuro.0c00649] [PMID: 33522795]
[14]
Steardo, L., Jr; Steardo, L.; Verkhratsky, A. Psychiatric face of COVID-19. Transl. Psychiatry, 2020, 10(1), 261.
[http://dx.doi.org/10.1038/s41398-020-00949-5] [PMID: 32732883]
[15]
Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; Napoli, N.; Accili, D.; Binkley, N.; Landry, D.W.; Giustina, A. Mechanisms in endocrinology: Vitamin D and COVID-19. Eur. J. Endocrinol., 2020, 183(5), R133-R147.
[http://dx.doi.org/10.1530/EJE-20-0665] [PMID: 32755992]
[16]
Satoh, T.; Akira, S. Toll-like receptor signaling and its inducible proteins. Microbiol. Spectr., 2016, 4(6)
[http://dx.doi.org/10.1128/microbiolspec.MCHD-0040-2016]
[17]
Anderson, M.R.; Geleris, J.; Anderson, D.R.; Zucker, J.; Nobel, Y.R.; Freedberg, D.; Small-Saunders, J.; Rajagopalan, K.N.; Greendyk, R.; Chae, S.R.; Natarajan, K.; Roh, D.; Edwin, E.; Gallagher, D.; Podolanczuk, A.; Barr, R.G.; Ferrante, A.W.; Baldwin, M.R. Body mass index and risk for intubation or death in SARS-CoV-2 infection: A retrospective cohort study. Ann. Intern. Med., 2020, 173(10), 782-790.
[http://dx.doi.org/10.7326/M20-3214] [PMID: 32726151]
[18]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.D.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. ACTT-1 Study Group Members. Remdesivir for the treatment of COVID-19 - Final report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[19]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[20]
Khan, M.S.I.; Khan, M.S.I.; Debnath, C.R.; Nath, P.N.; Mahtab, M.A.; Nabeka, H.; Matsuda, S.; Akbar, S.M.F. Ivermectin treatment may improve the prognosis of patients with COVID-19. Arch. Bronconeumol., 2020, 56(12), 828-830.
[21]
Shah, V.K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front. Immunol., 2020, 11, 1949.
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[22]
Grange, L.; Guilpain, P.; Truchetet, M.E.; Cracowski, J.L. French Society of Pharmacology and Therapeutics. Challenges of autoimmune rheumatic disease treatment during the COVID-19 pandemic: A review. Therapie, 2020, 75(4), 335-342.
[http://dx.doi.org/10.1016/j.therap.2020.06.013] [PMID: 32665090]
[23]
Theron, M.; Huang, K.J.; Chen, Y.W.; Liu, C.C.; Lei, H.Y. A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine, 2005, 32(1), 30-38.
[http://dx.doi.org/10.1016/j.cyto.2005.07.007] [PMID: 16129616]
[24]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[25]
Wu, J. Tackle the free radicals damage in COVID-19. Nitric Oxide, 2020, 102, 39-41.
[http://dx.doi.org/10.1016/j.niox.2020.06.002] [PMID: 32562746]
[26]
Laforge, M.; Elbim, C.; Frère, C.; Hémadi, M.; Massaad, C.; Nuss, P.; Benoliel, J.J.; Becker, C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol., 2020, 20(9), 515-516.
[http://dx.doi.org/10.1038/s41577-020-0407-1] [PMID: 32728221]
[27]
Ackermann, M.; Anders, H.J.; Bilyy, R.; Bowlin, G.L.; Daniel, C.; De Lorenzo, R.; Egeblad, M.; Henneck, T.; Hidalgo, A.; Hoffmann, M.; Hohberger, B.; Kanthi, Y.; Kaplan, M.J.; Knight, J.S.; Knopf, J.; Kolaczkowska, E.; Kubes, P.; Leppkes, M.; Mahajan, A.; Manfredi, A.A.; Maueröder, C.; Maugeri, N.; Mitroulis, I.; Muñoz, L.E.; Narasaraju, T.; Naschberger, E.; Neeli, I.; Ng, L.G.; Radic, M.Z.; Ritis, K.; Rovere-Querini, P.; Schapher, M.; Schauer, C.; Simon, H.U.; Singh, J.; Skendros, P.; Stark, K.; Stürzl, M.; van der Vlag, J.; Vandenabeele, P.; Vitkov, L.; von Köckritz-Blickwede, M.; Yanginlar, C.; Yousefi, S.; Zarbock, A.; Schett, G.; Herrmann, M. Patients with COVID-19: In the dark-NETs of neutrophils. Cell Death Differ., 2021, 28(11), 3125-3139.
[http://dx.doi.org/10.1038/s41418-021-00805-z] [PMID: 34031543]
[28]
Iba, T.; Levy, J.H.; Levi, M.; Thachil, J. Coagulopathy in COVID-19. J. Thromb. Haemost., 2020, 18(9), 2103-2109.
[http://dx.doi.org/10.1111/jth.14975] [PMID: 32558075]
[29]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[30]
Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; Rycus, P.T.; Hyer, S.J.; Anders, M.M.; Agerstrand, C.L.; Hryniewicz, K.; Diaz, R.; Lorusso, R.; Combes, A.; Brodie, D.; Alexander, P.; Barrett, N.; Bělohlávek, J.; Fisher, D.; Fraser, J.; Hssain, A.A.; Jung, J.S.; McMullan, M.; Mehta, Y.; Ogino, M.T.; Paden, M.L.; Shekar, K.; Stead, C.; Abu-Omar, Y.; Agnoletti, V.; Akbar, A.; Alfoudri, H.; Alviar, C.; Aronsky, V.; August, E.; Auzinger, G.; Aveja, H.; Bakken, R.; Balcells, J.; Bangalore, S.; Barnes, B.W.; Bautista, A.; Bellows, L.L.; Beltran, F.; Benharash, P.; Benni, M.; Berg, J.; Bertini, P.; Blanco-Schweizer, P.; Brunsvold, M.; Budd, J.; Camp, D.; Caridi-Scheible, M.; Carton, E.; Casanova-Ghosh, E.; Castleberry, A.; Chipongian, C.T.; Choi, C.W.; Circelli, A.; Cohen, E.; Collins, M.; Copus, S.; Coy, J.; Crist, B.; Cruz, L.; Czuczwar, M.; Daneshmand, M.; Davis, D.,II; De la Cruz, K.; Devers, C.; Duculan, T.; Durham, L.; Elapavaluru, S.; Elzo Kraemer, C.V.; Filho, E.C.; Fitzgerald, J.; Foti, G.; Fox, M.; Fritschen, D.; Fullerton, D.; Gelandt, E.; Gerle, S.; Giani, M.; Goh, S.G.; Govener, S.; Grone, J.; Guber, M.; Gudzenko, V.; Gutteridge, D.; Guy, J.; Haft, J.; Hall, C.; Hassan, I.F.; Herrán, R.; Hirose, H.; Ibrahim, A.S.; Igielski, D.; Ivascu, F.A.; Izquierdo Blasco, J.; Jackson, J.; Jain, H.; Jaiswal, B.; Johnson, A.C.; Jurynec, J.A.; Kellter, N.M.; Kohl, A.; Kon, Z.; Kredel, M.; Kriska, K.; Kunavarapu, C.; Lansink-Hartgring, O.; LaRocque, J.; Larson, S.B.; Layne, T.; Ledot, S.; Lena, N.; Lillie, J.; Lotz, G.; Lucas, M.; Ludwigson, L.; Maas, J.J.; Maertens, J.; Mast, D.; McCardle, S.; McDonald, B.; McLarty, A.; McMahon, C.; Meybohm, P.; Meyns, B.; Miller, C.; Moraes Neto, F.; Morris, K.; Muellenbach, R.; Nicholson, M.; O’Brien, S.; O’Keefe, K.; Ogston, T.; Oldenburg, G.; Oliveira, F.M.; Oppel, E.; Pardo, D.; Pardo, D.; Parker, S.J.; Pedersen, F.M.; Pellecchia, C.; Pelligrini, J.A.S.; Pham, T.T.N.; Phillips, A.R.; Pirani, T.; Piwowarczyk, P.; Plambeck, R.; Pruett, W.; Quandt, B.; Ramanathan, K.; Rey, A.; Reyher, C.; Riera del Brio, J.; Roberts, R.; Roe, D.; Roeleveld, P.P.; Rudy, J.; Rueda, L.F.; Russo, E.; Sánchez Ballesteros, J.; Satou, N.; Saueressig, M.G.; Saunders, P.C.; Schlotterbeck, M.; Schwarz, P.; Scriven, N.; Serra, A.; Shamsah, M.; Sim, L.; Smart, A.; Smith, A.; Smith, D.; Smith, M.; Sodha, N.; Sonntagbauer, M.; Sorenson, M.; Stallkamp, E.B.; Stewart, A.; Swartz, K.; Takeda, K.; Thompson, S.; Toy, B.; Tuazon, D.; Uchiyama, M.; Udeozo, O.I.; van Poppel, S.; Ventetuolo, C.; Vercaemst, L.; Vinh Chau, N.V.; Wang, I-W.; Williamson, C.; Wilson, B.; Winkels, H. Extracorporeal Life Support Organization. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the Extracorporeal Life Support Organization registry. Lancet, 2020, 396(10257), 1071-1078.
