Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Exploring the Role of Antioxidants to Combat Oxidative Stress in Malaria Parasites

Author(s): Sisir Nandi*, Sarfaraz Ahmed and Anil Kumar Saxena*

Volume 22, Issue 24, 2022

Published on: 27 May, 2022

Page: [2029 - 2044] Pages: 16

DOI: 10.2174/1568026622666220405121643

Price: $65

Abstract

Background: Malaria, a global challenge, is a parasitic disease caused by Plasmodium species. Approximately 229 million cases of malaria were reported in 2019. Major incidences occur in various continents, including African and Eastern Mediterranean Continents and South-East Asia. Introduction: Despite the overall decline in global incidence from 2010 to 2018, the rate of decline has been almost constant since 2014. The morbidity and mortality have been accelerated due to reactive oxygen species (ROS) caused by oxidative stress generated by the parasite responsible for the destruction of host metabolism and cell nutrients.

Methods: The excessive release of free radicals is associated with the infection in the animal or human body by the parasites. This may be related to a reduction in nutrients required for the generation of antioxidants and the destruction of cells by parasite activity. Therefore, an intensive literature search has been carried out to find the natural antioxidants used to neutralize the free radicals generated during malarial infection.

Results: The natural antioxidants may be useful as an adjuvant treatment along with the antimalarial chemotherapeutics to reduce the death rate and enhance the success rate of malaria treatment.

Conclusion: In this manuscript, an attempt has been made to provide significant insight into the antioxidant activities of herbal extracts against malaria parasites.

Keywords: Malaria parasite, Oxidative stress, Reactive oxygen species (ROS), Natural antioxidants, polyherbal formulation, Natural extracts.

Graphical Abstract

[1]
Calderaro, A.; Piccolo, G.; Gorrini, C.; Rossi, S.; Montecchini, S.; Dell’Anna, M.L.; De Conto, F.; Medici, M.C.; Chezzi, C.; Arcangeletti, M.C. Accurate identification of the six human Plasmodium spp. causing imported malaria, including Plasmodium ovale wallikeri and Plasmodium knowlesi. Malar. J., 2013, 12(1), 321.
[http://dx.doi.org/10.1186/1475-2875-12-321] [PMID: 24034175]
[2]
Caraballo, H.; King, K. Emergency department management of mosquito-borne illness: Malaria, dengue, and West Nile virus. Emerg. Med. Pract., 2014, 16(5), 1-23.
[PMID: 25207355]
[4]
Garrido-Cardenas, J.A.; González-Cerón, L.; Manzano-Agugliaro, F.; Mesa-Valle, C. Plasmodium genomics: An approach for learning about and ending human malaria. Parasitol. Res., 2019, 118(1), 1-27.
[http://dx.doi.org/10.1007/s00436-018-6127-9] [PMID: 30402656]
[5]
Milner, D.A., Jr Malaria pathogenesis. Cold Spring Harb. Perspect. Med., 2018, 8(1), a025569.
[http://dx.doi.org/10.1101/cshperspect.a025569] [PMID: 28533315]
[6]
Shortt, H.E. Life-cycle of the mammalian malaria parasite. Br. Med. Bull., 1951, 8(1), 7-9.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a074057] [PMID: 14944807]
[7]
Meibalan, E.; Marti, M. Biology of malaria transmission. Cold Spring Harb. Perspect. Med., 2017, 7(3), a025452.
[http://dx.doi.org/10.1101/cshperspect.a025452] [PMID: 27836912]
[8]
Wassmer, S.C.; Grau, G.E.R. Severe malaria: What’s new on the pathogenesis front? Int. J. Parasitol., 2017, 47(2-3), 145-152.
[http://dx.doi.org/10.1016/j.ijpara.2016.08.002] [PMID: 27670365]
[9]
Tilley, L.; Loria, P.; Foley, M. Chloroquine and other quinoline antimalarials. Antimalarial Chemotherapy; Totowa, R.P.J., Ed.; Humana Press: Totowa, NJ, 2001, pp. 87-122.
[10]
Egan, T.J.; Combrinck, J.M.; Egan, J.; Hearne, G.R.; Marques, H.M.; Ntenteni, S.; Sewell, B.T.; Smith, P.J.; Taylor, D.; van Schalkwyk, D.A.; Walden, J.C. Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem. J., 2002, 365(Pt 2), 343-347.
[http://dx.doi.org/10.1042/bj20020793] [PMID: 12033986]
[11]
Slater, A.F.; Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature, 1992, 355(6356), 167-169.
[http://dx.doi.org/10.1038/355167a0] [PMID: 1729651]
[12]
Gupta, A.K.; Saxena, A.K. Molecular modelling based target identification for endo-peroxides class of antimalarials. Comb. Chem. High Throughput Screen., 2015, 18(2), 199-207.
[http://dx.doi.org/10.2174/1386207318666141229124112] [PMID: 25543685]
[13]
Berdelle, N.; Nikolova, T.; Quiros, S.; Efferth, T.; Kaina, B. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol. Cancer Ther., 2011, 10(12), 2224-2233.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0534] [PMID: 21998290]
[14]
Levander, O.A.; Ager, A.L., Jr; Morris, V.C.; May, R.G. Menhaden-fish oil in a vitamin E-deficient diet: Protection against chloroquine-resistant malaria in mice. Am. J. Clin. Nutr., 1989, 50(6), 1237-1239.
[http://dx.doi.org/10.1093/ajcn/50.6.1237] [PMID: 2688393]
[15]
Ibrahim, M.A.; Zuwahu, M.M.B.; Isah, M.B.; Jatau, I.D.; Aliyu, A.B.; Umar, I.A. Effects of vitamin E administration on Plasmodium berghei induced pathological changes and oxidative stress in mice. Trop. Biomed., 2012, 29(1), 98-106.
[PMID: 22543609]
[16]
Srivastava, S.; Lal, V.K.; Pant, K.K. Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. Phytopharmacology, 2013, 2, 1-15.
[17]
Jayakumar, R. Herbal medicines for type-2 diabetes. Int. J. Diabetes Dev. Ctries., 2010, 30(3), 111.
[http://dx.doi.org/10.4103/0973-3930.66501]
[18]
Parasuraman, S.; Kumar, E.P.; Kumar, A.; Emerson, S.F. Anti-hyperlipidemic effect of triglize, a polyherbal formulation. Int. J. Pharm. Pharm. Sci., 2010, 2, 118-122.
[19]
Spinella, M. The importance of pharmacological synergy in psychoactive herbal medicines. Altern. Med. Rev., 2002, 7(2), 130-137.
[PMID: 11991792]
[20]
Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formulation: Concept of ayurveda. Pharmacogn. Rev., 2014, 8(16), 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[21]
Tarkang, P.A.; Okalebo, F.A.; Agbor, G.A.; Tsabang, N.; Guantai, A.N.; Rukunga, G.M. Indigenous knowledge and folk use of a polyherbal antimalarial by thebayang community, south west region of cameroon. J. Nat. Prod. Plant Res., 2012, 2, 372-380.
[22]
Tarkang, P.A.; Okalebo, F.A.; Siminyu, J.D.; Ngugi, W.N.; Mwaura, A.M.; Mugweru, J.; Agbor, G.A.; Guantai, A.N. Pharmacological evidence for the folk use of Nefang: Antipyretic, anti-inflammatory and antinociceptive activities of its constituent plants. BMC Complement. Altern. Med., 2015, 15(1), 174.
[http://dx.doi.org/10.1186/s12906-015-0703-7] [PMID: 26055261]
[23]
Arrey Tarkang, P.; Nwachiban Atchan, A.P.; Kuiate, J-R.; Okalebo, F.A.; Guantai, A.N.; Agbor, G.A. Antioxidant potential of a polyherbal antimalarial as an indicator of its therapeutic value. Adv. Pharmacol. Sci., 2013, 2013, 678458.
