Abstract
The use of quantum technology to deliver drugs has the potential to increase the efficacy of many rare disease treatments. Semiconductor nanoparticles are a new type of treatment for life-threatening disorders. The term "quantum dots" refers to semiconductor nanoparticles. These quantum dots have a one-of-a-kind shape, size, fluorescence characteristics, and shape-dependent optoelectronic capacities. As a result, we believe that quantum dots (QDs) has the potential to be destined as medication carriers, biosensors, etc. Due to improvements in research, medicinal, and clinical domains, an in-depth examination of quantum dots is now possible. Quantum dots are also classed as carbon-based quantum dots, graphene-based quantum dots, and cadmium-based quantum dots, with variations in their main structure, leading to the discovery of more comparable and diversified quantum dots. Semiconductor quantum dots, or QDs, have also made tremendous progress in the field of fluorescence bioimaging research. After examining their in vitro and in vivo applications, we may currently use QDs as agents for gene transport, medication delivery, and enhancing the biocompatibility of other medications. This article discusses the significant breakthroughs and challenges in the field of quantum dots as biosensors for bioimaging, surface changes, quantum dots in the treatment of numerous diseases, and future features of quantum dots and their improvements in biomedical applications.
Keywords: Quantum dots, semiconductor, biosensors, gene delivery, drug delivery, bioimaging.
Graphical Abstract
[http://dx.doi.org/10.3390/nano9121789] [PMID: 31888222]
[http://dx.doi.org/10.1002/pssb.200945074]
[http://dx.doi.org/10.15171/bi.2014.008] [PMID: 25337468]
[http://dx.doi.org/10.1063/1.458280]
[http://dx.doi.org/10.1016/j.jconrel.2019.04.030] [PMID: 31054991]
[http://dx.doi.org/10.3390/nano9010085] [PMID: 30634642]
[http://dx.doi.org/10.1016/j.scib.2019.07.021]
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[http://dx.doi.org/10.1021/acsomega.0c05416] [PMID: 33521456]
[http://dx.doi.org/10.1039/D1NR00023C] [PMID: 33870394]
[http://dx.doi.org/10.1021/nn506223h] [PMID: 25608730]
[http://dx.doi.org/10.1021/ja039232z] [PMID: 15238005]
[http://dx.doi.org/10.1080/21691401.2017.1377725] [PMID: 28933188]
[http://dx.doi.org/10.1002/adma.201806671] [PMID: 31106917]
[http://dx.doi.org/10.1039/C9TA11368A]
[http://dx.doi.org/10.1016/j.talanta.2020.121663] [PMID: 33167278]
[http://dx.doi.org/10.3892/br.2021.1418] [PMID: 33728048]
[http://dx.doi.org/10.1002/9781119710134.ch3]
[http://dx.doi.org/10.1063/1.2899087]
[http://dx.doi.org/10.1021/acsami.8b15212] [PMID: 30419162]
[http://dx.doi.org/10.1021/acs.jpcc.9b06756]
[http://dx.doi.org/10.1016/j.compositesb.2019.05.062];
a) Ko, J.; Chang, J.H.; Jeong, B.G.; Kim, H.J.; Joung, J.F.; Park, S.; Choi, D.H.; Bae, W.K.; Bang, J. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS App. Mat. Interfaces, 2020, 12(37), 42153-42160.
[http://dx.doi.org/10.3390/pr9020388]
[http://dx.doi.org/10.3390/nano11020462] [PMID: 33670297]
[http://dx.doi.org/10.3390/ma14051059] [PMID: 33668271]
[http://dx.doi.org/10.1371/journal.pone.0028818] [PMID: 22174906]
[http://dx.doi.org/10.1007/s00253-003-1321-8] [PMID: 12719940]
[http://dx.doi.org/10.1124/mi.2.3.158] [PMID: 14993376]
[http://dx.doi.org/10.1016/j.jconrel.2019.12.030] [PMID: 31862358]
[http://dx.doi.org/10.1080/14686996.2019.1590731] [PMID: 31068983]
[http://dx.doi.org/10.1016/j.jconrel.2019.12.034] [PMID: 31866505]
[http://dx.doi.org/10.1186/s12987-019-0129-6] [PMID: 30967147]
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[http://dx.doi.org/10.1002/smll.201100726] [PMID: 21972222]
[http://dx.doi.org/10.1039/C4CS00532E] [PMID: 25777768]
[http://dx.doi.org/10.1039/D0RA08670C]
[http://dx.doi.org/10.1016/j.jpcs.2020.109729]
[http://dx.doi.org/10.1038/s41598-021-87789-5] [PMID: 33875691]
[http://dx.doi.org/10.1021/acs.nanolett.0c03741] [PMID: 33472003]
[http://dx.doi.org/10.3109/1061186X.2010.526227] [PMID: 20964619]
[http://dx.doi.org/10.1016/j.snb.2017.11.189]
[http://dx.doi.org/10.2147/IJN.S129300] [PMID: 28458536]
[http://dx.doi.org/10.2147/IJN.S241332] [PMID: 32256071]
[http://dx.doi.org/10.1016/j.jes.2020.07.019] [PMID: 33279036]
[http://dx.doi.org/10.3390/nano11010124] [PMID: 33430414];
(a) Salleh, A.; Fauzi, M.B. The in vivo, in vitro and in ovo evaluation of quantum dots in wound healing: A review. Polymers, 2021, 13(2), 191.
[http://dx.doi.org/10.1038/nprot.2015.050] [PMID: 25974095]
[http://dx.doi.org/10.1126/science.1247390] [PMID: 25278614]
[http://dx.doi.org/10.1016/j.nanoen.2019.104189]
[http://dx.doi.org/10.1007/s40843-020-1330-7]
[http://dx.doi.org/10.1016/j.cap.2020.01.001]
[http://dx.doi.org/10.1038/s41598-020-68565-3] [PMID: 32665663]
[http://dx.doi.org/10.1016/S1473-3099(20)30831-8] [PMID: 33069281]
[http://dx.doi.org/10.1155/2017/1026270] [PMID: 29097909];
a) Zou, W.; Li, L.; Chen, Y.; Chen, T.; Yang, Z.; Wang, J.; Liu, D.; Lin, G.; Wang, X. In vivo toxicity evaluation of PEGylated CuInS2/ZnS quantum dots in BALB/c mice. Front. Pharmacol., 2019, 10, 437.
[http://dx.doi.org/10.1016/j.snb.2019.03.061]
[http://dx.doi.org/10.1021/acs.analchem.6b00048] [PMID: 27086777]
[http://dx.doi.org/10.3390/ma3042260]
[http://dx.doi.org/10.1016/j.tibtech.2019.07.013] [PMID: 31473014]
[http://dx.doi.org/10.1038/s41467-020-15970-x] [PMID: 32393785]
[http://dx.doi.org/10.1016/j.cis.2019.102046] [PMID: 31757388]
[http://dx.doi.org/10.1021/ar300040z] [PMID: 22853558]
[http://dx.doi.org/10.3389/fgene.2018.00616] [PMID: 30574163]
[http://dx.doi.org/10.1208/s12249-021-02103-w] [PMID: 34476619]
[http://dx.doi.org/10.1080/1061186X.2021.1987442] [PMID: 34595987]
[http://dx.doi.org/10.1109/TNB.2013.2263392] [PMID: 23722479]
[http://dx.doi.org/10.1109/JSEN.2013.2241757]
[http://dx.doi.org/10.1016/j.jelechem.2022.116062]
[http://dx.doi.org/10.1109/TNB.2013.2268540] [PMID: 25140361]
[http://dx.doi.org/10.1109/TNB.2014.2317315] [PMID: 24771595]
[http://dx.doi.org/10.1615/CritRevBiomedEng.2016016448] [PMID: 27480460]
[http://dx.doi.org/10.1016/j.nano.2016.11.008] [PMID: 27888095]
[http://dx.doi.org/10.1088/1361-6528/aa79e0] [PMID: 28718456]
[http://dx.doi.org/10.1088/1361-6528/aa893a] [PMID: 28853715]
[http://dx.doi.org/10.1109/TNB.2018.2852261] [PMID: 29994717]
[http://dx.doi.org/10.1155/2018/3019259]
[http://dx.doi.org/10.1109/BHI.2019.8834479]
[http://dx.doi.org/10.1038/s41598-020-70261-1] [PMID: 32764678]
[http://dx.doi.org/10.3724/SP.J.1123.2021.02025] [PMID: 34212579]
[http://dx.doi.org/10.3389/fchem.2020.616728] [PMID: 33262974]
[http://dx.doi.org/10.3389/fchem.2020.00594] [PMID: 32903607]
[http://dx.doi.org/10.1109/JPROC.2005.853543]
[http://dx.doi.org/10.2217/nnm-2021-0104] [PMID: 34180261]
[http://dx.doi.org/10.2174/1389450120666190405152315] [PMID: 30961492];
a) Ji, W.; Jing, P.; Xu, W.; Yuan, X.; Wang, Y.; Zhao, J.; Jen, A.K.Y. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phy. Lett., 2013, 103(5), 053106.
[http://dx.doi.org/10.1016/j.bios.2019.02.059] [PMID: 31323605]
[http://dx.doi.org/10.1007/s41061-020-00313-7] [PMID: 33398442]