Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Distance-based Support Vector Machine to Predict DNA N6- methyladenine Modification

Author(s): Haoyu Zhang, Quan Zou, Ying Ju, Chenggang Song and Dong Chen*

Volume 17, Issue 5, 2022

Published on: 09 June, 2022

Page: [473 - 482] Pages: 10

DOI: 10.2174/1574893617666220404145517

Price: $65

Abstract

Background: DNA N6-methyladenine plays an important role in the restriction-modification system to isolate invasion from adventive DNA. The shortcomings of the high time consumption and high costs of experimental methods have been exposed, and some computational methods have emerged. The support vector machine theory has received extensive attention in the bioinformatics field due to its solid theoretical foundation and many good characteristics.

Objective: General machine learning methods include an important step of extracting features. The research has omitted this step and replaced with easy-to-obtain sequence distances matrix to obtain better results.

Methods: First sequence alignment technology was used to achieve the similarity matrix. Then, a novel transformation turned the similarity matrix into a distance matrix. Next, the similarity-distance matrix was made positive semi-definite so that it can be used in the kernel matrix. Finally, the LIBSVM software was applied to solve the support vector machine.

Results: The five-fold cross-validation of this model on rice and mouse data has achieved excellent accuracy rates of 92.04% and 96.51%, respectively. This shows that the DB-SVM method has obvious advantages over traditional machine learning methods. Meanwhile, this model achieved 0.943,0.982 and 0.818 accuracy; 0.944, 0.982, and 0.838 Matthews correlation coefficient; and 0.942, 0.982 and 0.840 F1 scores for the rice, M. musculus and cross-species genome datasets, respectively.

Conclusion: These outcomes show that this model outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which is the latest research finding on DNA 6mA.

Keywords: DNA N6-methyladenine, sequence alignment, machine learning, support vector machine, distance matrixkernel method.