[http://dx.doi.org/10.1016/S0140-6736(20)32008-0] [PMID: 32987008]
[31]
Chen, W. A potential treatment of COVID-19 with TGF-β blockade. Int. J. Biol. Sci., 2020, 16(11), 1954-1955.
[http://dx.doi.org/10.7150/ijbs.46891] [PMID: 32398962]
[32]
Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; Dold, C.; Faust, S.N.; Finn, A.; Flaxman, A.L.; Hallis, B.; Heath, P.; Jenkin, D.; Lazarus, R.; Makinson, R.; Minassian, A.M.; Pollock, K.M.; Ramasamy, M.; Robinson, H.; Snape, M.; Tarrant, R.; Voysey, M.; Green, C.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aboagye, J.; Adams, K.; Ali, A.; Allen, E.; Allison, J.L.; Anslow, R.; Arbe-Barnes, E.H.; Babbage, G.; Baillie, K.; Baker, M.; Baker, N.; Baker, P.; Baleanu, I.; Ballaminut, J.; Barnes, E.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beckley, R.; Berrie, E.; Berry, L.; Beveridge, A.; Bewley, K.R.; Bijker, E.M.; Bingham, T.; Blackwell, L.; Blundell, C.L.; Bolam, E.; Boland, E.; Borthwick, N.; Bower, T.; Boyd, A.; Brenner, T.; Bright, P.D.; Brown-O’Sullivan, C.; Brunt, E.; Burbage, J.; Burge, S.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Carr, M.; Carroll, M.W.; Carter, V.; Cathie, K.; Challis, R.J.; Charlton, S.; Chelysheva, I.; Cho, J-S.; Cicconi, P.; Cifuentes, L.; Clark, H.; Clark, E.; Cole, T.; Colin-Jones, R.; Conlon, C.P.; Cook, A.; Coombes, N.S.; Cooper, R.; Cosgrove, C.A.; Coy, K.; Crocker, W.E.M.; Cunningham, C.J.; Damratoski, B.E.; Dando, L.; Datoo, M.S.; Davies, H.; De Graaf, H.; Demissie, T.; Di Maso, C.; Dietrich, I.; Dong, T.; Donnellan, F.R.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Drury, R.E.; Dunachie, S.J.; Edwards, N.J.; Edwards, F.D.L.; Edwards, C.J.; Elias, S.C.; Elmore, M.J.; Emary, K.R.W.; English, M.R.; Fagerbrink, S.; Felle, S.; Feng, S.; Field, S.; Fixmer, C.; Fletcher, C.; Ford, K.J.; Fowler, J.; Fox, P.; Francis, E.; Frater, J.; Furze, J.; Fuskova, M.; Galiza, E.; Gbesemete, D.; Gilbride, C.; Godwin, K.; Gorini, G.; Goulston, L.; Grabau, C.; Gracie, L.; Gray, Z.; Guthrie, L.B.; Hackett, M.; Halwe, S.; Hamilton, E.; Hamlyn, J.; Hanumunthadu, B.; Harding, I.; Harris, S.A.; Harris, A.; Harrison, D.; Harrison, C.; Hart, T.C.; Haskell, L.; Hawkins, S.; Head, I.; Henry, J.A.; Hill, J.; Hodgson, S.H.C.; Hou, M.M.; Howe, E.; Howell, N.; Hutlin, C.; Ikram, S.; Isitt, C.; Iveson, P.; Jackson, S.; Jackson, F.; James, S.W.; Jenkins, M.; Jones, E.; Jones, K.; Jones, C.E.; Jones, B.; Kailath, R.; Karampatsas, K.; Keen, J.; Kelly, S.; Kelly, D.; Kerr, D.; Kerridge, S.; Khan, L.; Khan, U.; Killen, A.; Kinch, J.; King, T.B.; King, L.; King, J.; Kingham-Page, L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.; Kupke, A.; Larkworthy, C.W.; Larwood, J.P.J.; Laskey, A.; Lawrie, A.M.; Lee, A.; Ngan Lee, K.Y.; Lees, E.A.; Legge, H.; Lelliott, A.; Lemm, N-M.; Lias, A.M.; Linder, A.; Lipworth, S.; Liu, X.; Liu, S.; Lopez Ramon, R.; Lwin, M.; Mabesa, F.; Madhavan, M.; Mallett, G.; Mansatta, K.; Marcal, I.; Marinou, S.; Marlow, E.; Marshall, J.L.; Martin, J.; McEwan, J.; McInroy, L.; Meddaugh, G.; Mentzer, A.J.; Mirtorabi, N.; Moore, M.; Moran, E.; Morey, E.; Morgan, V.; Morris, S.J.; Morrison, H.; Morshead, G.; Morter, R.; Mujadidi, Y.F.; Muller, J.; Munera-Huertas, T.; Munro, C.; Munro, A.; Murphy, S.; Munster, V.J.; Mweu, P.; Noé, A.; Nugent, F.L.; Nuthall, E.; O’Brien, K.; O’Connor, D.; Oguti, B.; Oliver, J.L.; Oliveira, C.; O’Reilly, P.J.; Osborn, M.; Osborne, P.; Owen, C.; Owens, D.; Owino, N.; Pacurar, M.; Parker, K.; Parracho, H.; Patrick-Smith, M.; Payne, V.; Pearce, J.; Peng, Y.; Peralta Alvarez, M.P.; Perring, J.; Pfafferott, K.; Pipini, D.; Plested, E.; Pluess-Hall, H.; Pollock, K.; Poulton, I.; Presland, L.; Provstgaard-Morys, S.; Pulido, D.; Radia, K.; Ramos Lopez, F.; Rand, J.; Ratcliffe, H.; Rawlinson, T.; Rhead, S.; Riddell, A.; Ritchie, A.J.; Roberts, H.; Robson, J.; Roche, S.; Rohde, C.; Rollier, C.S.; Romani, R.; Rudiansyah, I.; Saich, S.; Sajjad, S.; Salvador, S.; Sanchez Riera, L.; Sanders, H.; Sanders, K.; Sapaun, S.; Sayce, C.; Schofield, E.; Screaton, G.; Selby, B.; Semple, C.; Sharpe, H.R.; Shaik, I.; Shea, A.; Shelton, H.; Silk, S.; Silva-Reyes, L.; Skelly, D.T.; Smee, H.; Smith, C.C.; Smith, D.J.; Song, R.; Spencer, A.J.; Stafford, E.; Steele, A.; Stefanova, E.; Stockdale, L.; Szigeti, A.; Tahiri-Alaoui, A.; Tait, M.; Talbot, H.; Tanner, R.; Taylor, I.J.; Taylor, V.; Te Water Naude, R.; Thakur, N.; Themistocleous, Y.; Themistocleous, A.; Thomas, M.; Thomas, T.M.; Thompson, A.; Thomson-Hill, S.; Tomlins, J.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.A.; Truby, A.; Turkentine, K.; Turner, C.; Turner, N.; Turner, S.; Tuthill, T.; Ulaszewska, M.; Varughese, R.; Van Doremalen, N.; Veighey, K.; Verheul, M.K.; Vichos, I.; Vitale, E.; Walker, L.; Watson, M.E.E.; Welham, B.; Wheat, J.; White, C.; White, R.; Worth, A.T.; Wright, D.; Wright, S.; Yao, X.L.; Yau, Y. Oxford COVID Vaccine Trial Group. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 2020, 396(10249), 467-478.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[33]
Polack, F.P. Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[34]
Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; Huppert, A. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N. Engl. J. Med., 2021, 385(15), 1393-1400.
[http://dx.doi.org/10.1056/NEJMoa2114255] [PMID: 34525275]
[35]
Mudgal, R.; Nehul, S.; Tomar, S. Prospects for mucosal vaccine: Shutting the door on SARS-CoV-2. Hum. Vaccin. Immunother., 2020, 16(12), 2921-2931.
[http://dx.doi.org/10.1080/21645515.2020.1805992] [PMID: 32931361]
[36]
Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; Shawa, I.; Adams, A.C.; Van Naarden, J.; Custer, K.L.; Shen, L.; Durante, M.; Oakley, G.; Schade, A.E.; Sabo, J.; Patel, D.R.; Klekotka, P.; Skovronsky, D.M. BLAZE-1 Investigators. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med., 2021, 384(3), 229-237.
[http://dx.doi.org/10.1056/NEJMoa2029849] [PMID: 33113295]
[37]
Guaraldi, G.; Meschiari, M.; Cozzi-Lepri, A.; Milic, J.; Tonelli, R.; Menozzi, M.; Franceschini, E.; Cuomo, G.; Orlando, G.; Borghi, V.; Santoro, A.; Di Gaetano, M.; Puzzolante, C.; Carli, F.; Bedini, A.; Corradi, L.; Fantini, R.; Castaniere, I.; Tabbì, L.; Girardis, M.; Tedeschi, S.; Giannella, M.; Bartoletti, M.; Pascale, R.; Dolci, G.; Brugioni, L.; Pietrangelo, A.; Cossarizza, A.; Pea, F.; Clini, E.; Salvarani, C.; Massari, M.; Viale, P.L.; Mussini, C. Tocilizumab in patients with severe COVID-19: A retrospective cohort study. Lancet Rheumatol., 2020, 2(8), e474-e484.
[http://dx.doi.org/10.1016/S2665-9913(20)30173-9] [PMID: 32835257]
[38]
Collier, D.A.; De Marco, A.; Ferreira, I.A.T.M.; Meng, B.; Datir, R.P.; Walls, A.C.; Kemp, S.A.; Bassi, J.; Pinto, D.; Silacci-Fregni, C.; Bianchi, S.; Tortorici, M.A.; Bowen, J.; Culap, K.; Jaconi, S.; Cameroni, E.; Snell, G.; Pizzuto, M.S.; Pellanda, A.F.; Garzoni, C.; Riva, A.; Elmer, A.; Kingston, N.; Graves, B.; McCoy, L.E.; Smith, K.G.C.; Bradley, J.R.; Temperton, N.; Ceron-Gutierrez, L.; Barcenas-Morales, G.; Harvey, W.; Virgin, H.W.; Lanzavecchia, A.; Piccoli, L.; Doffinger, R.; Wills, M.; Veesler, D.; Corti, D.; Gupta, R.K. CITIID-NIHR BioResource COVID-19 Collaboration; COVID-19 Genomics UK (COG-UK) Consortium. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593(7857), 136-141.
[http://dx.doi.org/10.1038/s41586-021-03412-7] [PMID: 33706364]
[39]
Adam, D. What scientists know about new, fast-spreading coronavirus variants. Nature, 2021, 594(7861), 19-20.
[http://dx.doi.org/10.1038/d41586-021-01390-4] [PMID: 34031583]
[40]
Sheahan, T.P.; Sims, A.C.; Zhou, S.; Graham, R.L.; Pruijssers, A.J.; Agostini, M.L.; Leist, S.R.; Schäfer, A.; Dinnon, K.H., III; Stevens, L.J.; Chappell, J.D.; Lu, X.; Hughes, T.M.; George, A.S.; Hill, C.S.; Montgomery, S.A.; Brown, A.J.; Bluemling, G.R.; Natchus, M.G.; Saindane, M.; Kolykhalov, A.A.; Painter, G.; Harcourt, J.; Tamin, A.; Thornburg, N.J.; Swanstrom, R.; Denison, M.R.; Baric, R.S. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med., 2020, 12(541), eabb5883.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[41]
Cox, R.M.; Wolf, J.D.; Plemper, R.K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat. Microbiol., 2021, 6(1), 11-18.
[http://dx.doi.org/10.1038/s41564-020-00835-2] [PMID: 33273742]
[42]
Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; Zhang, X.; Qu, Y.; Fan, Y.; Li, X.; Li, C.; Yu, T.; Xia, J.; Wei, M.; Chen, L.; Li, Y.; Xiao, F.; Liu, D.; Wang, J.; Wang, X.; Cao, B. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet, 2021, 398(10302), 747-758.
[http://dx.doi.org/10.1016/S0140-6736(21)01755-4] [PMID: 34454673]
[43]
Wostyn, P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med. Hypotheses, 2021, 146, 110469.
[http://dx.doi.org/10.1016/j.mehy.2020.110469] [PMID: 33401106]
[44]
Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 2021, 594(7862), 259-264.
[http://dx.doi.org/10.1038/s41586-021-03553-9] [PMID: 33887749]
[45]
Forte, G.; Favieri, F.; Tambelli, R.; Casagrande, M. COVID-19 pandemic in the Italian population: Validation of a Post-Traumatic Stress Disorder questionnaire and prevalence of PTSD symptomatology. Int. J. Environ. Res. Public Health, 2020, 17(11), 4151.
[http://dx.doi.org/10.3390/ijerph17114151] [PMID: 32532077]
[46]
Namkoong, H.; Omae, Y.; Asakura, T.; Ishii, M.; Suzuki, S.; Morimoto, K.; Kawai, Y.; Emoto, K.; Oler, A.J.; Szymanski, E.P.; Yoshida, M.; Matsuda, S.; Yagi, K.; Hase, I.; Nishimura, T.; Sasaki, Y.; Asami, T.; Shiomi, T.; Matsubara, H.; Shimada, H.; Hamamoto, J.; Jhun, B.W.; Kim, S.Y.; Huh, H.J.; Won, H.H.; Ato, M.; Kosaki, K.; Betsuyaku, T.; Fukunaga, K.; Kurashima, A.; Tettelin, H.; Yanai, H.; Mahasirimongkol, S.; Olivier, K.N.; Hoshino, Y.; Koh, W.J.; Holland, S.M.; Tokunaga, K.; Hasegawa, N. Nontuberculous Mycobacteriosis and Bronchiectasis – Japan Research Consortium (NTM-JRC). Genome-wide association study in patients with pulmonary Mycobacterium avium complex disease. Eur. Respir. J., 2021, 58(2), 1902269.
[http://dx.doi.org/10.1183/13993003.02269-2019] [PMID: 33542050]
[47]
Lanks, C.W.; Musani, A.I.; Hsia, D.W. Community-acquired pneumonia and hospital-acquired pneumonia. Med. Clin. North Am., 2019, 103(3), 487-501.
[http://dx.doi.org/10.1016/j.mcna.2018.12.008] [PMID: 30955516]
[48]
Mandell, L.A.; Niederman, M.S. Aspiration pneumonia. N. Engl. J. Med., 2019, 380(7), 651-663.
[http://dx.doi.org/10.1056/NEJMra1714562] [PMID: 30763196]
[49]
Henig, O.; Kaye, K.S. Bacterial pneumonia in older adults. Infect. Dis. Clin. North Am., 2017, 31(4), 689-713.
[http://dx.doi.org/10.1016/j.idc.2017.07.015] [PMID: 28916385]
[50]
Mandell, L.A. Community-acquired pneumonia: An overview. Postgrad. Med., 2015, 127(6), 607-615.
[http://dx.doi.org/10.1080/00325481.2015.1074030] [PMID: 26224210]
[51]
Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet, 2011, 377(9773), 1264-1275.
[http://dx.doi.org/10.1016/S0140-6736(10)61459-6] [PMID: 21435708]
[52]
Hooven, T.A.; Polin, R.A. Pneumonia. Semin. Fetal Neonatal Med., 2017, 22(4), 206-213.
[http://dx.doi.org/10.1016/j.siny.2017.03.002] [PMID: 28343909]
[53]
Omarini, C.; Thanopoulou, E.; Johnston, S.R. Pneumonitis and pulmonary fibrosis associated with breast cancer treatments. Breast Cancer Res. Treat., 2014, 146(2), 245-258.