[http://dx.doi.org/10.1155/2013/678458] [PMID: 24454347]
[24]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[25]
Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[26]
Arrey Tarkang, P.; Franzoi, K.D.; Lee, S.; Lee, E.; Vivarelli, D.; Freitas-Junior, L.; Liuzzi, M.; Nolé, T.; Ayong, L.S.; Agbor, G.A.; Okalebo, F.A.; Guantai, A.N. In vitro antiplasmodial activities and synergistic combinations of differential solvent extracts of the polyherbal product, Nefang. BioMed Res. Int., 2014, 2014, 835013.
[http://dx.doi.org/10.1155/2014/835013] [PMID: 24877138]
[27]
Tarkang, P.A.; Okalebo, F.A.; Ayong, L.S.; Agbor, G.A.; Guantai, A.N. Anti-malarial activity of a polyherbal product (Nefang) during early and established Plasmodium infection in rodent models. Malar. J., 2014, 13(1), 456.
[http://dx.doi.org/10.1186/1475-2875-13-456] [PMID: 25421605]
[28]
Peters, W.; Portus, J.H.; Robinson, B.L. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann. Trop. Med. Parasitol., 1975, 69(2), 155-171.
[http://dx.doi.org/10.1080/00034983.1975.11686997] [PMID: 1098584]
[29]
Daswani, P.G.; Gholkar, M.S.; Birdi, T.J. Psidium guajava: A single plant for multiple health problems of rural Indian population. Pharmacogn. Rev., 2017, 11(22), 167-174.
[http://dx.doi.org/10.4103/phrev.phrev_17_17] [PMID: 28989253]
[30]
Ackerman, H.C.; Beaudry, S.D.; Fairhurst, R.M. Antioxidant therapy: Reducing malaria severity? Crit. Care Med., 2009, 37(2), 758-760.
[http://dx.doi.org/10.1097/CCM.0b013e318194d5de] [PMID: 19325374]
[31]
PROTA4U. Plant resources of tropical Africa. 2021. Available from: https://www.prota4u.org/database/protav8.asp?g=pe&p=Senna+singueana+(Delile)+Lock (Accessed on: May 12, 2021).
[32]
Fowler, D. Traditional Fever Remedies: A List of Zambian Plants. 2021. Available from: http://www.giftsofhealth.org/ritam/news/Traditional_Fever_remedie1.pdf (Accessed on: May 12, 2021).
[33]
Nanyingi, M.O.; Mbaria, J.M.; Lanyasunya, A.L.; Wagate, C.G.; Koros, K.B.; Kaburia, H.F.; Munenge, R.W.; Ogara, W.O. Ethnopharmacological survey of Samburu district, Kenya. J. Ethnobiol. Ethnomed., 2008, 4(1), 14.
[http://dx.doi.org/10.1186/1746-4269-4-14] [PMID: 18498665]
[34]
Adzu, B.; Abbah, J.; Vongtau, H.; Gamaniel, K. Studies on the use of Cassia singueana in malaria ethnopharmacy. J. Ethnopharmacol., 2003, 88(2-3), 261-267.
[http://dx.doi.org/10.1016/S0378-8741(03)00257-5] [PMID: 12963153]
[35]
Srinivasan, T.; Srivastava, G.K.; Pathak, A.; Batra, S.; Raj, K.; Singh, K.; Puri, S.K.; Kundu, B. Solid-phase synthesis and bioevaluation of lupeol-based libraries as antimalarial agents. Bioorg. Med. Chem. Lett., 2002, 12(20), 2803-2806.
[http://dx.doi.org/10.1016/S0960-894X(02)00623-6] [PMID: 12270150]
[36]
Gebrelibanos, M.; Asres, K.; Veeresham, C. In vitro radical scavenging activity of the leaf and bark extracts of Senna singueana (Del.). Lock. Ethiop. Pharm. J., 2007, (25), 77-84.
[37]
Madubunyi, I.I.; Ode, O.J. In vitro and in vivo antioxidant potential of the methanolic extract of cassia Singueana delile (fabaceae) lock leaves. Comp. Clin. Pathol., 2012, 21(6), 1565-1569.
[http://dx.doi.org/10.1007/s00580-011-1328-y]
[38]
Ibrahim, M.A.; Koorbanally, N.A.; Islam, M.S. In vitro anti-oxidative activities and GC-MS analysis of various solvent extracts of Cassia singueana parts. Acta Pol. Pharm., 2013, 70(4), 709-719.
[PMID: 23923394]
[39]
Mahakunakorn, P.; Tohda, M.; Murakami, Y.; Matsumoto, K.; Watanabe, H. Antioxidant and free radical-scavenging activity of Choto-san and its related constituents. Biol. Pharm. Bull., 2004, 27(1), 38-46.
[http://dx.doi.org/10.1248/bpb.27.38] [PMID: 14709896]
[40]
Dkhil, M.A.; Abdel-Gaber, R.; Khalil, M.F.; Hafiz, T.A.; Mubaraki, M.A.; Al-Shaebi, E.M.; Al-Quraishy, S. Indigofera oblongifolia as a fight against hepatic injury caused by murine trypanosomiasis. Saudi J. Biol. Sci., 2020, 27(5), 1390-1395.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.038] [PMID: 32346351]
[41]
Jafari, S.M.H. The Flora of Karachi; Book Corporatione: Karachi, 1960, pp. 191-202.
[42]
Dahot, M.U. Antibacterial and antifungal activity of small protein of Indigofera oblongifolia leaves. J. Ethnopharmacol., 1999, 64(3), 277-282.
[http://dx.doi.org/10.1016/S0378-8741(98)00136-6] [PMID: 10363845]
[43]
Dkhil, M.A.; Lubbad, M.Y.; Al-Shaebi, E.M.; Delic, D.; Al-Quraishy, S. The antiplasmodial and spleen protective role of crude Indigofera oblongifolia leaf extract traditionally used in the treatment of malaria in Saudi Arabia. Drug Des. Devel. Ther., 2015, 9, 6235-6246.
[http://dx.doi.org/10.2147/DDDT.S94673] [PMID: 26648699]
[44]
Moore, C.L.; Savenka, A.V.; Basnakian, A.G. TUNEL assay: A powerful tool for kidney injury evaluation. Int. J. Mol. Sci., 2021, 22(1), 412.
[http://dx.doi.org/10.3390/ijms22010412] [PMID: 33401733]
[45]
Zhou, T.; Chen, Y.; Hao, L.; Zhang, Y. DC-SIGN and immunoregulation. Cell. Mol. Immunol., 2006, 3(4), 279-283.
[PMID: 16978536]
[46]
Dkhil, M.A.; Al-Khalifa, M.S.; Al-Quraishy, S.; Zrieq, R.; Abdel Moneim, A.E. Indigofera oblongifolia mitigates lead-acetate-induced kidney damage and apoptosis in a rat model. Drug Des. Devel. Ther., 2016, 10, 1847-1856.
[PMID: 27330278]
[47]
Abdel Moneim, A.E. Indigofera oblongifolia prevents lead acetate-induced hepatotoxicity, oxidative stress, fibrosis and apoptosis in rats. PLoS One, 2016, 11(7), e0158965.
[http://dx.doi.org/10.1371/journal.pone.0158965] [PMID: 27391413]
[48]
Al-Quraishy, S.; Dkhil, M.A.; Ibrahim, S.R.; Abdel Moneim, A.E. Neuroprotective potential of Indigofera oblongifolia leaf methanolic extract against lead acetate-induced neurotoxicity. Neural Regen. Res., 2016, 11(11), 1797-1803.
[http://dx.doi.org/10.4103/1673-5374.194749] [PMID: 28123424]
[49]
Al-Shaebi, E.M.; Taib, N.T.; Mubaraki, M.A.; Hafiz, T.A.; Lokman, M.S.; Al-Ghamdy, A.O.; Lubbad, M.Y.; Bayoumy, E.M.; Al-Quraishy, S.; Dkhil, M.A. Indigofera oblongifolia leaf extract regulates spleen macrophage response during Plasmodium chabaudi infection. Saudi J. Biol. Sci., 2017, 24(7), 1663-1666.
[http://dx.doi.org/10.1016/j.sjbs.2017.06.006] [PMID: 29062263]
[50]
Dkhil, M.A.; Al-Shaebi, E.M.; Al-Quraishy, S. Effect of Indigofera oblongifolia on the hepatic oxidative status and expression of inflammatory and apoptotic genes during blood-stage murine malaria. Oxid. Med. Cell. Longev., 2019, 2019, 8264861.
[http://dx.doi.org/10.1155/2019/8264861] [PMID: 30838089]
[51]
Lubbad, M.Y.; Al-Quraishy, S.; Dkhil, M.A. Antimalarial and antioxidant activities of Indigofera oblongifolia on Plasmodium chabaudi-induced spleen tissue injury in mice. Parasitol. Res., 2015, 114(9), 3431-3438.
[http://dx.doi.org/10.1007/s00436-015-4568-y] [PMID: 26109255]
[52]
Mehlhorn, H. Nanoparticles defintions. In: Nanoparticles in the fight against parasites; Springer: Cham, 2016.
[53]
Pantidos, N. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol., 2014, 05(05), 1000233.
[http://dx.doi.org/10.4172/2157-7439.1000233]
[54]
Mishra, A.; Kaushik, N.K.; Sardar, M.; Sahal, D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf. B Biointerfaces, 2013, 111, 713-718.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.036] [PMID: 23916962]
[55]
Velusamy, P.; Das, J.; Pachaiappan, R.; Vaseeharan, B.; Pandian, K. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind. Crops Prod., 2015, 66, 103-109.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.042]
[56]
Rai, M.; Ingle, A.P.; Paralikar, P.; Gupta, I.; Medici, S.; Santos, C.A. Recent advances in use of silver nanoparticles as antimalarial agents. Int. J. Pharm., 2017, 526(1-2), 254-270.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.042] [PMID: 28450172]
[57]
Dkhil, M.A.; Abdel-Gaber, R.; Alojayri, G.; Al-Shaebi, E.M.; Qasem, M.A.A.; Murshed, M.; Mares, M.M.; El-Matbouli, M.; Al-Quraishy, S. Biosynthesized silver nanoparticles protect against hepatic injury induced by murine blood-stage malaria infection. Environ. Sci. Pollut. Res. Int., 2020, 27(15), 17762-17769.
[http://dx.doi.org/10.1007/s11356-020-08280-8] [PMID: 32162231]
[58]
Al-Quraishy, S.; Murshed, M.; Delic, D.; Al-Shaebi, E.M.; Qasem, M.A.A.; Mares, M.M.; Dkhil, M.A. Plasmodium chabaudi-infected mice spleen response to synthesized silver nanoparticles from Indigofera oblongifolia extract. Lett. Appl. Microbiol., 2020, 71(5), 542-549.
[http://dx.doi.org/10.1111/lam.13366] [PMID: 32749003]
[59]
Hafiz, T.A.; Mubaraki, M.A.; Diab, M.S.M.; Dkhil, M.A.; Al-Quraishy, S. Ameliorative role of Ziziphus spina-christi leaf extracts against hepatic injury induced by Plasmodium chabaudi infected erythrocytes. Saudi J. Biol. Sci., 2019, 26(3), 490-494.
[http://dx.doi.org/10.1016/j.sjbs.2017.10.012] [PMID: 30899163]
[60]
Nazif, N.M. Phytoconstituents of Zizyphus spina-christi l. fruits and their antimicrobial activity. Food Chem., 2002, 76(1), 77-81.
[http://dx.doi.org/10.1016/S0308-8146(01)00243-6]
[61]
Hafiz, T. A.; Mubaraki, M. A. The potential role of Ziziphus spina-christi leaf extracts against plasmodium berghei-induced liver and spleen injury. Biomed. Res. -Ind, 2016, 27, 1027-1032.
[62]
Kadioglu, O.; Jacob, S.; Bohnert, S.; Naß, J.; Saeed, M.E.M.; Khalid, H.; Merfort, I.; Thines, E.; Pommerening, T.; Efferth, T. Evaluating ancient Egyptian prescriptions today: Anti-inflammatory activity of Ziziphus spina-christi. Phytomedicine, 2016, 23(3), 293-306.
[http://dx.doi.org/10.1016/j.phymed.2016.01.004] [PMID: 26969383]
[63]
Dkhil, M.A.; Al-Quraishy, S.; Al-Shaebi, E.M.; Abdel-Gaber, R.; Thagfan, F.A.; Qasem, M.A.A. Medicinal plants as a fight against murine blood-stage malaria. Saudi J. Biol. Sci., 2021, 28(3), 1723-1738.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.014] [PMID: 33732056]
[64]
Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes1. J. Am. Chem. Soc., 1958, 80(10), 2587-2587.
[http://dx.doi.org/10.1021/ja01543a060]
[65]
Manchester, L.C.; Poeggeler, B.; Alvares, F.L.; Ogden, G.B.; Reiter, R.J. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: Implications for an ancient antioxidant system. Cell. Mol. Biol. Res., 1995, 41(5), 391-395.
[PMID: 8867786]
[66]
Balzer, I.; Hardeland, R. Melatonin in algae and higher plants - possible new roles as a phytohormone and antioxidant. Bot. Acta, 1996, 109(3), 180-183.
[http://dx.doi.org/10.1111/j.1438-8677.1996.tb00560.x]
[67]
Hardeland, R. Melatonin and 5-methoxytryptamine in non-metazoans. Reprod. Nutr. Dev., 1999, 39(3), 399-408.
[http://dx.doi.org/10.1051/rnd:19990311] [PMID: 10420441]
[68]
Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.W.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res., 1995, 18(1), 28-31.
[http://dx.doi.org/10.1111/j.1600-079X.1995.tb00136.x] [PMID: 7776176]
[69]
Reiter, R.J.; Tan, D.X.; Burkhardt, S.; Manchester, L.C. Melatonin in plants. Nutr. Rev., 2001, 59(9), 286-290.
[http://dx.doi.org/10.1111/j.1753-4887.2001.tb07018.x] [PMID: 11570431]
[70]
Dorin-Semblat, D.; Sicard, A.; Doerig, C.; Ranford-Cartwright, L.; Doerig, C. Disruption of the PfPK7 gene impairs schizogony and sporogony in the human malaria parasite Plasmodium falciparum. Eukaryot. Cell, 2008, 7(2), 279-285.
[http://dx.doi.org/10.1128/EC.00245-07] [PMID: 18083830]
[71]
Dias, B.K.M.; Nakabashi, M.; Alves, M.R.R.; Portella, D.P.; Dos Santos, B.M.; Costa da Silva Almeida, F.; Ribeiro, R.Y.; Schuck, D.C.; Jordão, A.K.; Garcia, C.R.S. The Plasmodium falciparum eIK1 kinase (PfeIK1) is central for melatonin synchronization in the human malaria parasite. Melatotosil blocks melatonin action on parasite cell cycle. J. Pineal Res., 2020, 69(3), e12685.
[http://dx.doi.org/10.1111/jpi.12685] [PMID: 32702775]
[72]
Poeggeler, B.; Reiter, R.J.; Tan, D.X.; Chen, L.D.; Manchester, L.C. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: A hypothesis. J. Pineal Res., 1993, 14(4), 151-168.
[http://dx.doi.org/10.1111/j.1600-079X.1993.tb00498.x] [PMID: 8102180]
[73]
Allegra, M.; Reiter, R.J.; Tan, D-X.; Gentile, C.; Tesoriere, L.; Livrea, M.A. The chemistry of melatonin’s interaction with reactive species. J. Pineal Res., 2003, 34(1), 1-10.
[http://dx.doi.org/10.1034/j.1600-079X.2003.02112.x] [PMID: 12485365]
[74]
Hardeland, R.; Pandi-Perumal, S.R. Melatonin, a potent agent in antioxidative defense: Actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr. Metab. (Lond.), 2005, 2(1), 22.
[http://dx.doi.org/10.1186/1743-7075-2-22] [PMID: 16153306]
[75]
Reiter, R.J.; Tan, D-X.; Maldonado, M.D. Melatonin as an antioxidant: Physiology versus pharmacology. J. Pineal Res., 2005, 39(2), 215-216.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00261.x] [PMID: 16098101]
[76]
Ozdemir, D.; Uysal, N.; Gonenc, S.; Acikgoz, O.; Sonmez, A.; Topcu, A.; Ozdemir, N.; Duman, M.; Semin, I.; Ozkan, H. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol. Res., 2005, 54(6), 631-637.
[PMID: 15720160]
[77]
Tan, D-X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 2015, 20(10), 18886-18906.
[http://dx.doi.org/10.3390/molecules201018886] [PMID: 26501252]
[78]
Rosen, J.; Than, N.N.; Koch, D.; Poeggeler, B.; Laatsch, H.; Hardeland, R. Interactions of melatonin and its metabolites with the ABTS cation radical: Extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J. Pineal Res., 2006, 41(4), 374-381.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00379.x] [PMID: 17014695]
[79]
Manda, K.; Ueno, M.; Anzai, K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J. Pineal Res., 2007, 42(4), 386-393.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00432.x] [PMID: 17439555]
[80]
Rodríguez-Acosta, A.; Finol, H.J.; Pulido-Méndez, M.; Márquez, A.; Andrade, G.; González, N.; Aguilar, I.; Girón, M.E.; Pinto, A. Liver ultrastructural pathology in mice infected with Plasmodium berghei. J. Submicrosc. Cytol. Pathol., 1998, 30(2), 299-307.
[PMID: 9648294]
[81]
Elsheikha, H.M.; Sheashaa, H.A. Epidemiology, pathophysiology, management and outcome of renal dysfunction associated with plasmodia infection. Parasitol. Res., 2007, 101(5), 1183-1190.
[http://dx.doi.org/10.1007/s00436-007-0650-4] [PMID: 17628830]
[82]
De Franceschi, L.; Sada, S.; Andreoli, A.; Angheben, A.; Marocco, S.; Bisoffi, Z. Sickle cell disease and hyperreactive malarial splenomegaly (HMS) in young immigrants from Africa. Blood, 2005, 106(13), 4415-4417.
[http://dx.doi.org/10.1182/blood-2005-08-3109] [PMID: 16326982]
[83]
Ehrhardt, S.; Mockenhaupt, F.P.; Anemana, S.D.; Otchwemah, R.N.; Wichmann, D.; Cramer, J.P.; Bienzle, U.; Burchard, G.D.; Brattig, N.W. High levels of circulating cardiac proteins indicate cardiac impairment in African children with severe Plasmodium falciparum malaria. Microbes Infect., 2005, 7(11-12), 1204-1210.
[http://dx.doi.org/10.1016/j.micinf.2005.04.007] [PMID: 16002312]
[84]
Taylor, W.R.J.; Cañon, V.; White, N.J. Pulmonary manifestations of malaria: Recognition and management. Treat. Respir. Med., 2006, 5(6), 419-428.
[http://dx.doi.org/10.2165/00151829-200605060-00007] [PMID: 17154671]
[85]
Kochar, D.K.; Agarwal, P.; Kochar, S.K.; Jain, R.; Rawat, N.; Pokharna, R.K.; Kachhawa, S.; Srivastava, T. Hepatocyte dysfunction and hepatic encephalopathy in Plasmodium falciparum malaria. QJM, 2003, 96(7), 505-512.
[http://dx.doi.org/10.1093/qjmed/hcg091] [PMID: 12881593]
[86]
Viriyavejakul, P.; Khachonsaksumet, V.; Punsawad, C. Liver changes in severe Plasmodium falciparum malaria: Histopathology, apoptosis and nuclear factor kappa B expression. Malar. J., 2014, 13(1), 106.
[http://dx.doi.org/10.1186/1475-2875-13-106] [PMID: 24636003]
[87]
Guha, M.; Kumar, S.; Choubey, V.; Maity, P.; Bandyopadhyay, U.; Guha, M.; Kumar, S.; Choubey, V.; Maity, P.; Bandyopadhyay, U. Apoptosis in liver during malaria: Role of oxidative stress and implication of mitochondrial pathway. FASEB J., 2006, 20(8), 1224-1226.
[http://dx.doi.org/10.1096/fj.05-5338fje] [PMID: 16603602]
[88]
Adachi, K.; Tsutsui, H.; Kashiwamura, S.; Seki, E.; Nakano, H.; Takeuchi, O.; Takeda, K.; Okumura, K.; Van Kaer, L.; Okamura, H.; Akira, S.; Nakanishi, K. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol., 2001, 167(10), 5928-5934.
[http://dx.doi.org/10.4049/jimmunol.167.10.5928] [PMID: 11698470]
[89]
Bhalla, A.; Suri, V.; Singh, V. Malarial hepatopathy. J. Postgrad. Med., 2006, 52(4), 315-320.
[PMID: 17102560]
[90]
Harris, J.V.; Bohr, T.M.; Stracener, C.; Landmesser, M.E.; Torres, V.; Mbugua, A.; Moratz, C.; Stoute, J.A. Sequential Plasmodium chabaudi and Plasmodium berghei infections provide a novel model of severe malarial anemia. Infect. Immun., 2012, 80(9), 2997-3007.
[http://dx.doi.org/10.1128/IAI.06185-11] [PMID: 22689817]
[91]
Frevert, U.; Engelmann, S.; Zougbédé, S.; Stange, J.; Ng, B.; Matuschewski, K.; Liebes, L.; Yee, H. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol., 2005, 3(6), e192.
[http://dx.doi.org/10.1371/journal.pbio.0030192] [PMID: 15901208]
[92]
Einheber, A.; Wren, R.E.; Rosen, H.; Martin, L.K. Ornithine carbamoyltransferase activity in plasma of mice with malaria as an index of liver damage. Nature, 1967, 215(5109), 1489-1491.
[http://dx.doi.org/10.1038/2151489a0] [PMID: 6059569]
[93]
Dey, S.; Guha, M.; Alam, A.; Goyal, M.; Bindu, S.; Pal, C.; Maity, P.; Mitra, K.; Bandyopadhyay, U. Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic. Biol. Med., 2009, 46(2), 271-281.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.10.032] [PMID: 19015023]
[94]
Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Mitochondrial oxidative stress: Implications for cell death. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 143-183.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105122] [PMID: 17029566]
[95]
Calabrese, V.; Lodi, R.; Tonon, C.; D’Agata, V.; Sapienza, M.; Scapagnini, G.; Mangiameli, A.; Pennisi, G.; Stella, A.M.G.; Butterfield, D.A. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J. Neurol. Sci., 2005, 233(1-2), 145-162.
[http://dx.doi.org/10.1016/j.jns.2005.03.012] [PMID: 15896810]
[96]
Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J.A.; Robinson, J.P. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem., 2003, 278(10), 8516-8525.
[http://dx.doi.org/10.1074/jbc.M210432200] [PMID: 12496265]
[97]
Fariss, M.W.; Chan, C.B.; Patel, M.; Van Houten, B.; Orrenius, S. Role of mitochondria in toxic oxidative stress. Mol. Interv., 2005, 5(2), 94-111.
[http://dx.doi.org/10.1124/mi.5.2.7] [PMID: 15821158]
[98]
Vásquez-Vivar, J.; Kalyanaraman, B.; Kennedy, M.C. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J. Biol. Chem., 2000, 275(19), 14064-14069.
[http://dx.doi.org/10.1074/jbc.275.19.14064] [PMID: 10799480]
[99]
Catalá, A.; Zvara, A.; Puskás, L.G.; Kitajka, K. Melatonin-induced gene expression changes and its preventive effects on adriamycin-induced lipid peroxidation in rat liver. J. Pineal Res., 2007, 42(1), 43-49.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00354.x] [PMID: 17198537]
[100]
Xu, J.; Sun, S.; Wei, W.; Fu, J.; Qi, W.; Manchester, L.C.; Tan, D-X.; Reiter, R.J. Melatonin reduces mortality and oxidatively mediated hepatic and renal damage due to diquat treatment. J. Pineal Res., 2007, 42(2), 166-171.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00401.x] [PMID: 17286749]
[101]
Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res., 2004, 36(1), 1-9.
[http://dx.doi.org/10.1046/j.1600-079X.2003.00092.x] [PMID: 14675124]
[102]
Adlam, V.J.; Harrison, J.C.; Porteous, C.M.; James, A.M.; Smith, R.A.J.; Murphy, M.P.; Sammut, I.A. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J., 2005, 19(9), 1088-1095.
[http://dx.doi.org/10.1096/fj.05-3718com] [PMID: 15985532]
[103]
Martín, M.; Macías, M.; Escames, G.; León, J.; Acuña-Castroviejo, D. Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J., 2000, 14(12), 1677-1679.
[http://dx.doi.org/10.1096/fj.99-0865fje] [PMID: 10973915]
[104]
Pandi-Perumal, S.R.; Srinivasan, V.; Maestroni, G.J.M.; Cardinali, D.P.; Poeggeler, B.; Hardeland, R. Melatonin: Nature’s most versatile biological signal? FEBS J., 2006, 273(13), 2813-2838.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05322.x] [PMID: 16817850]
[105]
Montilla, P.; Cruz, A.; Padillo, F.J.; Túnez, I.; Gascon, F.; Muñoz, M.C.; Gómez, M.; Pera, C. Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J. Pineal Res., 2001, 31(2), 138-144.
[http://dx.doi.org/10.1034/j.1600-079x.2001.310207.x] [PMID: 11555169]
[106]
López, P.M.; Fiñana, I.T.; De Agueda, M.C.; Sánchez, E.C.; Muñoz, M.C.; Alvarez, J.P.; De La Torre Lozano, E.J. Protective effect of melatonin against oxidative stress induced by ligature of extra-hepatic biliary duct in rats: Comparison with the effect of S-adenosyl-L-methionine. J. Pineal Res., 2000, 28(3), 143-149.
[http://dx.doi.org/10.1034/j.1600-079X.2001.280303.x] [PMID: 10739300]
[107]
Guha, M.; Maity, P.; Choubey, V.; Mitra, K.; Reiter, R.J.; Bandyopadhyay, U. Melatonin inhibits free radical-mediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection. J. Pineal Res., 2007, 43(4), 372-381.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00488.x] [PMID: 17910606]
[108]
Ataide, B.J. de A.; Kauffmann, N. Mendes, N. de S. F.; Torres, M. L. M.; Dos Anjos, L. M.; Passos, A. da C. F.; de Moraes, S. A. S.; Batista, E. de J. O.; Herculano, A. M.; Oliveira, K. R. H. M. Melatonin prevents brain damage and neurocognitive impairment induced by Plasmodium Berghei ANKA infection in murine model of cerebral malaria. Front. Cell. Infect. Microbiol., 2020, 10, 541624.
[http://dx.doi.org/10.3389/fcimb.2020.541624] [PMID: 33102250]
[109]
Manchester, L.C.; Tan, D-X.; Reiter, R.J.; Park, W.; Monis, K.; Qi, W. High levels of melatonin in the seeds of edible plants: Possible function in germ tissue protection. Life Sci., 2000, 67(25), 3023-3029.
[http://dx.doi.org/10.1016/S0024-3205(00)00896-1] [PMID: 11125839]
[110]
Padumanonda, T.; Johns, J.; Sangkasat, A.; Tiyaworanant, S. Determination of melatonin content in traditional Thai herbal remedies used as sleeping aids. Daru, 2014, 22(1), 6.
[http://dx.doi.org/10.1186/2008-2231-22-6] [PMID: 24393215]
[111]
Burkhardt, S.; Tan, D.X.; Manchester, L.C.; Hardeland, R.; Reiter, R.J. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J. Agric. Food Chem., 2001, 49(10), 4898-4902.
[http://dx.doi.org/10.1021/jf010321+] [PMID: 11600041]
[112]
Ramakrishna, A.; Giridhar, P.; Sankar, K.U.; Ravishankar, G.A. Melatonin and serotonin profiles in beans of Coffea species. J. Pineal Res., 2012, 52(4), 470-476.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00964.x] [PMID: 22017393]
[113]
Kołodziejczyk, I.; Bałabusta, M.; Szewczyk, R.; Posmyk, M.M. The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage. Acta Physiol. Plant., 2015, 37(6), 105.
[http://dx.doi.org/10.1007/s11738-015-1850-7]
[114]
Hattori, A.; Migitaka, H.; Iigo, M.; Itoh, M.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int., 1995, 35(3), 627-634.
[PMID: 7773197]
[115]
Chen, G.; Huo, Y.; Tan, D.X.; Liang, Z.; Zhang, W.; Zhang, Y. Melatonin in Chinese medicinal herbs. Life Sci., 2003, 73(1), 19-26.
[http://dx.doi.org/10.1016/S0024-3205(03)00252-2] [PMID: 12726883]
[116]
Murch, S.J.; Simmons, C.B.; Saxena, P.K. Melatonin in feverfew and other medicinal plants. Lancet, 1997, 350(9091), 1598-1599.
[http://dx.doi.org/10.1016/S0140-6736(05)64014-7] [PMID: 9393344]
[117]
Vitalini, S.; Gardana, C.; Zanzotto, A.; Simonetti, P.; Faoro, F.; Fico, G.; Iriti, M. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J. Pineal Res., 2011, 51(3), 331-337.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00893.x] [PMID: 21615489]
[118]
Stege, P.W.; Sombra, L.L.; Messina, G.; Martinez, L.D.; Silva, M.F. Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis, 2010, 31(13), 2242-2248.
[http://dx.doi.org/10.1002/elps.200900782] [PMID: 20593400]
[119]
Hernández-Ruiz, J.; Arnao, M.B. Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light. J. Agric. Food Chem., 2008, 56(22), 10567-10573.
[http://dx.doi.org/10.1021/jf8022063] [PMID: 18975965]
[120]
Mena, P.; Gil-Izquierdo, Á.; Moreno, D.A.; Martí, N.; García-Viguera, C. Assessment of the melatonin production in pomegranate wines. Lebensm. Wiss. Technol., 2012, 47(1), 13-18.
[121]
Stürtz, M.; Cerezo, A.B.; Cantos-Villar, E.; Garcia-Parrilla, M.C. Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chem., 2011, 127(3), 1329-1334.
[http://dx.doi.org/10.1016/j.foodchem.2011.01.093] [PMID: 25214134]
[122]
Zhao, Y.; Tan, D-X.; Lei, Q.; Chen, H.; Wang, L.; Li, Q-T.; Gao, Y.; Kong, J. Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res., 2013, 55(1), 79-88.
[http://dx.doi.org/10.1111/jpi.12044] [PMID: 23480341]
[123]
Okazaki, M.; Ezura, H. Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar Micro-Tom. J. Pineal Res., 2009, 46(3), 338-343.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00668.x] [PMID: 19317796]
[124]
Reiter, R.J.; Manchester, L.C.; Tan, D-X. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition, 2005, 21(9), 920-924.
[http://dx.doi.org/10.1016/j.nut.2005.02.005] [PMID: 15979282]
[125]
Tan, D-X.; Manchester, L.C.; Di Mascio, P.; Martinez, G.R.; Prado, F.M.; Reiter, R.J. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: Importance for phytoremediation. FASEB J., 2007, 21(8), 1724-1729.
[http://dx.doi.org/10.1096/fj.06-7745com] [PMID: 17314136]
[126]
Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res., 2013, 54(3), 245-257.
[http://dx.doi.org/10.1111/jpi.12010] [PMID: 22998574]
[127]
Park, S.; Lee, D-E.; Jang, H.; Byeon, Y.; Kim, Y-S.; Back, K. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J. Pineal Res., 2013, 54(3), 258-263.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01029.x] [PMID: 22856683]
[128]
Bajwa, V.S.; Shukla, M.R.; Sherif, S.M.; Murch, S.J.; Saxena, P.K. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J. Pineal Res., 2014, 56(3), 238-245.
[http://dx.doi.org/10.1111/jpi.12115] [PMID: 24350934]
[129]
Zhang, N.; Sun, Q.; Zhang, H.; Cao, Y.; Weeda, S.; Ren, S.; Guo, Y-D. Roles of melatonin in abiotic stress resistance in plants. J. Exp. Bot., 2015, 66(3), 647-656.
[http://dx.doi.org/10.1093/jxb/eru336] [PMID: 25124318]
[130]
Shi, H.; Chen, K.; Wei, Y.; He, C. Fundamental issues of melatonin-mediated stress signaling in plants. Front. Plant Sci., 2016, 7, 1124.
[http://dx.doi.org/10.3389/fpls.2016.01124] [PMID: 27512404]
[131]
Koziróg, M.; Poliwczak, A.R.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Broncel, M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J. Pineal Res., 2011, 50(3), 261-266.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00835.x] [PMID: 21138476]
[132]
Kilic, E.; Kilic, U.; Bacigaluppi, M.; Guo, Z.; Abdallah, N.B.; Wolfer, D.P.; Reiter, R.J.; Hermann, D.M.; Bassetti, C.L. Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. J. Pineal Res., 2008, 45(2), 142-148.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00568.x] [PMID: 18284547]
[133]
Andersen, L.P.H.; Werner, M.U.; Rosenkilde, M.M.; Harpsøe, N.G.; Fuglsang, H.; Rosenberg, J.; Gögenur, I. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol. Toxicol., 2016, 17(1), 8.
[http://dx.doi.org/10.1186/s40360-016-0052-2] [PMID: 26893170]
[134]
Isah, M.B.; Ibrahim, M.A. The role of antioxidants treatment on the pathogenesis of malarial infections: A review. Parasitol. Res., 2014, 113(3), 801-809.
[http://dx.doi.org/10.1007/s00436-014-3804-1] [PMID: 24525759]
[135]
Consensus Study Report. Panel on Dietary Antioxidants and Related Compounds; Subcommittee on Upper Reference Levels of Nutrients. Subcommittee on Interpretation and Uses of DRIs; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Food and Nutrition Board; Institute of Medicine; National Academy of Sciences. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids; National Academies Press: Washington, D.C., 2000.
[136]
Das, B.S.; Nanda, N.K. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans. R. Soc. Trop. Med. Hyg., 1999, 93(1), 58-62.
[http://dx.doi.org/10.1016/S0035-9203(99)90180-3] [PMID: 10492792]
[137]
Cabrales, P.; Zanini, G.M.; Meays, D.; Frangos, J.A.; Carvalho, L.J.M. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J. Infect. Dis., 2011, 203(10), 1454-1463.
[http://dx.doi.org/10.1093/infdis/jir058] [PMID: 21415018]
[138]
Erel, O.; Vural, H.; Aksoy, N.; Aslan, G.; Ulukanligil, M. Oxidative stress of platelets and thrombocytopenia in patients with Vivax malaria. Clin. Biochem., 2001, 34(4), 341-344.
[http://dx.doi.org/10.1016/S0009-9120(01)00221-1] [PMID: 11440737]
[139]
Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev., 2011, 111(10), 5944-5972.
[http://dx.doi.org/10.1021/cr200084z] [PMID: 21861450]
[140]
Girotti, A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res., 1998, 39(8), 1529-1542.
[http://dx.doi.org/10.1016/S0022-2275(20)32182-9] [PMID: 9717713]
[141]
Kanner, J.; German, J.B.; Kinsella, J.E.; Hultin, H.O. Initiation of lipid peroxidation in biological systems. Crit. Rev. Food Sci. Nutr., 1987, 25(4), 317-364.
[http://dx.doi.org/10.1080/10408398709527457] [PMID: 3304843]
[142]
Burton, G.W.; Doba, T.; Gabe, E.J.; Hughes, L.; Lee, F.L.; Prasad, L.; Ingold, K.U. Autoxidation of biological molecules. Part 4. Maximizing the antioxidant activity of phenols. ChemInform, 1986, 17(13), 197081941.
[143]
Krungkrai, S.R.; Yuthavong, Y. The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans. R. Soc. Trop. Med. Hyg., 1987, 81(5), 710-714.
[http://dx.doi.org/10.1016/0035-9203(87)90003-4] [PMID: 3329778]
[144]
Pfaller, M.A.; Krogstad, D.J. Oxygen enhances the antimalarial activity of the imidazoles. Am. J. Trop. Med. Hyg., 1983, 32(4), 660-665.
[http://dx.doi.org/10.4269/ajtmh.1983.32.660] [PMID: 6349393]
[145]
Awodele, O.; Emeka, P.M.; Akintonwa, A.; Aina, O.O. Antagonistic effect of vitamin E on the efficacy of artesunate against Plasmodium Berghei infection in mice. Afr. J. Biomed. Res., 2009, 10(1), 48971.
[http://dx.doi.org/10.4314/ajbr.v10i1.48971]
[146]
Sussmann, R.A.C.; Fotoran, W.L.; Kimura, E.A.; Katzin, A.M. Plasmodium falciparum uses vitamin E to avoid oxidative stress. Parasit. Vectors, 2017, 10(1), 461.
[http://dx.doi.org/10.1186/s13071-017-2402-3] [PMID: 29017543]
[147]
Jishage, K.; Arita, M.; Igarashi, K.; Iwata, T.; Watanabe, M.; Ogawa, M.; Ueda, O.; Kamada, N.; Inoue, K.; Arai, H.; Suzuki, H. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J. Biol. Chem., 2001, 276(3), 1669-1672.
[http://dx.doi.org/10.1074/jbc.C000676200] [PMID: 11076932]
[148]
Traber, M.G.; Vitamin, E. Vitamin E regulatory mechanisms. Annu. Rev. Nutr., 2007, 27(1), 347-362.
[http://dx.doi.org/10.1146/annurev.nutr.27.061406.093819] [PMID: 17439363]
[149]
Herbas, M.S.; Ueta, Y.Y.; Ichikawa, C.; Chiba, M.; Ishibashi, K.; Shichiri, M.; Fukumoto, S.; Yokoyama, N.; Takeya, M.; Xuan, X.; Arai, H.; Suzuki, H. Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice. Malar. J., 2010, 9(1), 101.
[http://dx.doi.org/10.1186/1475-2875-9-101] [PMID: 20403155]
[150]
Traber, M.G.; Sokol, R.J.; Burton, G.W.; Ingold, K.U.; Papas, A.M.; Huffaker, J.E.; Kayden, H.J. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate α-tocopherol into lipoproteins secreted by the liver. J. Clin. Invest., 1990, 85(2), 397-407.
[http://dx.doi.org/10.1172/JCI114452] [PMID: 2298915]
[151]
Gibson, K.R.; Neilson, I.L.; Barrett, F.; Winterburn, T.J.; Sharma, S.; MacRury, S.M.; Megson, I.L. Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: Prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity. J. Cardiovasc. Pharmacol., 2009, 54(4), 319-326.
[http://dx.doi.org/10.1097/FJC.0b013e3181b6e77b] [PMID: 19668088]
[152]
Aruoma, O.I.; Halliwell, B.; Hoey, B.M.; Butler, J. The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med., 1989, 6(6), 593-597.
[http://dx.doi.org/10.1016/0891-5849(89)90066-X] [PMID: 2546864]
[153]
De Flora, S.; Bennicelli, C.; Camoirano, A.; Serra, D.; Romano, M.; Rossi, G.A.; Morelli, A.; De Flora, A. In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic compounds. Carcinogenesis, 1985, 6(12), 1735-1745.
[http://dx.doi.org/10.1093/carcin/6.12.1735] [PMID: 3905042]
[154]
De Vries, N.; De Flora, S. N-acetyl-l-cysteine. J. Cell. Biochem. Suppl., 1993, 17F(S17F), 270-277.
[http://dx.doi.org/10.1002/jcb.240531040] [PMID: 8412205]
[155]
Nakata, K.; Kawase, M.; Ogino, S.; Kinoshita, C.; Murata, H.; Sakaue, T.; Ogata, K.; Ohmori, S. Effects of age on levels of cysteine, glutathione and related enzyme activities in livers of mice and rats and an attempt to replenish hepatic glutathione level of mouse with cysteine derivatives. Mech. Ageing Dev., 1996, 90(3), 195-207.
[http://dx.doi.org/10.1016/0047-6374(96)01771-X] [PMID: 8898313]
[156]
Hoffer, E.; Baum, Y.; Tabak, A.; Taitelman, U. N-acetylcysteine increases the glutathione content and protects rat alveolar type II cells against paraquat-induced cytotoxicity. Toxicol. Lett., 1996, 84(1), 7-12.
[http://dx.doi.org/10.1016/0378-4274(95)03446-3] [PMID: 8597179]
[157]
Dickinson, D.A.; Moellering, D.R.; Iles, K.E.; Patel, R.P.; Levonen, A-L.; Wigley, A.; Darley-Usmar, V.M.; Forman, H.J. Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol. Chem., 2003, 384(4), 527-537.
[http://dx.doi.org/10.1515/BC.2003.061] [PMID: 12751783]
[158]
Rushworth, G.F.; Megson, I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther., 2014, 141(2), 150-159.
[http://dx.doi.org/10.1016/j.pharmthera.2013.09.006] [PMID: 24080471]
[159]
Liu, M.; Pelling, J.C.; Ju, J.; Chu, E.; Brash, D.E. Antioxidant action via p53-mediated apoptosis. Cancer Res., 1998, 58(8), 1723-1729.
[PMID: 9563490]
[160]
Redondo, P.; Bandrés, E.; Solano, T.; Okroujnov, I.; García-Foncillas, J. Vascular endothelial growth factor (VEGF) and melanoma. N-acetylcysteine downregulates VEGF production in vitro. Cytokine, 2000, 12(4), 374-378.
[http://dx.doi.org/10.1006/cyto.1999.0566] [PMID: 10805219]
[161]
Estensen, R.D.; Levy, M.; Klopp, S.J.; Galbraith, A.R.; Mandel, J.S.; Blomquist, J.A.; Wattenberg, L.W. N-acetylcysteine suppression of the proliferative index in the colon of patients with previous adenomatous colonic polyps. Cancer Lett., 1999, 147(1-2), 109-114.
[http://dx.doi.org/10.1016/S0304-3835(99)00281-5] [PMID: 10660096]
[162]
Parasassi, T.; Brunelli, R.; Bracci-Laudiero, L.; Greco, G.; Gustafsson, A.C.; Krasnowska, E.K.; Lundeberg, J.; Lundeberg, T.; Pittaluga, E.; Romano, M.C.; Serafino, A. Differentiation of normal and cancer cells induced by sulfhydryl reduction: Biochemical and molecular mechanisms. Cell Death Differ., 2005, 12(10), 1285-1296.
[http://dx.doi.org/10.1038/sj.cdd.4401663] [PMID: 15920536]
[163]
Kim, H.; Seo, J.Y.; Roh, K.H.; Lim, J.W.; Kim, K.H. Suppression of NF-kappaB activation and cytokine production by N-acetylcysteine in pancreatic acinar cells. Free Radic. Biol. Med., 2000, 29(7), 674-683.
[http://dx.doi.org/10.1016/S0891-5849(00)00368-3] [PMID: 11033420]
[164]
Paterson, R.L.; Galley, H.F.; Webster, N.R. The effect of N-acetylcysteine on nuclear factor-kappa B activation, interleukin-6, interleukin-8, and intercellular adhesion molecule-1 expression in patients with sepsis. Crit. Care Med., 2003, 31(11), 2574-2578.
[http://dx.doi.org/10.1097/01.CCM.0000089945.69588.18] [PMID: 14605526]
[165]
Walters, M.T.; Rubin, C.E.; Keightley, S.J.; Ward, C.D.; Cawley, M.I.D.A. Double-Blind, Crossover, Study of Oral N-Acetylcysteine in Sjogren’s-Syndrome. Scand. J. Rheumatol., 1986, 61, 253-258.
[166]
Breitkreutz, R.; Pittack, N.; Nebe, C.T.; Schuster, D.; Brust, J.; Beichert, M.; Hack, V.; Daniel, V.; Edler, L.; Dröge, W. Improvement of immune functions in HIV infection by sulfur supplementation: Two randomized trials. J. Mol. Med. (Berl.), 2000, 78(1), 55-62.
[http://dx.doi.org/10.1007/s001099900073] [PMID: 10759030]
[167]
Arranz, L.; Fernández, C.; Rodríguez, A.; Ribera, J.M.; De la Fuente, M. The glutathione precursor N-acetylcysteine improves immune function in postmenopausal women. Free Radic. Biol. Med., 2008, 45(9), 1252-1262.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.014] [PMID: 18694818]
[168]
Cocco, T.; Sgobbo, P.; Clemente, M.; Lopriore, B.; Grattagliano, I.; Di Paola, M.; Villani, G. Tissue-specific changes of mitochondrial functions in aged rats: Effect of a long-term dietary treatment with N-acetylcysteine. Free Radic. Biol. Med., 2005, 38(6), 796-805.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.11.034] [PMID: 15721990]
[169]
Rahman, I.; MacNee, W. Regulation of redox glutathione levels and gene transcription in lung inflammation: Therapeutic approaches. Free Radic. Biol. Med., 2000, 28(9), 1405-1420.
[http://dx.doi.org/10.1016/S0891-5849(00)00215-X] [PMID: 10924859]
[170]
Saito, C.; Zwingmann, C.; Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology, 2010, 51(1), 246-254.
[http://dx.doi.org/10.1002/hep.23267] [PMID: 19821517]
[171]
Behr, J.; Maier, K.; Degenkolb, B.; Krombach, F.; Vogelmeier, C. Antioxidative and clinical effects of high-dose N-acetylcysteine in fibrosing alveolitis. Adjunctive therapy to maintenance immunosuppression. Am. J. Respir. Crit. Care Med., 1997, 156(6), 1897-1901.
[http://dx.doi.org/10.1164/ajrccm.156.6.9706065] [PMID: 9412572]
[172]
Martina, V.; Masha, A.; Gigliardi, V.R.; Brocato, L.; Manzato, E.; Berchio, A.; Massarenti, P.; Settanni, F.; Della Casa, L.; Bergamini, S.; Iannone, A. Long-term N-acetylcysteine and L-arginine administration reduces endothelial activation and systolic blood pressure in hypertensive patients with type 2 diabetes. Diabetes Care, 2008, 31(5), 940-944.
[http://dx.doi.org/10.2337/dc07-2251] [PMID: 18268065]
[173]
Dean, O.; Giorlando, F.; Berk, M. N-acetylcysteine in psychiatry: Current therapeutic evidence and potential mechanisms of action. J. Psychiatry Neurosci., 2011, 36(2), 78-86.
[http://dx.doi.org/10.1503/jpn.100057] [PMID: 21118657]
[174]
Watt, G.; Jongsakul, K.; Ruangvirayuth, R. A pilot study of N-acetylcysteine as adjunctive therapy for severe malaria. QJM, 2002, 95(5), 285-290.
[http://dx.doi.org/10.1093/qjmed/95.5.285] [PMID: 11978899]
[175]
Fitri, L.E.; Rosyidah, H.; Sari, N.P.; Endarti, A.T. Effect of n-acetyl cysteine administration to the degree of parasitemia and plasma interleukin-12 level of mice infected with Plasmodium berghei and treated with artemisinin. Med. J. Indones., 2009, 5.
[http://dx.doi.org/10.13181/mji.v18i1.332]
[176]
Treeprasertsuk, S.; Krudsood, S.; Tosukhowong, T.; Maek-A-Nantawat, W.; Vannaphan, S.; Saengnetswang, T.; Looareesuwan, S.; Kuhn, W.F.; Brittenham, G.; Carroll, J. N-acetylcysteine in severe falciparum malaria in Thailand. Southeast Asian J. Trop. Med. Public Health, 2003, 34(1), 37-42.
[PMID: 12971512]
[177]
Zhang, S.; Hunter, D.J.; Hankinson, S.E.; Giovannucci, E.L.; Rosner, B.A.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. A prospective study of folate intake and the risk of breast cancer. JAMA, 1999, 281(17), 1632-1637.
[http://dx.doi.org/10.1001/jama.281.17.1632] [PMID: 10235158]
[178]
Stolzenberg-Solomon, R.Z.; Albanes, D.; Nieto, F.J.; Hartman, T.J.; Tangrea, J.A.; Rautalahti, M.; Sehlub, J.; Virtamo, J.; Taylor, P.R. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. J. Natl. Cancer Inst., 1999, 91(6), 535-541.
[http://dx.doi.org/10.1093/jnci/91.6.535] [PMID: 10088624]
[179]
Joshi, R.; Adhikari, S.; Patro, B.S.; Chattopadhyay, S.; Mukherjee, T. Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radic. Biol. Med., 2001, 30(12), 1390-1399.
[http://dx.doi.org/10.1016/S0891-5849(01)00543-3] [PMID: 11390184]
[180]
Iyawe, H.O.T.; Onigbinde, A.O. Effects of Plasmodium berghei infection and folic acid treatment on biochemical and antioxidant indicators in mice. Nat. Sci., 2010, 8(8), 18-21.
[181]
Iyawe, H.O.T.; Onigbinde, A.O. Chloroquine and vitamin combination effects on P. berghei induced oxidative stress. Int. J. Biochem. Res. Rev., 2012, 2(4), 120-125.
[http://dx.doi.org/10.9734/IJBCRR/2012/956]
[182]
Mulenga, M.; Malunga, P.; Bennett, S.; Thuma, P.; Shulman, C.; Fielding, K.; Greenwood, B. Folic acid treatment of Zambian children with moderate to severe malaria anemia. Am. J. Trop. Med. Hyg., 2006, 74(6), 986-990.
[http://dx.doi.org/10.4269/ajtmh.2006.74.986] [PMID: 16760508]
[183]
van Hensbroek, M.B. S, M.-J.; S, M.; S, J.; L, B.; R, D.; C, P.; Bm, G. Iron, but not folic acid, combined with effective antimalarial therapy promotes haematological recovery inafrican children after acute Falciparum malaria. Trans. R. Soc. Trop. Med. Hyg., 1995, 89(6)
[http://dx.doi.org/10.1016/0035-9203(95)90438-7] [PMID: 8594693]
[184]
Hershko, C.; Peto, T.E. Deferoxamine inhibition of malaria is independent of host iron status. J. Exp. Med., 1988, 168(1), 375-387.
[http://dx.doi.org/10.1084/jem.168.1.375] [PMID: 3294334]
[185]
Lytton, S.D.; Cabantchik, Z.I.; Libman, J.; Shanzer, A. Reversed siderophores as antimalarial agents. II. Selective scavenging of Fe(III) from parasitized erythrocytes by a fluorescent derivative of desferal. Mol. Pharmacol., 1991, 40(4), 584-590.
[PMID: 1921988]
[186]
Raventos-Suarez, C.; Pollack, S.; Nagel, R.L. Plasmodium falciparum: Inhibition of in vitro growth by desferrioxamine. Am. J. Trop. Med. Hyg., 1982, 31(5), 919-922.
[http://dx.doi.org/10.4269/ajtmh.1982.31.919] [PMID: 6751113]
[187]
Bunnag, D.; Poltera, A.A.; Viravan, C.; Looareesuwan, S.; Harinasuta, K.T.; Schindléry, C. Plasmodicidal effect of desferrioxamine B in human vivax or falciparum malaria from Thailand. Acta Trop., 1992, 52(1), 59-67.
[http://dx.doi.org/10.1016/0001-706X(92)90007-K] [PMID: 1359761]
[188]
Loyevsky, M.; Lytton, S.D.; Mester, B.; Libman, J.; Shanzer, A.; Cabantchik, Z.I. The antimalarial action of desferal involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. J. Clin. Invest., 1993, 91(1), 218-224.
[http://dx.doi.org/10.1172/JCI116174] [PMID: 8423220]
[189]
Chevion, M.; Chuang, L.; Golenser, J. Effects of zinc-desferrioxamine on Plasmodium falciparum in culture. Antimicrob. Agents Chemother., 1995, 39(8), 1902-1905.
[http://dx.doi.org/10.1128/AAC.39.8.1902] [PMID: 7486946]
[190]
Baysal, E.; Monteiro, H.P.; Sullivan, S.G.; Stern, A. Desferrioxamine protects human red blood cells from hemin-induced hemolysis. Free Radic. Biol. Med., 1990, 9(1), 5-10.
[http://dx.doi.org/10.1016/0891-5849(90)90043-I] [PMID: 2210440]
[191]
Vippagunta, S.R.; Dorn, A.; Matile, H.; Bhattacharjee, A.K.; Karle, J.M.; Ellis, W.Y.; Ridley, R.G.; Vennerstrom, J.L. Structural specificity of chloroquine-hematin binding related to inhibition of hematin polymerization and parasite growth. J. Med. Chem., 1999, 42(22), 4630-4639.
[http://dx.doi.org/10.1021/jm9902180] [PMID: 10579825]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy