Abstract
Esterification of higher free fatty acids content by using a photo-catalyst has recently been proved as the most efficient method for the pretreatment of non-edible oil to synthesize biodiesel.
Methods: In the current study, mechanistic details of photo-catalyzed esterification reaction for four different fatty acids through density functional theory (DFT) calculations are explored and compared with un-catalyzed esterification reaction.
Results: Revealed that the presence of photo-catalyst lowers the activation barrier and the structure of fatty acid has no significant effect on its reactivity. Thermodynamic data also revealed that the presence of photo-catalyst lowered the activation energy from 51.67 kcal/mol to 0.7495 kcal/mol. Furthermore, Gibbs free energy changes (ΔrGm Ø) and molar enthalpy changes (ΔrHm Ø) of the photo-catalyzed esterification reaction are negative, indicating that it is a spontaneous exothermic reaction. On the other hand, free fatty acids esterification in the absence of a catalyst is a kinetically unfavorable process with positive values of ΔrGm Ø and ΔrHm Ø.
Conclusion: Our findings theoretically clarify the mechanism of the photo-catalyzed esterification reaction of FFA present in non-edible oil, which facilitates the process of biodiesel production.
Keywords: Esterification, density functional theory (DFT), reaction mechanism, soaf nut, biodiesel, photocatalyst.
Graphical Abstract
[http://dx.doi.org/10.3390/catal9010075]
[http://dx.doi.org/10.1007/s13762-013-0240-1]
[http://dx.doi.org/10.1016/j.renene.2017.09.035]
[http://dx.doi.org/10.1016/j.rser.2015.06.040]
[http://dx.doi.org/10.1186/s42500-019-0004-7]
[http://dx.doi.org/10.1016/j.ces.2018.04.068]
(b) Ramachandran, K.; Suganya, T.; Gandhi, N.N.; Renganathan, S. Renew. Sustain. Energy Rev., 2013, 22, 410-418.
[http://dx.doi.org/10.1016/j.rser.2013.01.057]
[http://dx.doi.org/10.1016/j.fuel.2014.07.062]
(b) Eevera, T.; Rajendran, K.; Saradha, S. Renew. Energy, 2009, 34(3), 762-765.
[http://dx.doi.org/10.1016/j.renene.2008.04.006]
[http://dx.doi.org/10.1186/1754-6834-4-56] [PMID: 22145867]
(b) Alhassan, F.H.; Yunus, R.; Rashid, U.; Sirat, K.; Islam, A.; Lee, H.; Taufiq-Yap, Y.H. Appl. Catal. A Gen., 2013, 456, 182-187.
[http://dx.doi.org/10.1016/j.apcata.2013.02.019]
[http://dx.doi.org/10.1016/j.mseb.2016.01.001]
[http://dx.doi.org/10.1016/j.apcatb.2012.09.004]
[http://dx.doi.org/10.1016/j.jmgm.2016.03.002] [PMID: 27023919]
[http://dx.doi.org/10.1002/qua.25497]
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
(b) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
(b) Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView 5.0. 8; Gaussian Inc, 2008, p. 340.
[http://dx.doi.org/10.1016/j.fuel.2012.11.028]
[http://dx.doi.org/10.1016/j.fuel.2010.09.017]
[http://dx.doi.org/10.1016/j.fuel.2008.10.045]
[http://dx.doi.org/10.19026/rjaset.7.850]