« Previous
Graphical Abstract

[1]
Weisenberger DJ, Campan M, Long TI, et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005; 33(21): 6823-36.
[http://dx.doi.org/10.1093/nar/gki987] [PMID: 16326863]
[2]
Dunn DB, Smith JD. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature 1955; 175(4451): 336-7.
[http://dx.doi.org/10.1038/175336a0] [PMID: 13235889]
[3]
Vanyushin BF, Belozersky AN, Kokurina NA, Kadirova DX. 5-methylcytosine and 6-methylamino-purine in bacterial DNA. Nature 1968; 218(5146): 1066-7.
[http://dx.doi.org/10.1038/2181066a0] [PMID: 5656625]
[4]
Casadesús J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 2006; 70(3): 830-56.
[http://dx.doi.org/10.1128/MMBR.00016-06] [PMID: 16959970]
[5]
Koziol MJ, Bradshaw CR, Allen GE, Costa ASH, Frezza C, Gurdon JB. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 2016; 23(1): 24-30.
[http://dx.doi.org/10.1038/nsmb.3145] [PMID: 26689968]
[6]
Xiao CL, Zhu S, He M, et al. N6-Methyladenine DNA modification in the human genome. Mol Cell 2018; 71(2): 306-318.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.06.015] [PMID: 30017583]
[7]
Ni YH, Zhao X, Wang W. CD24, a review of its role in tumor diagnosis, progression and therapy. Curr Gene Ther 2020; 20(2): 109-26.
[http://dx.doi.org/10.2174/1566523220666200623170738] [PMID: 32576128]
[8]
Feng P, Yang H, Ding H, Lin H, Chen W, Chou KC. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 2019; 111(1): 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005] [PMID: 29360500]
[9]
Chen W, Lv H, Nie F, Lin H. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics 2019; 35(16): 2796-800.
[http://dx.doi.org/10.1093/bioinformatics/btz015] [PMID: 30624619]
[10]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[11]
Liu J, Su R, Zhang J, Wei L. Classification and gene selection of triple-negative breast cancer subtype embedding gene connectivity matrix in deep neural network. Brief Bioinform 2021; 22(5): bbaa395.
[http://dx.doi.org/10.1093/bib/bbaa395] [PMID: 33415328]
[12]
Wei L, Chen H, Su R. M6APred-EL: A sequence-based predictor for identifying n6-methyladenosine sites using ensemble learning. Mol Ther Nucleic Acids 2018; 12: 635-44.
[http://dx.doi.org/10.1016/j.omtn.2018.07.004] [PMID: 30081234]
[13]
Su R, Wu H, Xu B, Liu X, Wei L. Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1231-9.
[http://dx.doi.org/10.1109/TCBB.2018.2858756] [PMID: 30040651]
[14]
Liu B, Li CC, Yan K. DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Brief Bioinform 2020; 21(5): 1733-41.
[http://dx.doi.org/10.1093/bib/bbz098] [PMID: 31665221]
[15]
Zhang X, Zou Q, Rodriguez-Paton A, Zeng X. Bioinformatics. Meta-path methods for prioritizing candidate disease miRNAs. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(1): 283-91.
[http://dx.doi.org/10.1109/TCBB.2017.2776280] [PMID: 29990255]
[16]
Zeng X, Liao Y, Liu Y, Zou Q. Prediction and validation of disease genes using hetesim scores. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 687-95.
[http://dx.doi.org/10.1109/TCBB.2016.2520947] [PMID: 26890920]
[17]
Fu X, Cai L, Zeng X, Zou Q. StackCPPred: A stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency. Bioinformatics 2020; 36(10): 3028-34.
[http://dx.doi.org/10.1093/bioinformatics/btaa131] [PMID: 32105326]
[18]
Deng L, Wang J, Zhang J. Predicting gene ontology function of human micrornas by integrating multiple networks. Front Genet 2019; 10: 3.
[http://dx.doi.org/10.3389/fgene.2019.00003] [PMID: 30761178]
[19]
Wu X, Yu L. EPSOL: sequence-based protein solubility prediction using multidimensional embedding. Bioinformatics 2021; 37(23): btab463.
[http://dx.doi.org/10.1093/bioinformatics/btab463] [PMID: 34145885]
[20]
Yildiz OT. Univariate decision tree induction using maximum margin classification. Comput J 2012; 55(3): 293-8.
[http://dx.doi.org/10.1093/comjnl/bxr020]
[21]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[22]
Zhao T, Hu Y, Peng J, Cheng L. DeepLGP: A novel deep learning method for prioritizing lncRNA target genes. Bioinformatics 2020; 36(16): 4466-72.
[http://dx.doi.org/10.1093/bioinformatics/btaa428] [PMID: 32467970]
[23]
Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: An updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res 2019; 47(20): e127.
[http://dx.doi.org/10.1093/nar/gkz740] [PMID: 31504851]
[24]
Erenguc SS, Benson HPAN. Algorithm for indefinite integer quadratic-programming. Comput Math Appl 1991; 21(6-7): 99-106.
[http://dx.doi.org/10.1016/0898-1221(91)90164-Y]
[25]
Jaakkola T, Diekhans M, Haussler D. Using the Fisher kernel method to detect remote protein homologies. Proceedings International Conference on Intelligent Systems for Molecular Biology. 149-58.
[26]
Chen X, Wang W, Cao WH, Wu M. Gaussian-kernel-based adaptive critic design using two-phase value iteration. Inf Sci 2019; 482: 139-55.
[http://dx.doi.org/10.1016/j.ins.2018.12.019]
[27]
Nicolai BM, Theron KI, Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom Intell Lab Syst 2007; 85(2): 243-52.
[http://dx.doi.org/10.1016/j.chemolab.2006.07.001]
[28]
Lanckriet GRG, Cristianini N, Bartlett P, El Ghaoui L, Jordan MI. Learning the kernel matrix with semidefinite programming. J Mach Learn Res 2004; 5: 27-72.
[29]
Wu T, He HG, Tu T. Interpolation based kernel function’s constructing. New York: IEEE 2002; pp. 2136-9.
[30]
Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 2002; 30(11): 2478-83.
[http://dx.doi.org/10.1093/nar/30.11.2478] [PMID: 12034836]
[31]
Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. ACM Trans Intell Syst Technol 2011; 2(3): 27.
[http://dx.doi.org/10.1145/1961189.1961199]
[32]
Zou Q, Lin G, Jiang X, Liu X, Zeng X. Sequence clustering in bioinformatics: an empirical study. Brief Bioinform 2018; 21: 1-10.
[http://dx.doi.org/10.1093/bib/bby090] [PMID: 30239587]
[33]
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28(23): 3150-2.
[http://dx.doi.org/10.1093/bioinformatics/bts565] [PMID: 23060610]
[34]
Sali A, Blundell TL. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol 1990; 212(2): 403-28.
[PMID: 2181150]
[35]
Pearson WR. Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics 1991; 11(3): 635-50.
[http://dx.doi.org/10.1016/0888-7543(91)90071-L] [PMID: 1774068]
[36]
Su W, Liao X, Lu Y, Zou Q, Peng S. Multiple sequence alignment based on a suffix tree and center-star strategy: A linear method for multiple nucleotide sequence alignment on spark parallel framework. J Comput Biol 2017; 24(12): 1230-42.
[http://dx.doi.org/10.1089/cmb.2017.0040] [PMID: 29116822]
[37]
Zou Q, Hu Q, Guo M, Wang G. HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy. Bioinformatics 2015; 31(15): 2475-81.
[http://dx.doi.org/10.1093/bioinformatics/btv177] [PMID: 25812743]
[38]
Tahir M, Idris A. MD-LBP: An efficient computational model for protein subcellular localization from hela cell lines using SVM. Curr Bioinform 2020; 15(3): 204-11.
[http://dx.doi.org/10.2174/1574893614666190723120716]
[39]
Meng C, Guo F, Zou Q. CWLy-SVM: A support vector machine-based tool for identifying cell wall lytic enzymes. Comput Biol Chem 2020; 87: 107304.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107304] [PMID: 32580129]
[40]
Kuo J-H, Chang C-C, Chen C-W, Liang H-H, Chang C-Y, Chu Y-W. Sequence-based structural B-cell epitope prediction by using two layer SVM model and association rule features. Curr Bioinform 2020; 15(3): 246-52.
[http://dx.doi.org/10.2174/1574893614666181123155831]
[41]
Ju Z, Wang S-Y. Prediction of neddylation sites using the composition of k-spaced amino acid pairs and fuzzy SVM. Curr Bioinform 2020; 15(7): 725-31.
[http://dx.doi.org/10.2174/1574893614666191114123453]
[42]
Zhang D, Xu ZC, Su W, et al. iCarPS: A computational tool for identifying protein carbonylation sites by novel encoded features. Bioinformatics 2020.
[PMID: 32766811]
[43]
Su R, Hu J, Zou Q, Manavalan B, Wei L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinform 2020; 21(2): 408-20.
[http://dx.doi.org/10.1093/bib/bby124] [PMID: 30649170]
[44]
Yan K, Wen J, Xu Y, Liu B. MLDH-Fold: Protein fold recognition based on multi-view low-rank modeling. Neurocomputing 2021; 421: 127-39.
[http://dx.doi.org/10.1016/j.neucom.2020.09.028]
[45]
Xu L, Liang G, Wang L, Liao C. A novel hybrid sequence-based model for identifying anticancer peptides. Genes (Basel) 2018; 9(3): 158.
[http://dx.doi.org/10.3390/genes9030158] [PMID: 29534013]
[46]
Wang J, Cherian A. Discriminative video representation learning using support vector classifiers. IEEE Trans Pattern Anal Mach Intell 2021; 43(2): 420-33.
[http://dx.doi.org/10.1109/TPAMI.2019.2937292] [PMID: 31449006]
[47]
Cheng L, Yang H, Zhao H, et al. MetSigDis: A manually curated resource for the metabolic signatures of diseases. Brief Bioinform 2019; 20(1): 203-9.
[http://dx.doi.org/10.1093/bib/bbx103] [PMID: 28968812]
[48]
Rehman S, Nabi B, Pottoo FH, Baboota S, Ali J. Nanoparticle based gene therapy approach: a pioneering rebellion in the management of psychiatric disorders. Curr Gene Ther 2020; 20(3): 164-73.
[http://dx.doi.org/10.2174/1566523220666200607185903] [PMID: 32515310]
[49]
Lei X, Guangmin L, Shuhua S, Changrui L. SeqSVM: A Sequence-Based support vector machine method for identifying antioxidant proteins. International Journal of Molecular ences 19: 1773 2018.
[50]
Wang H, Liu C, Deng L. Enhanced prediction of hot spots at protein-protein interfaces using extreme gradient boosting. Sci Rep 2018; 8(1): 14285.
[http://dx.doi.org/10.1038/s41598-018-32511-1] [PMID: 30250210]
[51]
Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992; 60(1-4): 259-68.
[http://dx.doi.org/10.1016/0167-2789(92)90242-F]
[52]
Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998; 2(2): 121-67.
[http://dx.doi.org/10.1023/A:1009715923555]
[53]
Park J, Sandberg IW. Universal approximation using radial-basis-function networks. Neural Comput 1991; 3(2): 246-57.
[http://dx.doi.org/10.1162/neco.1991.3.2.246] [PMID: 31167308]
[54]
Zhang D, Chen H-D, Zulfiqar H, et al. iBLP: An XGBoost-based predictor for identifying bioluminescent proteins. Comput Math Methods Med 2021; 2021: 6664362.
[http://dx.doi.org/10.1155/2021/6664362] [PMID: 33505515]
[55]
Wang D, Zhang Z, Jiang Y, et al. DM3Loc: Multi-label mRNA subcellular localization prediction and analysis based on multi-head self-attention mechanism. Nucleic Acids Res 2021; 49(8): e46.
[http://dx.doi.org/10.1093/nar/gkab016] [PMID: 33503258]
[56]
Jin Q, Cui H, Sun C, Meng Z, Su R. Free-form tumor synthesis in computed tomography images via richer generative adversarial network. Knowl Base Syst 2021; 218: 106753.
[http://dx.doi.org/10.1016/j.knosys.2021.106753]
[57]
Su R, Liu X, Wei L, Zou Q. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods 2019; 166: 91-102.
[http://dx.doi.org/10.1016/j.ymeth.2019.02.009] [PMID: 30772464]
[58]
Wei L, Hu J, Li F, Song J, Su R, Zou Q. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms. Brief Bioinform 2018; 21: 106-19.
[http://dx.doi.org/10.1093/bib/bby107] [PMID: 30383239]
[59]
Shao J, Yan K, Liu B. FoldRec-C2C: protein fold recognition by combining cluster-to-cluster model and protein similarity network. Brief Bioinform 2021; 22(3): bbaa144.
[http://dx.doi.org/10.1093/bib/bbaa144] [PMID: 32685972]
[60]
Cai L, Wang L, Fu X, Xia C, Zeng X. ITP-Pred: An interpretable method for predicting, therapeutic peptides with fused features low-dimension representation. Brief Bioinform 2021; 22: bbaa367.
[61]
Zeng X, Zhong Y, Lin W, Zou Q. Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods. Brief Bioinform 2020; 21(4): 1425-36.
[http://dx.doi.org/10.1093/bib/bbz080] [PMID: 31612203]
[62]
Yang W, Deng L. PreDBA: A heterogeneous ensemble approach for predicting protein-DNA binding affinity. Sci Rep 2020; 10(1): 1278.
[http://dx.doi.org/10.1038/s41598-020-57778-1] [PMID: 31992738]
[63]
Yu L, Wang M, Yang Y, et al. Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways. PLOS Comput Biol 2021; 17(2): e1008696.
[http://dx.doi.org/10.1371/journal.pcbi.1008696] [PMID: 33561121]
[64]
Ao C, Zou Q, Yu L. RFhy-m2G: Identification of RNA N2- methylguanosine modification sites based on random forest and hybrid features. Methods (San Diego, Calif) 2021.
[65]
Tahir M, Tayara H, Chong KT. iPseU-CNN: Identifying RNA pseudouridine sites using convolutional neural networks. Mol Ther Nucleic Acids 2019; 16: 463-70.
[http://dx.doi.org/10.1016/j.omtn.2019.03.010] [PMID: 31048185]
[66]
Nazari I, Tahir M, Tayara H, Chong KT. iN6-Methyl (5-step): Identifying RNA N6-methyladenosine sites using deep learning mode via Chou’s 5-step rules and Chou’s general PseKNC. Chemom Intell Lab Syst 2019; 193: 7.
[http://dx.doi.org/10.1016/j.chemolab.2019.103811]
[67]
Tahir M, Tayara H, Chong KT. iDNA6mA (5-step rule): Identification of DNA N6-methyladenine sites in the rice genome by intelligent computational model via Chou’s 5-step rule. Chemom Intell Lab Syst 2019; 189: 96-101.
[http://dx.doi.org/10.1016/j.chemolab.2019.04.007]
[68]
Tayara H, Tahir M, Chong KT. Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics 2020; 112(2): 1396-403.
[http://dx.doi.org/10.1016/j.ygeno.2019.08.009] [PMID: 31437540]
[69]
Khanal J, Nazari I, Tayara H, Chong KT. 4mCCNN: Identification of N4-methylcytosine sites in prokaryotes using convolutional neural network. IEEE Access 2019; 7: 145455-61.
[http://dx.doi.org/10.1109/ACCESS.2019.2943169]
[70]
Jiang Q, Jin S, Jiang Y, et al. Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol Neurobiol 2017; 54(1): 594-600.
[http://dx.doi.org/10.1007/s12035-015-9670-8] [PMID: 26746668]
[71]
Cheng L, Qi C, Zhuang H, Fu T, Zhang X. gutMDisorder: A comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. Nucleic Acids Res 2020; 48(D1): D554-60.
[http://dx.doi.org/10.1093/nar/gkz843] [PMID: 31584099]
[72]
Cheng L. Computational and biological methods for gene therapy. Curr Gene Ther 2019; 19(4): 210-0.
[http://dx.doi.org/10.2174/156652321904191022113307] [PMID: 31762421]
[73]
Yang H, Luo Y, Ren X, et al. Risk prediction of diabetes: Big data mining with fusion of multifarious physical examination indicators. Inf Fusion 2021; 75: 140-9.
[http://dx.doi.org/10.1016/j.inffus.2021.02.015]
[74]
Huang Y, Zhou D, Wang Y, et al. Prediction of transcription factors binding events based on epigenetic modifications in different human cells. Epigenomics 2020; 12(16): 1443-56.
[http://dx.doi.org/10.2217/epi-2019-0321] [PMID: 32921165]
[75]
Zhang L, Xiao X, Xu ZC. iPromoter-5mC: A novel fusion decision predictor for the identification of 5-methylcytosine sites in genome-wide DNA promoters. Front Cell Dev Biol 2020; 8: 614.
[http://dx.doi.org/10.3389/fcell.2020.00614] [PMID: 32850787]
[76]
Jiang Q, Wang G, Jin S, Li Y, Wang Y. Predicting human microRNA-disease associations based on support vector machine. Int J Data Min Bioinform 2013; 8(3): 282-93.
[http://dx.doi.org/10.1504/IJDMB.2013.056078] [PMID: 24417022]
[77]
Tang Y-J, Pang Y-H, Liu B. IDP-Seq2Seq: Identification of intrinsically disordered regions based on sequence to sequence learning. Bioinformaitcs 2021; 36(21): 5177-86.
[http://dx.doi.org/10.1093/bioinformatics/btaa667] [PMID: 32702119]
[78]
Wang N, Zhang J, Liu B. IDRBP-PPCT: Identifying nucleic acidbinding proteins based on Position-Specific Score Matrix and Position- Specific Frequency Matrix Cross Transformation. IEEE/ACM Trans Comput Biol Bioinform 2021. [Epub ahead of print].
[http://dx.doi.org/10.1109/TCBB.2021.3069263] [PMID: 33780341]
[79]
Min X, Ye C, Liu X, Zeng X. Predicting enhancer-promoter interactions by deep learning and matching heuristic. Brief Bioinform 2021; 22(4): bbaa254.
[http://dx.doi.org/10.1093/bib/bbaa254] [PMID: 33096548]
[80]
Liu Y, Zhang X, Zou Q, Zeng X. Minirmd: accurate and fast duplicate removal tool for short reads via multiple minimizers. Bioinformatics 2021; 37(11): 1604-6.
[http://dx.doi.org/10.1093/bioinformatics/btaa915] [PMID: 33112385]
[81]
Xu L, Liang G, Liao C, Chen G-D, Chang C-C. An efficient classifier for alzheimer’s disease genes identification. Molecules 2018; 23(12): 3140.
[http://dx.doi.org/10.3390/molecules23123140] [PMID: 30501121]
[82]
Shang Y, Gao L, Zou Q, Yu L. Prediction of drug-target interactions based on multi-layer network representation learning. Neurocomputing 2021; 434: 80-9.
[http://dx.doi.org/10.1016/j.neucom.2020.12.068]
[83]
Ao C, Yu L, Zou Q. Prediction of bio-sequence modifications and the associations with diseases. Brief Funct Genomics 2021; 20(1): 1-18.
[http://dx.doi.org/10.1093/bfgp/elaa023] [PMID: 33313647]
[84]
Wahab A, Ali SD, Tayara H, Chong KT. iIM-CNN: Intelligent Identifier of 6mA Sites on Different Species by Using Convolution Neural Network. IEEE Access 2019; 7: 178577-83.
[http://dx.doi.org/10.1109/ACCESS.2019.2958618]
[85]
Liu Z, Dong W, Jiang W, He Z. csDMA: An improved bioinformatics tool for identifying DNA 6 mA modifications via Chou’s 5-step rule. Sci Rep 2019; 9(1): 13109.
[http://dx.doi.org/10.1038/s41598-019-49430-4] [PMID: 31511570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy