Abstract
Drug design and discovery is a process that requires high financial costs and is timeconsuming. For many years, this process focused on empirical pharmacology. However, over the years, the target-based approach allowed a significant discovery in this field, initiating the rational design era. In view, to decrease the time and financial cost, rational drug design is benefited by increasing computer engineering and software development, and computer-aided drug design (CADD) emerges as a promising alternative. Since the 1970s, this approach has been able to identify many important and revolutionary compounds, like protease inhibitors, antibiotics, and others. Many anticancer compounds identified through this approach have shown their importance, being CADD essential in any drug discovery campaign. Thus, this perspective will present the prominent successful cases utilizing this approach and entering into the next stage of drug design. We believe that drug discovery will follow the progress in bioinformatics, using high-performance computing with molecular dynamics protocols faster and more effectively. In addition, artificial intelligence and machine learning will be the next process in the rational design of new drugs. Here, we hope that this paper generates new ideas and instigates research groups worldwide to use these methods and stimulate progress in drug design.
Keywords: Drug design, drug discovery, molecular modeling, computer-aided drug design, in silico methods, bioinformatics.
[http://dx.doi.org/10.1007/s10822-020-00317-x] [PMID: 32468207]
[http://dx.doi.org/10.2174/1568026621666210331152702] [PMID: 33797369]
[http://dx.doi.org/10.1002/anie.201404761] [PMID: 25045053]
[http://dx.doi.org/10.1016/j.chemolab.2019.103850]
[http://dx.doi.org/10.1038/s41586-020-2168-1] [PMID: 32296187]
[http://dx.doi.org/10.4155/fmc-2019-0307] [PMID: 32270704]
[http://dx.doi.org/10.1038/s41573-019-0050-3] [PMID: 31801986]
[http://dx.doi.org/10.3389/fphar.2020.00733] [PMID: 32508653]
[http://dx.doi.org/10.2174/0929867327666200812215852] [PMID: 32787752]
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5]
[http://dx.doi.org/10.3390/ijms22094688] [PMID: 33925236]
[http://dx.doi.org/10.3389/fchem.2020.00612]
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[http://dx.doi.org/10.1093/bib/bbp023] [PMID: 19433475]
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[http://dx.doi.org/10.1016/j.antiviral.2006.05.016] [PMID: 16815563]
[http://dx.doi.org/10.1002/anie.200602623] [PMID: 17051628]
[http://dx.doi.org/10.1016/j.coph.2010.09.016] [PMID: 20971684]
[http://dx.doi.org/10.1016/j.bmcl.2013.05.007] [PMID: 23726034]
[http://dx.doi.org/10.1056/NEJMoa1813904] [PMID: 31091374]
[http://dx.doi.org/10.1158/2159-8290.CD-21-0365]
[http://dx.doi.org/10.1038/s41586-019-1694-1] [PMID: 31666701]
[http://dx.doi.org/10.1007/s10822-007-9162-7] [PMID: 18189157]
[http://dx.doi.org/10.1016/j.bioorg.2020.104490] [PMID: 33261845]
[http://dx.doi.org/10.2174/9789811412387120080004]
[http://dx.doi.org/10.1016/B978-0-12-801238-3.11670-8]
[http://dx.doi.org/10.1002/anie.201204625] [PMID: 23097176]
[http://dx.doi.org/10.1002/jps.21293] [PMID: 18214973]
[http://dx.doi.org/10.1016/j.cbpa.2011.06.005] [PMID: 21723773]
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[http://dx.doi.org/10.1021/ml4002634] [PMID: 24312700]
[http://dx.doi.org/10.1021/ci400391s] [PMID: 24001302]
[http://dx.doi.org/10.1002/cpt.2104] [PMID: 33150591]
[http://dx.doi.org/10.3390/antibiotics10121485] [PMID: 34943697]
[http://dx.doi.org/10.1517/17425255.2015.1041917] [PMID: 25936400]
[http://dx.doi.org/10.1016/j.copbio.2008.10.004] [PMID: 19000761]
[http://dx.doi.org/10.1016/S0065-2660(07)00421-X]
[http://dx.doi.org/10.1038/clpt.2010.92] [PMID: 20531468]
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]