[http://dx.doi.org/10.1007/s10549-014-3016-5] [PMID: 24929676]
[54]
Leone, M.; Bouadma, L.; Bouhemad, B.; Brissaud, O.; Dauger, S.; Gibot, S.; Hraiech, S.; Jung, B.; Kipnis, E.; Launey, Y.; Luyt, C.E.; Margetis, D.; Michel, F.; Mokart, D.; Montravers, P.; Monsel, A.; Nseir, S.; Pugin, J.; Roquilly, A.; Velly, L.; Zahar, J.R.; Bruyère, R.; Chanques, G. Hospital-acquired pneumonia in ICU. Anaesth. Crit. Care Pain Med., 2018, 37(1), 83-98.
[http://dx.doi.org/10.1016/j.accpm.2017.11.006] [PMID: 29155054]
[55]
Charles, P.G.; Wolfe, R.; Whitby, M.; Fine, M.J.; Fuller, A.J.; Stirling, R.; Wright, A.A.; Ramirez, J.A.; Christiansen, K.J.; Waterer, G.W.; Pierce, R.J.; Armstrong, J.G.; Korman, T.M.; Holmes, P.; Obrosky, D.S.; Peyrani, P.; Johnson, B.; Hooy, M.; Grayson, M.L. Australian community-acquired pneumonia study collaboration. smart-cop: a tool for predicting the need for intensive respiratory or vasopressor support in community-acquired pneumonia. Clin. Infect. Dis., 2008, 47(3), 375-384.
[http://dx.doi.org/10.1086/589754] [PMID: 18558884]
[56]
Heo, J.Y.; Song, J.Y.; Noh, J.Y.; Choi, M.J.; Yoon, J.G.; Lee, S.N.; Cheong, H.J.; Kim, W.J. Effects of influenza immunization on pneumonia in the elderly. Hum. Vaccin. Immunother., 2018, 14(3), 744-749.
[http://dx.doi.org/10.1080/21645515.2017.1405200] [PMID: 29135343]
[57]
Alvaro-Lozano, M.; Akdis, C.A.; Akdis, M.; Alviani, C.; Angier, E.; Arasi, S.; Arzt-Gradwohl, L.; Barber, D.; Bazire, R.; Cavkaytar, O.; Comberiati, P.; Dramburg, S.; Durham, S.R.; Eifan, A.O.; Forchert, L.; Halken, S.; Kirtland, M.; Kucuksezer, U.C.; Layhadi, J.A.; Matricardi, P.M.; Muraro, A.; Ozdemir, C.; Pajno, G.B.; Pfaar, O.; Potapova, E.; Riggioni, C.; Roberts, G.; Rodríguez Del Río, P.; Shamji, M.H.; Sturm, G.J.; Vazquez-Ortiz, M. EAACI allergen immunotherapy user’s guide. Pediatr. Allergy Immunol., 2020, 31(Suppl. 25), 1-101.
[58]
Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review. Int. J. Environ. Res. Public Health, 2018, 15(5), 1033.
[http://dx.doi.org/10.3390/ijerph15051033] [PMID: 29883409]
[59]
Barnthouse, M.; Jones, B.L. The impact of environmental chronic and toxic stress on asthma. Clin. Rev. Allergy Immunol., 2019, 57(3), 427-438.
[http://dx.doi.org/10.1007/s12016-019-08736-x] [PMID: 31079340]
[60]
Lougheed, M.D.; Turcotte, S.E.; Fisher, T. Cough variant asthma: Lessons learned from deep inspirations. Lung, 2012, 190(1), 17-22.
[http://dx.doi.org/10.1007/s00408-011-9348-6] [PMID: 22139550]
[61]
Jones, T.L.; Neville, D.M.; Chauhan, A.J. Diagnosis and treatment of severe asthma: A phenotype-based approach. Clin. Med. (Lond.), 2018, 18(Suppl. 2), s36-s40.
[http://dx.doi.org/10.7861/clinmedicine.18-2-s36] [PMID: 29700091]
[62]
Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The cytokines of asthma. Immunity, 2019, 50(4), 975-991.
[http://dx.doi.org/10.1016/j.immuni.2019.03.018] [PMID: 30995510]
[63]
Mishra, V.; Banga, J.; Silveyra, P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol. Ther., 2018, 181, 169-182.
[http://dx.doi.org/10.1016/j.pharmthera.2017.08.011] [PMID: 28842273]
[64]
Lommatzsch, M.; Virchow, J.C. Severe asthma: Definition, diagnosis and treatment. Dtsch. Arztebl. Int., 2014, 111(50), 847-855.
[PMID: 25585581]
[65]
Castillo, J.R.; Peters, S.P.; Busse, W.W. Asthma exacerbations: Pathogenesis, prevention, and treatment. J. Allergy Clin. Immunol. Pract., 2017, 5(4), 918-927.
[http://dx.doi.org/10.1016/j.jaip.2017.05.001] [PMID: 28689842]
[66]
Panebianco, C.; Eddine, F.B.N.; Forlani, G.; Palmieri, G.; Tatangelo, L.; Villani, A.; Xu, L.; Accolla, R.; Pazienza, V. Probiotic bifidobacterium lactis, anti-oxidant vitamin E/C and anti-inflammatory dha attenuate lung inflammation due to pm2.5 exposure in mice. Benef. Microbes, 2019, 10(1), 69-75.
[http://dx.doi.org/10.3920/BM2018.0060] [PMID: 30525952]
[67]
Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int., 2015, 64(1), 27-34.
[http://dx.doi.org/10.1016/j.alit.2014.08.003] [PMID: 25572556]
[68]
Jurkovicová, I.; Celec, P. Sleep apnea syndrome and its complications. Acta Med. Austriaca, 2004, 31(2), 45-50.
[PMID: 15359982]
[69]
Meurling, I.J.; Shea, D.O.; Garvey, J.F. Obesity and sleep: A growing concern. Curr. Opin. Pulm. Med., 2019, 25(6), 602-608.
[http://dx.doi.org/10.1097/MCP.0000000000000627] [PMID: 31589189]
[70]
Li, Z.; Celestin, J.; Lockey, R.F. Pediatric sleep apnea syndrome: An update. J. Allergy Clin. Immunol. Pract., 2016, 4(5), 852-861.
[http://dx.doi.org/10.1016/j.jaip.2016.02.022] [PMID: 27372597]
[71]
Punjabi, N.M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc., 2008, 5(2), 136-143.
[http://dx.doi.org/10.1513/pats.200709-155MG] [PMID: 18250205]
[72]
Dobrosielski, D.A.; Papandreou, C.; Patil, S.P.; Salas-Salvadó, J. Diet and exercise in the management of obstructive sleep apnoea and cardiovascular disease risk. Eur. Respir. Rev., 2017, 26(144), 160110.
[http://dx.doi.org/10.1183/16000617.0110-2016] [PMID: 28659501]
[73]
Lavie, C.J.; Laddu, D.; Arena, R.; Ortega, F.B.; Alpert, M.A.; Kushner, R.F. Healthy weight and obesity prevention: JACC health promotion series. J. Am. Coll. Cardiol., 2018, 72(13), 1506-1531.
[http://dx.doi.org/10.1016/j.jacc.2018.08.1037] [PMID: 30236314]
[74]
Shively, C.A.; Appt, S.E.; Vitolins, M.Z.; Uberseder, B.; Michalson, K.T.; Silverstein-Metzler, M.G.; Register, T.C. Mediterranean versus western diet effects on caloric intake, obesity, metabolism, and hepatosteatosis in nonhuman primates. Obesity (Silver Spring), 2019, 27(5), 777-784.
[http://dx.doi.org/10.1002/oby.22436] [PMID: 31012294]
[75]
Zinöcker, M.K.; Lindseth, I.A. The western diet-microbiome-host interaction and its role in metabolic disease. Nutrients, 2018, 10(3), 365.
[http://dx.doi.org/10.3390/nu10030365] [PMID: 29562591]
[76]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[77]
Engin, A.B. Adipocyte-macrophage cross-talk in obesity. Adv. Exp. Med. Biol., 2017, 960, 327-343.
[http://dx.doi.org/10.1007/978-3-319-48382-5_14] [PMID: 28585206]
[78]
Bastard, J.P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw., 2006, 17(1), 4-12.
[PMID: 16613757]
[79]
Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine, 2016, 86, 100-109.
[http://dx.doi.org/10.1016/j.cyto.2016.06.028] [PMID: 27498215]
[80]
Heimendinger, J.; Chapelsky, D. The national 5 A day for better health program. Adv. Exp. Med. Biol., 1996, 401, 199-206.
[http://dx.doi.org/10.1007/978-1-4613-0399-2_17] [PMID: 8886138]
[81]
Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol., 2017, 46(3), 1029-1056.
[http://dx.doi.org/10.1093/ije/dyw319] [PMID: 28338764]
[82]
Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016, 529(7585), 212-215.
[http://dx.doi.org/10.1038/nature16504] [PMID: 26762459]
[83]
Kay, R.M. Dietary fiber. J. Lipid Res., 1982, 23(2), 221-242.
[http://dx.doi.org/10.1016/S0022-2275(20)38151-7] [PMID: 6281350]
[84]
Singh, J.; Metrani, R.; Shivanagoudra, S.R.; Jayaprakasha, G.K.; Patil, B.S. Review on bile acids: Effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds. J. Agric. Food Chem., 2019, 67(33), 9124-9138.
[http://dx.doi.org/10.1021/acs.jafc.8b07306] [PMID: 30969768]
[85]
Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Brik, R.B.; Federici, S.; Cohen, Y.; Linevsky, R.; Rothschild, D.; Moor, A.E.; Ben-Moshe, S.; Harmelin, A.; Itzkovitz, S.; Maharshak, N.; Shibolet, O.; Shapiro, H.; Pevsner-Fischer, M.; Sharon, I.; Halpern, Z.; Segal, E.; Elinav, E. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell, 2018, 174(6), 1388-1405.e21.
[http://dx.doi.org/10.1016/j.cell.2018.08.041] [PMID: 30193112]
[86]
Borel, A.L. Sleep apnea and sleep habits: Relationships with metabolic syndrome. Nutrients, 2019, 11(11), 2628.
[http://dx.doi.org/10.3390/nu11112628] [PMID: 31684029]
[87]
Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082), 1941-1952.
[http://dx.doi.org/10.1016/S0140-6736(17)30866-8] [PMID: 28365056]
[88]
Wells, A.U.; Denton, C.P. Interstitial lung disease in connective tissue disease--mechanisms and management. Nat. Rev. Rheumatol., 2014, 10(12), 728-739.
[http://dx.doi.org/10.1038/nrrheum.2014.149] [PMID: 25266451]
[89]
Ojo, A.S.; Balogun, S.A.; Williams, O.T.; Ojo, O.S. Pulmonary fibrosis in COVID-19 survivors: Predictive factors and risk reduction strategies. Pulm. Med., 2020, 2020, 6175964.
[http://dx.doi.org/10.1155/2020/6175964] [PMID: 32850151]
[90]
Tarique, A.A.; Logan, J.; Thomas, E.; Holt, P.G.; Sly, P.D.; Fantino, E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol., 2015, 53(5), 676-688.
[http://dx.doi.org/10.1165/rcmb.2015-0012OC] [PMID: 25870903]
[91]
Zhao, Y.; Guo, Y.; Jiang, Y.; Zhu, X.; Liu, Y.; Zhang, X. Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 42-50.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.088] [PMID: 29061302]
[92]
Yamashita, M.; Saito, R.; Yasuhira, S.; Fukuda, Y.; Sasamo, H.; Sugai, T.; Yamauchi, K.; Maemondo, M. Distinct profiles of CD163-positive macrophages in idiopathic interstitial pneumonias. J. Immunol. Res., 2018, 2018, 1436236.
[http://dx.doi.org/10.1155/2018/1436236] [PMID: 29507864]
[93]
Laskin, D.L.; Malaviya, R.; Laskin, J.D. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicol. Sci., 2019, 168(2), 287-301.
[http://dx.doi.org/10.1093/toxsci/kfy309] [PMID: 30590802]
[94]
Alisi, A.; Carpino, G.; Oliveira, F.L.; Panera, N.; Nobili, V.; Gaudio, E. The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinical implications. Mediators Inflamm., 2017, 2017, 8162421.
[http://dx.doi.org/10.1155/2017/8162421] [PMID: 28115795]
[95]
Kubota, T.; Inoue, M.; Kubota, N.; Takamoto, I.; Mineyama, T.; Iwayama, K.; Tokuyama, K.; Moroi, M.; Ueki, K.; Yamauchi, T.; Kadowaki, T. Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity. Nat. Commun., 2018, 9(1), 4863.
[http://dx.doi.org/10.1038/s41467-018-07358-9] [PMID: 30451856]
[96]
Minutti, C.M.; Jackson-Jones, L.H.; García-Fojeda, B.; Knipper, J.A.; Sutherland, T.E.; Logan, N.; Ringqvist, E.; Guillamat-Prats, R.; Ferenbach, D.A.; Artigas, A.; Stamme, C.; Chroneos, Z.C.; Zaiss, D.M.; Casals, C.; Allen, J.E. Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science, 2017, 356(6342), 1076-1080.
[http://dx.doi.org/10.1126/science.aaj2067] [PMID: 28495878]
[97]
Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol., 2010, 11(10), 889-896.
[http://dx.doi.org/10.1038/ni.1937] [PMID: 20856220]
[98]
Ogawa, T.; Shichino, S.; Ueha, S.; Matsushima, K. Macrophages in lung fibrosis. Int. Immunol., 2021, 33(12), 665-671.
[http://dx.doi.org/10.1093/intimm/dxab040] [PMID: 34270737]
[99]
Jiang, Z.; Zhu, L. Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy, 2016, 9, 101-107.
[http://dx.doi.org/10.2147/JAA.S104508] [PMID: 27350756]
[100]
Venosa, A.; Malaviya, R.; Choi, H.; Gow, A.J.; Laskin, J.D.; Laskin, D.L. Characterization of distinct macrophage subpopulations during nitrogen mustard-induced lung injury and fibrosis. Am. J. Respir. Cell Mol. Biol., 2016, 54(3), 436-446.
[http://dx.doi.org/10.1165/rcmb.2015-0120OC] [PMID: 26273949]
[101]
Ayaub, E.A.; Dubey, A.; Imani, J.; Botelho, F.; Kolb, M.R.J.; Richards, C.D.; Ask, K. Overexpression of OSM and IL-6 impacts the polarization of pro-fibrotic macrophages and the development of bleomycin-induced lung fibrosis. Sci. Rep., 2017, 7(1), 13281.
[http://dx.doi.org/10.1038/s41598-017-13511-z] [PMID: 29038604]
[102]
Shi, K.; Jiang, J.; Ma, T.; Xie, J.; Duan, L.; Chen, R.; Song, P.; Yu, Z.; Liu, C.; Zhu, Q.; Zheng, J. Dexamethasone attenuates bleomycin-induced lung fibrosis in mice through TGF-β Smad3 and JAK-STAT pathway. Int. J. Clin. Exp. Med., 2014, 7(9), 2645-2650.
[PMID: 25356121]
[103]
Zhu, L.; Fu, X.; Chen, X.; Han, X.; Dong, P. M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway. Cell Biol. Int., 2017, 41(9), 960-968.
[http://dx.doi.org/10.1002/cbin.10788] [PMID: 28493530]
[104]
Murray, L.A.; Chen, Q.; Kramer, M.S.; Hesson, D.P.; Argentieri, R.L.; Peng, X.; Gulati, M.; Homer, R.J.; Russell, T.; van Rooijen, N.; Elias, J.A.; Hogaboam, C.M.; Herzog, E.L. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int. J. Biochem. Cell Biol., 2011, 43(1), 154-162.
[http://dx.doi.org/10.1016/j.biocel.2010.10.013] [PMID: 21044893]
[105]
Tsukui, T.; Ueha, S.; Shichino, S.; Inagaki, Y.; Matsushima, K. Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis. Am. J. Pathol., 2015, 185(11), 2939-2948.
[http://dx.doi.org/10.1016/j.ajpath.2015.07.022] [PMID: 26456579]
[106]
Kimura, S.; Mutoh, M.; Hisamoto, M.; Saito, H.; Takahashi, S.; Asakura, T.; Ishii, M.; Nakamura, Y.; Iida, J.; Hase, K.; Iwanaga, T.; Airway, M. Airway M cells arise in the lower airway due to RANKL signaling and reside in the bronchiolar epithelium associated with iBALT in murine models of respiratory disease. Front. Immunol., 2019, 10, 1323.
[http://dx.doi.org/10.3389/fimmu.2019.01323] [PMID: 31244859]
[107]
Malsin, E.S.; Kamp, D.W. The mitochondria in lung fibrosis: Friend or foe? Transl. Res., 2018, 202, 1-23.
[http://dx.doi.org/10.1016/j.trsl.2018.05.005] [PMID: 30036495]
[108]
Zheng, P.; Liu, X.; Huang, H.; Guo, Z.; Wu, G.; Hu, H.; Cai, C.; Luo, W.; Wei, N.; Han, Q.; Sun, B. Diagnostic value of KL-6 in idiopathic interstitial pneumonia. J. Thorac. Dis., 2018, 10(8), 4724-4732.
[http://dx.doi.org/10.21037/jtd.2018.07.54] [PMID: 30233844]
[109]
Tomassetti, S.; Ryu, J.H.; Piciucchi, S.; Chilosi, M.; Poletti, V. Nonspecific interstitial pneumonia: What is the optimal approach to management? Semin. Respir. Crit. Care Med., 2016, 37(3), 378-394.
[http://dx.doi.org/10.1055/s-0036-1583176] [PMID: 27231862]
[110]
Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med., 2011, 32(4), 605-644.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001] [PMID: 22054876]
[111]
Iyengar, N.M.; Gucalp, A.; Dannenberg, A.J.; Hudis, C.A. Obesity and cancer mechanisms: Tumor microenvironment and inflammation. J. Clin. Oncol., 2016, 34(35), 4270-4276.
[http://dx.doi.org/10.1200/JCO.2016.67.4283] [PMID: 27903155]
[112]
Kiraly, O.; Gong, G.; Olipitz, W.; Muthupalani, S.; Engelward, B.P. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet., 2015, 11(2), e1004901.
[http://dx.doi.org/10.1371/journal.pgen.1004901] [PMID: 25647331]
[113]
Allin, K.H.; Nordestgaard, B.G. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit. Rev. Clin. Lab. Sci., 2011, 48(4), 155-170.
[http://dx.doi.org/10.3109/10408363.2011.599831] [PMID: 22035340]
[114]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[115]
Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov., 2009, 3(1), 73-80.
[http://dx.doi.org/10.2174/187221309787158371] [PMID: 19149749]
[116]
Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis, 2017, 20(2), 185-204.
[http://dx.doi.org/10.1007/s10456-017-9552-y] [PMID: 28361267]
[117]
Peiris-Pagès, M.; Martinez-Outschoorn, U.E.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer stem cell metabolism. Breast Cancer Res., 2016, 18(1), 55.
[http://dx.doi.org/10.1186/s13058-016-0712-6] [PMID: 27220421]
[118]
Yang, Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest., 2015, 125(9), 3335-3337.
[http://dx.doi.org/10.1172/JCI83871] [PMID: 26325031]
[119]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[120]
Tanaka, A.; Sakaguchi, S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol., 2019, 49(8), 1140-1146.
[http://dx.doi.org/10.1002/eji.201847659] [PMID: 31257581]
[121]
Patel, H.J.; Patel, B.M. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci., 2017, 170, 56-63.
[http://dx.doi.org/10.1016/j.lfs.2016.11.033] [PMID: 27919820]
[122]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[123]
Hills, A.P.; Andersen, L.B.; Byrne, N.M. Physical activity and obesity in children. Br. J. Sports Med., 2011, 45(11), 866-870.
[http://dx.doi.org/10.1136/bjsports-2011-090199] [PMID: 21836171]
[124]
Carbone, C.; Piro, G.; Di Noia, V.; D’Argento, E.; Vita, E.; Ferrara, M.G.; Pilotto, S.; Milella, M.; Cammarota, G.; Gasbarrini, A.; Tortora, G.; Bria, E. Lung and gut microbiota as potential hidden driver of immunotherapy efficacy in lung cancer. Mediators Inflamm., 2019, 2019, 7652014.
[http://dx.doi.org/10.1155/2019/7652014] [PMID: 31827379]
[125]
Vij, N.; Chandramani-Shivalingappa, P.; Van Westphal, C.; Hole, R.; Bodas, M. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am. J. Physiol. Cell Physiol., 2018, 314(1), C73-C87.
[http://dx.doi.org/10.1152/ajpcell.00110.2016] [PMID: 27413169]
[126]
Barnes, P.J.; Burney, P.G.; Silverman, E.K.; Celli, B.R.; Vestbo, J.; Wedzicha, J.A.; Wouters, E.F. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15076.
[http://dx.doi.org/10.1038/nrdp.2015.76] [PMID: 27189863]
[127]
Yamasaki, A.; Hashimoto, K.; Hasegawa, Y.; Okazaki, R.; Yamamura, M.; Harada, T.; Ito, S.; Ishikawa, S.; Takami, H.; Watanabe, M.; Igishi, T.; Kawasaki, Y.; Shimizu, E. COPD is frequent in conditions of comorbidity in patients treated with various diseases in a university hospital. Int. J. Chron. Obstruct. Pulmon. Dis., 2010, 5, 351-355.
[http://dx.doi.org/10.2147/COPD.S12669] [PMID: 21037959]
[128]
Cavaillès, A.; Brinchault-Rabin, G.; Dixmier, A.; Goupil, F.; Gut-Gobert, C.; Marchand-Adam, S.; Meurice, J.C.; Morel, H.; Person-Tacnet, C.; Leroyer, C.; Diot, P. Comorbidities of COPD. Eur. Respir. Rev., 2013, 22(130), 454-475.
[http://dx.doi.org/10.1183/09059180.00008612] [PMID: 24293462]
[129]
Mouronte-Roibás, C.; Leiro-Fernández, V.; Fernández-Villar, A.; Botana-Rial, M.; Ramos-Hernández, C.; Ruano-Ravina, A. COPD, emphysema and the onset of lung cancer. A systematic review. Cancer Lett., 2016, 382(2), 240-244.
[http://dx.doi.org/10.1016/j.canlet.2016.09.002] [PMID: 27666776]
[130]
Nguyen, H.T.; Collins, P.F.; Pavey, T.G.; Nguyen, N.V.; Pham, T.D.; Gallegos, D.L. Nutritional status, dietary intake, and health-related quality of life in outpatients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 215-226.
[http://dx.doi.org/10.2147/COPD.S181322] [PMID: 30666102]
[131]
Raskin, J.; Marks, T.; Miller, A. Phenotypes and characterization of copd: A pulmonary rehabilitation perspective. J. Cardiopulm. Rehabil. Prev., 2018, 38(1), 43-48.
[http://dx.doi.org/10.1097/HCR.0000000000000271] [PMID: 28727671]
[132]
Zeng, Y.; Jiang, F.; Chen, Y.; Chen, P.; Cai, S. Exercise assessments and trainings of pulmonary rehabilitation in COPD: A literature review. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 2013-2023.
[http://dx.doi.org/10.2147/COPD.S167098] [PMID: 29983556]
[133]
Bringsvor, H.B.; Langeland, E.; Oftedal, B.F.; Skaug, K.; Assmus, J.; Bentsen, S.B. Effects of a COPD self-management support intervention: A randomized controlled trial. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 3677-3688.
[http://dx.doi.org/10.2147/COPD.S181005] [PMID: 30510410]
[134]
Ko, F.W.; Chan, K.P.; Hui, D.S.; Goddard, J.R.; Shaw, J.G.; Reid, D.W.; Yang, I.A. Acute exacerbation of COPD. Respirology, 2016, 21(7), 1152-1165.
[http://dx.doi.org/10.1111/resp.12780] [PMID: 27028990]
[135]
Bekkat-Berkani, R.; Wilkinson, T.; Buchy, P.; Dos Santos, G.; Stefanidis, D.; Devaster, J.M.; Meyer, N. Seasonal influenza vaccination in patients with COPD: A systematic literature review. BMC Pulm. Med., 2017, 17(1), 79.
[http://dx.doi.org/10.1186/s12890-017-0420-8] [PMID: 28468650]
[136]
Khanal, P.; Duyu, T.; Patil, B.M.; Dey, Y.N.; Pasha, I.; Wanjari, M.; Gurav, S.S.; Maity, A. Network pharmacology of AYUSH recommended immune-boosting medicinal plants against COVID-19. J. Ayurveda Integr. Med., 2022, 13(1), 100374.
[http://dx.doi.org/10.1016/j.jaim.2020.11.004] [PMID: 33250601]
[137]
Santa, K.; Kumazawa, Y.; Nagaoka, I. The potential use of grape phytochemicals for preventing the development of intestine-related and subsequent inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 794-802.
[http://dx.doi.org/10.2174/1871530319666190529105226] [PMID: 31142251]
[138]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284, 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[139]
Friedman, M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J. Agric. Food Chem., 2014, 62(26), 6025-6042.
[http://dx.doi.org/10.1021/jf501266s] [PMID: 24945318]
[140]
Cueva, C.; Mingo, S.; Muñoz-González, I.; Bustos, I.; Requena, T.; del Campo, R.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Lett. Appl. Microbiol., 2012, 54(6), 557-563.
[http://dx.doi.org/10.1111/j.1472-765X.2012.03248.x] [PMID: 22449241]
[141]
Sakurai, Y.; Ngwe Tun, M.M.; Kurosaki, Y.; Sakura, T.; Inaoka, D.K.; Fujine, K.; Kita, K.; Morita, K.; Yasuda, J. 5-amino levulinic acid inhibits SARS-CoV-2 infection in vitro. Biochem. Biophys. Res. Commun., 2021, 545, 203-207.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.091] [PMID: 33571909]
[142]
Wieczfinska, J.; Sitarek, P.; Kowalczyk, T. Skała, E.; Pawliczak, R. The anti-inflammatory potential of selected plant-derived compounds in respiratory diseases. Curr. Pharm. Des., 2020, 26(24), 2876-2884.
[http://dx.doi.org/10.2174/1381612826666200406093257] [PMID: 32250214]
[143]
Martel, J.; Ojcius, D.M.; Wu, C.Y.; Peng, H.H.; Voisin, L.; Perfettini, J.L.; Ko, Y.F.; Young, J.D. Emerging use of senolytics and senomorphics against aging and chronic diseases. Med. Res. Rev., 2020, 40(6), 2114-2131.
[http://dx.doi.org/10.1002/med.21702] [PMID: 32578904]
[144]
Sato, S.; Mukai, Y. Modulation of chronic inflammation by quercetin: The beneficial effects on obesity. J. Inflamm. Res., 2020, 13, 421-431.
[http://dx.doi.org/10.2147/JIR.S228361] [PMID: 32848440]
[145]
Kuchta, K.; Cameron, S. Phytotherapy for Cachexia: Where Do We Stand? Front. Pharmacol., 2020, 11, 917.
[http://dx.doi.org/10.3389/fphar.2020.00917] [PMID: 32733236]
[146]
Zhai, T.; Li, S.; Hu, W.; Li, D.; Leng, S. Potential micronutrients and phytochemicals against the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nutrients, 2018, 10(7), 813.
[http://dx.doi.org/10.3390/nu10070813] [PMID: 29941777]
[147]
Mahmoud, Y.I. Grape seed extract attenuates lung parenchyma pathology in ovalbumin-induced mouse asthma model: An ultrastructural study. Micron, 2012, 43(10), 1050-1059.
[http://dx.doi.org/10.1016/j.micron.2012.04.014] [PMID: 22609098]
[148]
Hemmati, A.A.; Nazari, Z.; Samei, M. A comparative study of grape seed extract and vitamin E effects on silica-induced pulmonary fibrosis in rats. Pulm. Pharmacol. Ther., 2008, 21(4), 668-674.
[http://dx.doi.org/10.1016/j.pupt.2008.04.004] [PMID: 18547852]
[149]
Ray, S.D.; Patel, D.; Wong, V.; Bagchi, D. In vivo protection of dna damage associated apoptotic and necrotic cell deaths during acetaminophen-induced nephrotoxicity, amiodarone-induced lung toxicity and doxorubicin-induced cardiotoxicity by a novel IH636 grape seed proanthocyanidin extract. Res. Commun. Mol. Pathol. Pharmacol., 2000, 107(1-2), 137-166.
[PMID: 11334364]
[150]
Mao, J.T.; Lu, Q.Y.; Xue, B.; Neis, P.; Zamora, F.D.; Lundmark, L.; Qualls, C.; Massie, L. A pilot study of a grape seed procyanidin extract for lung cancer chemoprevention. Cancer Prev. Res. (Phila.), 2019, 12(8), 557-566.
[http://dx.doi.org/10.1158/1940-6207.CAPR-19-0053] [PMID: 31138523]
[151]
de Campos, L.M.; Leimann, F.V.; Pedrosa, R.C.; Ferreira, S.R. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour. Technol., 2008, 99(17), 8413-8420.
[http://dx.doi.org/10.1016/j.biortech.2008.02.058] [PMID: 18445523]
[152]
David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[153]
Filardo, S.; Di Pietro, M.; Mastromarino, P.; Sessa, R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol. Ther., 2020, 214, 107613.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107613] [PMID: 32562826]
[154]
Farinetti, A.; Zurlo, V.; Manenti, A.; Coppi, F.; Mattioli, A.V. Mediterranean diet and colorectal cancer: A systematic review. Nutrition, 2017, 43-44, 83-88.
[http://dx.doi.org/10.1016/j.nut.2017.06.008] [PMID: 28935150]
[155]
Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; Grant, C.C.; Griffiths, C.J.; Janssens, W.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D.R.; Neale, R.; Rees, J.R.; Simpson, S., Jr; Stelmach, I.; Kumar, G.T.; Urashima, M.; Camargo, C.A. Jr Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ, 2017, 356, i6583.
[http://dx.doi.org/10.1136/bmj.i6583] [PMID: 28202713]
[156]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and covid-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[157]
Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect., 2006, 134(6), 1129-1140.
[http://dx.doi.org/10.1017/S0950268806007175] [PMID: 16959053]
[158]
Charoenngam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients, 2020, 12(7), 2097.
[http://dx.doi.org/10.3390/nu12072097] [PMID: 32679784]
[159]
Otelea, M.R.; Rascu, A.; Vitamin, D. Vitamin D intake and obesity in occupational asthma patients and the need for supplementation. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(6), 565-572.
[http://dx.doi.org/10.2174/1871530318666180628121321] [PMID: 29952274]
[160]
Pfeffer, P.E.; Hawrylowicz, C.M. Vitamin D in asthma: Mechanisms of action and considerations for clinical trials. Chest, 2018, 153(5), 1229-1239.
[http://dx.doi.org/10.1016/j.chest.2017.09.005] [PMID: 28923762]
[161]
Hall, S.C.; Agrawal, D.K. Vitamin D and bronchial asthma: An overview of data from the past 5 years. Clin. Ther., 2017, 39(5), 917-929.
[http://dx.doi.org/10.1016/j.clinthera.2017.04.002] [PMID: 28449868]
[162]
Zullow, S.; Jambaulikar, G.; Rustgi, A.; Quezada, S.; Cross, R.K. Risk factors for Vitamin D deficiency and impact of repletion in a tertiary care inflammatory bowel disease population. Dig. Dis. Sci., 2017, 62(8), 2072-2078.
[http://dx.doi.org/10.1007/s10620-017-4614-y] [PMID: 28547646]
[163]
Deng, M.; Tang, L.; Huang, D.; Wang, Z.; Chen, J. Vitamin D deficiency in connective tissue disease-associated interstitial lung disease. Clin. Exp. Rheumatol., 2018, 36(6), 1049-1055.
[PMID: 29846166]
[164]
Feng, Q.; Zhang, H.; Dong, Z.; Zhou, Y.; Ma, J. Circulating 25-hydroxyvitamin D and lung cancer risk and survival: A dose-response meta-analysis of prospective cohort studies. Medicine (Baltimore), 2017, 96(45), e8613.
[http://dx.doi.org/10.1097/MD.0000000000008613] [PMID: 29137092]
[165]
Zhu, M.; Wang, T.; Wang, C.; Ji, Y. The association between vitamin D and COPD risk, severity, and exacerbation: An updated systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 2597-2607.
[http://dx.doi.org/10.2147/COPD.S101382] [PMID: 27799758]
[166]
Wakahashi, K.; Minagawa, K.; Kawano, Y.; Kawano, H.; Suzuki, T.; Ishii, S.; Sada, A.; Asada, N.; Sato, M.; Kato, S.; Shide, K.; Shimoda, K.; Matsui, T.; Katayama, Y. Vitamin D receptor-mediated skewed differentiation of macrophages initiates myelofibrosis and subsequent osteosclerosis. Blood, 2019, 133(15), 1619-1629.
[http://dx.doi.org/10.1182/blood-2018-09-876615] [PMID: 30718230]
[167]
Oh, J.; Riek, A.E.; Darwech, I.; Funai, K.; Shao, J.; Chin, K.; Sierra, O.L.; Carmeliet, G.; Ostlund, R.E., Jr; Bernal-Mizrachi, C. Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep., 2015, 10(11), 1872-1886.
[http://dx.doi.org/10.1016/j.celrep.2015.02.043] [PMID: 25801026]
[168]
Kloc, M.; Ghobrial, R.M. Lipińska-Opałka, A.; Wawrzyniak, A.; Zdanowski, R.; Kalicki, B.; Kubiak, J.Z. Effects of vitamin D on macrophages and myeloid-derived suppressor cells (MDSCs) hyperinflammatory response in the lungs of COVID-19 patients. Cell. Immunol., 2021, 360, 104259.
[http://dx.doi.org/10.1016/j.cellimm.2020.104259] [PMID: 33359760]
[169]
Garg, M.; Lubel, J.S.; Sparrow, M.P.; Holt, S.G.; Gibson, P.R. Review article: Vitamin D and inflammatory bowel disease-established concepts and future directions. Aliment. Pharmacol. Ther., 2012, 36(4), 324-344.
[http://dx.doi.org/10.1111/j.1365-2036.2012.05181.x] [PMID: 22686333]
[170]
Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; Lanham-New, S. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr., 2012, 95(6), 1357-1364.
[http://dx.doi.org/10.3945/ajcn.111.031070] [PMID: 22552031]
[171]
Glinsky, G.V. Tripartite combination of candidate pandemic mitigation agents: Vitamin D, Quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the covid-19 pandemic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells. Biomedicines, 2020, 8(5), 129.
[http://dx.doi.org/10.3390/biomedicines8050129] [PMID: 32455629]
[172]
Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 227-241.
[http://dx.doi.org/10.1002/wsbm.1331] [PMID: 26990581]
[173]
Kawai, Y.; Nishikawa, T.; Shiba, Y.; Saito, S.; Murota, K.; Shibata, N.; Kobayashi, M.; Kanayama, M.; Uchida, K.; Terao, J. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: Implication in the anti-atherosclerotic mechanism of dietary flavonoids. J. Biol. Chem., 2008, 283(14), 9424-9434.
[http://dx.doi.org/10.1074/jbc.M706571200] [PMID: 18199750]
[174]
Kumazawa, Y.; Itagaki, A.; Fukumoto, M.; Fujisawa, H.; Nishimura, C.; Nomoto, K. Activation of peritoneal macrophages by berberine-type alkaloids in terms of induction of cytostatic activity. Int. J. Immunopharmacol., 1984, 6(6), 587-592.
[http://dx.doi.org/10.1016/0192-0561(84)90069-9] [PMID: 6392120]
[175]
Rui, R.; Yang, H.; Liu, Y.; Zhou, Y.; Xu, X.; Li, C.; Liu, S. Effects of berberine on atherosclerosis. Front. Pharmacol., 2021, 12, 764175.
[http://dx.doi.org/10.3389/fphar.2021.764175] [PMID: 34899318]
[176]
Wu, M.; Yang, S.; Wang, S.; Cao, Y.; Zhao, R.; Li, X.; Xing, Y.; Liu, L. Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- Mice. Front. Pharmacol., 2020, 11, 223.
[http://dx.doi.org/10.3389/fphar.2020.00223] [PMID: 32231564]
[177]
Kim, K.A.; Gu, W.; Lee, I.A.; Joh, E.H.; Kim, D.H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One, 2012, 7(10), e47713.
[http://dx.doi.org/10.1371/journal.pone.0047713] [PMID: 23091640]
[178]
Kaneko, M.; Takimoto, H.; Sugiyama, T.; Seki, Y.; Kawaguchi, K.; Kumazawa, Y. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol. Immunotoxicol., 2008, 30(4), 867-882.
[http://dx.doi.org/10.1080/08923970802135690] [PMID: 18720166]
[179]
Kawaguchi, K.; Matsumoto, T.; Kumazawa, Y. Effects of antioxidant polyphenols on TNF-alpha-related diseases. Curr. Top. Med. Chem., 2011, 11(14), 1767-1779.
[http://dx.doi.org/10.2174/156802611796235152] [PMID: 21506932]
[180]
Impellizzeri, D.; Talero, E.; Siracusa, R.; Alcaide, A.; Cordaro, M.; Maria Zubelia, J.; Bruschetta, G.; Crupi, R.; Esposito, E.; Cuzzocrea, S.; Motilva, V. Protective effect of polyphenols in an inflammatory process associated with experimental pulmonary fibrosis in mice. Br. J. Nutr., 2015, 114(6), 853-865.
[http://dx.doi.org/10.1017/S0007114515002597] [PMID: 26334388]
[181]
Donnelly, L.E.; Newton, R.; Kennedy, G.E.; Fenwick, P.S.; Leung, R.H.; Ito, K.; Russell, R.E.; Barnes, P.J. Anti-inflammatory effects of resveratrol in lung epithelial cells: Molecular mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 287(4), L774-L783.
[http://dx.doi.org/10.1152/ajplung.00110.2004] [PMID: 15180920]
[182]
Martinez, J.A.; Ramos, S.G.; Meirelles, M.S.; Verceze, A.V.; Arantes, M.R.; Vannucchi, H. Effects of quercetin on bleomycin-induced lung injury: A preliminary study. J. Bras. Pneumol., 2008, 34(7), 445-452.
[http://dx.doi.org/10.1590/S1806-37132008000700003] [PMID: 18695788]
[183]
López-García, S.; Castañeda-Sanchez, J.I.; Jiménez-Arellanes, A.; Domínguez-López, L.; Castro-Mussot, M.E.; Hernández-Sanchéz, J.; Luna-Herrera, J. Macrophage activation by ursolic and oleanolic acids during mycobacterial infection. Molecules, 2015, 20(8), 14348-14364.
[http://dx.doi.org/10.3390/molecules200814348] [PMID: 26287131]
[184]
Yao, B.; He, J.; Yin, X.; Shi, Y.; Wan, J.; Tian, Z. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells. Toxicol. Lett., 2019, 316, 109-118.
[http://dx.doi.org/10.1016/j.toxlet.2019.08.024] [PMID: 31472180]
[185]
Barbalho, S.M.; Bechara, M.D.; de Alvares Goulart, R.; Quesada, K.; Gasparini, R.G.; de Cássio Alves de Carvalho, A.; Fiorini, A.M. Reflections about inflammatory bowel disease and vitamins A and D. J. Med. Food, 2016, 19(12), 1105-1110.
[http://dx.doi.org/10.1089/jmf.2016.0101] [PMID: 27779898]
[186]
Rafique, A.; Rejnmark, L.; Heickendorff, L.; Møller, H.J. 25(OH)D3 and 1.25(OH)2D3 inhibits TNF-α expression in human monocyte derived macrophages. PLoS One, 2019, 14(4), e0215383.
[http://dx.doi.org/10.1371/journal.pone.0215383] [PMID: 30978243]
[187]
Lin, Z.; Li, W. The roles of vitamin D and its analogs in inflammatory diseases. Curr. Top. Med. Chem., 2016, 16(11), 1242-1261.
[http://dx.doi.org/10.2174/1568026615666150915111557] [PMID: 26369816]
[188]
Jian, T.; Chen, J.; Ding, X.; Lv, H.; Li, J.; Wu, Y.; Ren, B.; Tong, B.; Zuo, Y.; Su, K.; Li, W. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: The role of TRPV1 signaling pathways. Food Funct., 2020, 11(4), 3516-3526.
[http://dx.doi.org/10.1039/C9FO02921D] [PMID: 32253400]
[189]
Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.; Chow, K.M.; Ng, S.S.S.; Li, T.C.; Ng, R.W.; Yip, T.C.; Wong, G.L.; Chan, F.K.; Wong, C.K.; Chan, P.K.; Ng, S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70(4), 698-706.
[http://dx.doi.org/10.1136/gutjnl-2020-323020] [PMID: 33431578]
[190]
Augusti, P.R.; Conterato, G.M.M.; Denardin, C.C.; Prazeres, I.D.; Serra, A.T.; Bronze, M.R.; Emanuelli, T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: Implications for COVID-19. J. Nutr. Biochem., 2021, 97, 108787.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108787] [PMID: 34089819]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy