Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Drug Delivery Platforms Containing Thermoresponsive Polymers and Mucoadhesive Cellulose Derivatives: A Review of Patents

Author(s): Jéssica Bassi da Silva, Rafaela Said dos Santos, Camila Felix Vecchi and Marcos Luciano Bruschi*

Volume 16, Issue 2, 2022

Published on: 21 June, 2022

Page: [90 - 102] Pages: 13

DOI: 10.2174/2667387816666220404123625

Price: $65

Abstract

Nowadays, the development of mucoadhesive systems for drug delivery has gained keen interest, with enormous potential in applications through different routes. Mucoadhesion characterizes an attractive interaction between the pharmaceutical dosage form and the mucosal surface. Many polymers have shown the ability to interact with mucus, increasing the residence time of local and/or systemic administered preparations, such as tablets, patches, semi-solids, and micro and nanoparticles. Cellulose is the most abundant polymer on the earth. It is widely used in the pharmaceutical industry as an inert pharmaceutical ingredient, mainly in its covalently modified forms: methylcellulose, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and carboxymethylcellulose salts. Aiming to overcome the drawbacks of oral, ocular, nasal, vaginal, and rectal routes and thereby maintaining patient compliance, innovative polymer blends have gained the interest of the pharmaceutical industry. Combining mucoadhesive and thermoresponsive polymers allows for simultaneous in situ gelation and mucoadhesion, thus enhancing the retention of the system at the site of administration and drug availability. Thermoresponsive polymers have the ability to change physicochemical properties triggered by temperature, which is particularly interesting considering the physiological temperature. The present review provides an analysis of the main characteristics and applications of cellulose derivatives as mucoadhesive polymers and their use in blends together with thermoresponsive polymers, aiming at platforms for drug delivery. Patents were reviewed, categorized, and discussed, focusing on the applications and pharmaceutical dosage forms using this innovative strategy. This review manuscript also provides a detailed introduction to the topic and a perspective on further developments.

Keywords: Mucoadhesion, thermoresponsive systems, hydroxypropyl cellulose, cellulose, pharmaceutics, mucoadhesive polymers.

Graphical Abstract

[1]
Lehr C-M. Lectin-mediated drug delivery: The second generation of bioadhesives. J Control Release 2000; 65(1-2): 19-29.
[http://dx.doi.org/10.1016/S0168-3659(99)00228-X] [PMID: 10699266]
[2]
Grabovac V, Guggi D, Bernkop-Schnürch A. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev 2005; 57(11): 1713-23.
[http://dx.doi.org/10.1016/j.addr.2005.07.006] [PMID: 16183163]
[3]
Movassaghian S, Barzegar-Jalali M, Alaeddini M, et al. Development of amitriptyline buccoadhesive tablets for management of pain in dental procedures. Drug Dev Ind Pharm 2011; 37(7): 849-54.
[http://dx.doi.org/10.3109/03639045.2010.546403] [PMID: 21231888]
[4]
Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 2005; 57(11): 1595-639.
[http://dx.doi.org/10.1016/j.addr.2005.07.005] [PMID: 16198021]
[5]
Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: A review. J Mater Res Technol 2021; 10: 935-52.
[http://dx.doi.org/10.1016/j.jmrt.2020.12.012]
[6]
Shokri J, Adibki K. Application of cellulose and cellulose derivatives in pharmaceutical industries. Cellul - Medical, Pharm Electron Appl 2013.
[http://dx.doi.org/10.5772/55178]
[7]
da Silva JB, Cook MT, Bruschi ML. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: Mechanical, rheological and sol-gel transition analysis. Carbohydr Polym 2020; 240: 116268.
[http://dx.doi.org/10.1016/j.carbpol.2020.116268] [PMID: 32475558]
[8]
Pagano C, Giovagnoli S, Perioli L, Tiralti MC, Ricci M. Development and characterization of mucoadhesive-thermoresponsive gels for the treatment of oral mucosa diseases. Eur J Pharm Sci 2020; 142: 105125.
[http://dx.doi.org/10.1016/j.ejps.2019.105125] [PMID: 31682975]
[9]
Pandey P, Cabot PJ, Wallwork B, Panizza BJ, Parekh HS. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - A platform for therapeutic delivery to mucosal sinus tissue. Eur J Pharm Sci 2017; 96: 499-507.
[http://dx.doi.org/10.1016/j.ejps.2016.10.017] [PMID: 27771516]
[10]
Bruschi ML, Jones DS, Panzeri H, Gremião MPD, de Freitas O, Lara EHG. Semisolid systems containing propolis for the treatment of periodontal disease: In vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J Pharm Sci 2007; 96(8): 2074-89.
[http://dx.doi.org/10.1002/jps.20843] [PMID: 17301966]
[11]
De Souza Ferreira SB, Da Silva JB, Volpato Junqueira M, Belincanta Borghi-Pangoni F, Guttierres Gomes R, Luciano Bruschi M. The importance of the relationship between mechanical analyses and rheometry of mucoadhesive thermoresponsive polymeric materials for biomedical applications. J Mech Behav Biomed Mater 2017; 74: 142-53.
[http://dx.doi.org/10.1016/j.jmbbm.2017.05.040] [PMID: 28599154]
[12]
Borghi-Pangoni FB, Junqueira MV, de Souza Ferreira SB, et al. Preparation and characterization of bioadhesive system containing hypericin for local photodynamic therapy. Photodiagn Photodyn Ther 2017; 19: 284-97.
[http://dx.doi.org/10.1016/j.pdpdt.2017.06.016] [PMID: 28669792]
[13]
Campanholi KDSS, Braga G, da Silva JB, et al. Biomedical platform development of a chlorophyll-based extract for topic photodynamic therapy: Mechanical and spectroscopic properties. Langmuir 2018; 34(28): 8230-44.
[http://dx.doi.org/10.1021/acs.langmuir.8b00658] [PMID: 29933698]
[14]
Bruschi ML, Borghi-Pangoni FB, Junqueira MV, de Souza Ferreira SB, da Silva JB. Environmentally responsive systems for drug delivery. Recent Pat Drug Deliv Formul 2017; 11(2): 89-100.
[http://dx.doi.org/10.2174/1872211311666170328151455] [PMID: 28355996]
[15]
Siegel RA. Stimuli sensitive polymers and self regulated drug delivery systems: A very partial review. J Control Release 2014; 190: 337-51.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.035] [PMID: 24984012]
[16]
Bruschi ML, Borghi-Pangoni FB, Da Silva JB, Junqueira MV, Ferreira SBDS. Nanogels: Preparation, applications, and clinical considerations for drug delivery Nanodispersions Drug Deliv, Inc. Apple Academic Press 2019.
[17]
Shriky B, Kelly A, Isreb M, et al. Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development. J Colloid Interface Sci 2020; 565: 119-30.
[http://dx.doi.org/10.1016/j.jcis.2019.12.096] [PMID: 31945671]
[18]
Cook MT, Haddow P, Kirton SB, McAuley WJ. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv Funct Mater 2020; 2008: 123.
[19]
Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci 2011; 11(6): 748-64.
[http://dx.doi.org/10.1002/mabi.201000388] [PMID: 21188688]
[20]
Cook MT, Khutoryanskiy VV. Mucoadhesion and mucosa-mimetic materials--A mini-review. Int J Pharm 2015; 495(2): 991-8.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.064] [PMID: 26440734]
[21]
Cook MT, Brown MB. Polymeric gels for intravaginal drug delivery. J Control Release 2018; 270: 145-57.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.004] [PMID: 29223536]
[22]
Sosnik A, Das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014; 39(12): 2030-75.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.010]
[23]
Bassi da Silva J, Ferreira SBS, de Freitas O, Bruschi ML. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm 2017; 43(7): 1053-70.
[http://dx.doi.org/10.1080/03639045.2017.1294600] [PMID: 28276785]
[24]
Medlicott NJ, Tucker IG, Rathbone MJ, Jones DW. D.S H. Chlorhexidine release from poly(epsilon-caprolactone) films prepared by solvent evaporation. Int J Pharm 1996; 143(1): 25-35.
[http://dx.doi.org/10.1016/S0378-5173(96)04675-3]
[25]
Nagai T, Konishi R. Buccal/gingival drug delivery systems. J Control Release 1987; 6(1): 353-60.
[http://dx.doi.org/10.1016/0168-3659(87)90088-5]
[26]
Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 2009; 71(3): 505-18.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.028] [PMID: 18984051]
[27]
Sandri G, Rossi S, Ferrari F, Bonferoni MC, Muzzarelli C, Caramella C. Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. Eur J Pharm Sci 2004; 21(2-3): 351-9.
[http://dx.doi.org/10.1016/j.ejps.2003.10.028] [PMID: 14757509]
[28]
Kinloch AJ. The science of adhesion - Part 1 Surface and interfacial aspects. J Mater Sci 1980; 15(9): 2141-66.
[http://dx.doi.org/10.1007/BF00552302]
[29]
Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: The next generation. J Pharm Sci 2000; 89(7): 850-66.
[http://dx.doi.org/10.1002/1520-6017(200007)89:7<850:AID-JPS2>3.0.CO;2-G] [PMID: 10861586]
[30]
Park H, Robinson JR. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res 1987; 4(6): 457-64.
[http://dx.doi.org/10.1023/A:1016467219657] [PMID: 3508557]
[31]
Nikonenko NA, Bushnak IA, Keddie JL. Spectroscopic ellipsometry of mucin layers on an amphiphilic diblock copolymer surface. Appl Spectrosc 2009; 63(8): 889-98.
[http://dx.doi.org/10.1366/000370209788964449] [PMID: 19678985]
[32]
Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 2006; 11(2-3): 164-70.
[http://dx.doi.org/10.1016/j.cocis.2005.11.001]
[33]
Sogias IA, Williams AC, Khutoryanskiy VV. Chitosan-based mucoadhesive tablets for oral delivery of ibuprofen. Int J Pharm 2012; 436(1-2): 602-10.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.007] [PMID: 22842627]
[34]
Keely S, Rullay A, Wilson C, et al. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly (methacrylate) and N-trimethylated chitosan polymers. Pharm Res 2005; 22(1): 38-49.
[http://dx.doi.org/10.1007/s11095-004-9007-1] [PMID: 15771228]
[35]
Thongborisute J, Takeuchi H. Evaluation of mucoadhesiveness of polymers by BIACORE method and mucin-particle method. Int J Pharm 2008; 354(1-2): 204-9.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.001] [PMID: 18207675]
[36]
Komati S, Swain S, Rao MEB, Jena BR, Dasi V. Mucoadhesive multiparticulate drug delivery systems: An extensive review of patents. Adv Pharm Bull 2019; 9(4): 521-38.
[http://dx.doi.org/10.15171/apb.2019.062] [PMID: 31857957]
[37]
Bruschi ML, de Francisco LMS, de Toledo LA, Borghi FB. An overview of recent patents on composition of mucoadhesive drug delivery systems. Recent Pat Drug Deliv Formul 2015; 9(1): 79-87.
[http://dx.doi.org/10.2174/1872211308666141122220459] [PMID: 25420876]
[38]
Herman L, Hubert P, Delvenne P, Boniver J, Evrard B, Delattre L. Mucoadhesive pharmaceutical compositions comprising chemoattractants. PCT/EP2005/056709, 2006.
[39]
da Silva JB, Dos Santos RS, da Silva MB, Braga G, Cook MT, Bruschi ML. Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance. Mater Sci Eng C 2021; 119: 111643.
[http://dx.doi.org/10.1016/j.msec.2020.111643] [PMID: 33321681]
[40]
Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA. Pharmaceutical significance of cellulose: A review. Express Polym Lett 2008; 2(11): 758-78.
[http://dx.doi.org/10.3144/expresspolymlett.2008.90]
[41]
Finn A, Vasisht N. Abuse-resistant mucoadhesive devices for delivery of buprenorphine. US 2016/0324849 A1, 2016.
[42]
Wickenhauser Alan J, Peipert Stephen E. Topical anesthetic for dental procedures. WO 2007/041482 A2, 2007.
[43]
Giancarlo Santus M, Giuseppe Bottoni B, Caterina Lazzarini M. Controlled-release mucoadhesive pharmaceutical composition for the oral administration of furosemide. US-5571533-A 1996.
[44]
Domb AJ, Wolnerman JS. Absorbable solid compositions for topical treatment of oral mucosal disorders. US 7,943,169 B2, 2011.
[45]
Fahl WE, Ruoho AE, Mehta M. Topical vasoconstrictor preparations and methods for protecting cells during cancer chemotherapy and radiotherapy. US 2016/0136113 A1, 2016.
[46]
Attali P, Costantini D, Caroline L. Mucoadhesive buccal tablets for the treatment of orofacial herpes. CA2782779A12009,
[47]
Constantini D, Lemarchand C. Mucosal bioadhesive slow release carrier for delvering active principles. US 2013/0303556 A1, 2013.
[48]
Gil K, Marina K, Mikhal J. Preparations of thermo-abrasive hydrogel for application in treatment of utertal disorders. RU2635466C2, 2016.
[49]
Daniel K. Compositions containing an intestinal trefol peptide and a mucoadhesive. US 2010/0144618 A1, 2010.
[50]
Rencher WF. Bioadhesive pharmaceutical carrier. US5192802A, 2010.
[51]
Chung Y-H, Ryu J-M, Jung J-H, Kim Y-E, Cho C-S, Choi H-K. Oral mucoadhesive film. WO/2003/059390, 2003.
[52]
Zerda JD, La , Dollberg Y. Production of thermoreversible hydrogels fortherapeutic applications. US20140142191A1, 2014.
[53]
Moro D, Callahan H, Nowotnik DP. Mucoadhesive erodible drug delivery device for controlled administration of pharmaceuticals and other active compounds. WO03/015748 A2, 2003.
[54]
Yanagibashi N, Iwasaki S, Mizobushi T, Konishi R, Konishi T, Wato T. Adhesive device for application to body tissue. 0275550B1, 1993.
[55]
Harel M, Kambalapally S. Composition for oral delivery of bioactive agents. WO 2015/084594 Al, 2015.
[56]
Woertz C, Preis M, Breitkreutz J, Kleinebudde P. Assessment of test methods evaluating mucoadhesive polymers and dosage forms: An overview. Eur J Pharm Biopharm 2013; 85(3 Pt B): 843-53.
[http://dx.doi.org/10.1016/j.ejpb.2013.06.023] [PMID: 23851076]
[57]
Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 2005; 57(11): 1556-68.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[58]
Bravo-Osuna I, Noiray M, Briand E, et al. Interfacial interaction between transmembrane ocular mucins and adhesive polymers and dendrimers analyzed by surface plasmon resonance. Pharm Res 2012; 29(8): 2329-40.
[http://dx.doi.org/10.1007/s11095-012-0761-1] [PMID: 22565639]
[59]
Tan W, Zhang J, Zhao X, Li Q, Dong F, Guo Z. Preparation and physicochemical properties of antioxidant chitosan ascorbate/methylcellulose composite films. Int J Biol Macromol 2020; 146: 53-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.044] [PMID: 31816372]
[60]
Desbrières J, Hirrien M, Ross-Murphy SB. Thermogelation of methylcellulose: Rheological considerations. Polymer (Guildf) 2000; 41(7): 2451-61.
[http://dx.doi.org/10.1016/S0032-3861(99)00413-9]
[61]
Nishinari K, Hofmann KE, Moritaka H, Kohyama K, Nishinari N. Gel-sol transition of methylcellulose. Macromol Chem Phys 1997; 198(4): 1217-26.
[http://dx.doi.org/10.1002/macp.1997.021980423]
[62]
Rees DA. Polysacchan’de gels. Chem Ind 1972; 16: 630-6.
[63]
Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 1979; 24(4): 1073-87.
[http://dx.doi.org/10.1002/app.1979.070240420]
[64]
Haque A, Morris ER. Thermogelation of methylcellulose. Part I: Molecular structures and processes. Carbohydr Polym 1993; 22(3): 161-73.
[http://dx.doi.org/10.1016/0144-8617(93)90137-S]
[65]
Kato T, Yokoyama M, Takahashi A. Melting temperatures of thermally reversible gels IV. Methyl cellulose-water gels. Colloid Polym Sci 1978; 256(1): 15-21.
[http://dx.doi.org/10.1007/BF01746686]
[66]
Leitner S, Grijalvo S, Solans C, Eritja R, García-Celma MJ, Calderó G. Ethylcellulose nanoparticles as a new “in vitro” transfection tool for antisense oligonucleotide delivery. Carbohydr Polym 2020; 229: 115451.
[http://dx.doi.org/10.1016/j.carbpol.2019.115451] [PMID: 31826509]
[67]
Mehta R, Teckoe J, Schoener C, Workentine S, Ferrizzi D, Rajabi-Siahboomi A. Investigation into the effect of ethylcellulose viscosity variation on the drug release of metoprolol tartrate and acetaminophen extended release multiparticulates-Part I. AAPS PharmSciTech 2016; 17(6): 1366-75.
[http://dx.doi.org/10.1208/s12249-015-0465-z] [PMID: 26743642]
[68]
Adeleke OA. Premium ethylcellulose polymer based architectures at work in drug delivery. Int J Pharm X 2019; 1: 100023.
[http://dx.doi.org/10.1016/j.ijpx.2019.100023] [PMID: 31517288]
[69]
Tachaprutinun A, Pan-In P, Wanichwecharungruang S. Mucosa-plate for direct evaluation of mucoadhesion of drug carriers. Int J Pharm 2013; 441(1-2): 801-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.028] [PMID: 23270997]
[70]
Lu Z, Huang J, e S, et al. All cellulose composites prepared by hydroxyethyl cellulose and cellulose nanocrystals through the crosslink of polyisocyanate. Carbohydr Polym 2020; 250: 116919.
[http://dx.doi.org/10.1016/j.carbpol.2020.116919] [PMID: 33049891]
[71]
Abdel-Halim ES. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arab J Chem 2014; 7(3): 362-71.
[http://dx.doi.org/10.1016/j.arabjc.2013.05.006]
[72]
Machado GO, Ferreira HCA, Pawlicka A. Influence of plasticizer contents on the properties of HEC-based solid polymeric electrolytes. Electrochim Acta 2005; 50(19): 3827-31.
[http://dx.doi.org/10.1016/j.electacta.2005.02.041]
[73]
Rowe RC, Sheskey P, Quinn M. Handbook of Pharmaceutical Excipients. 6th ed. London: Pharmaceutical Press 2009.
[74]
Noreen A, Zia KM, Tabasum S, Khalid S, Shareef R. A review on grafting of hydroxyethylcellulose for versatile applications. Int J Biol Macromol 2020; 150: 289-303.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.265] [PMID: 32004607]
[75]
Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R. A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 2015; 476: 112-8.
[http://dx.doi.org/10.1016/j.memsci.2014.10.056]
[76]
Cannazza G, Cataldo A, De Benedetto E, Demitri C, Madaghiele M, Sannino A. Experimental assessment of the use of a novel superabsorbent polymer (SAP) for the optimization ofwater consumption in agricultural irrigation process. Water 2014; 6(7): 2056-69.
[http://dx.doi.org/10.3390/w6072056]
[77]
Liu M, Liang R, Zhan F, Liu Z, Niu A. Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polym Adv Technol 2006; 17(6): 430-8.
[http://dx.doi.org/10.1002/pat.720]
[78]
Villa Nova M, Gonçalves MC, Nogueira AC, et al. Formulation and characterization of ethylcellulose microparticles containing. L-alanyl- L-glutamine peptide. Drug Dev Ind Pharm 2014; 40(10): 1308-17.
[http://dx.doi.org/10.3109/03639045.2013.817417] [PMID: 23862977]
[79]
Tapolsky GH, Osborne DW. Pharmaceutical carrier device suctable for delivery of pharmaceutical compounds to mucosal surface. US 20080254105 A1, 2008.
[80]
Mezdour S, Lepine A, Erazo-Majewicz P, Ducept F, Michon C. Oil/water surface rheological properties of hydroxypropyl cellulose (HPC) alone and mixed with lecithin: contribution to emulsion stability. Colloids Surf A Physicochem Eng Asp 2008; 331(1-2): 76-83.
[http://dx.doi.org/10.1016/j.colsurfa.2008.07.023]
[81]
Mazoniene E, Joceviciute S, Kazlauske J, Niemeyer B, Liesiene J. Interaction of cellulose-based cationic polyelectrolytes with mucin. Colloids Surf B Biointerfaces 2011; 83(1): 160-4.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.022] [PMID: 21134731]
[82]
Godinho MH, Gray DG, Pieranski P. Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system. Liq Cryst 2017; 44: 2108-20.
[http://dx.doi.org/10.1080/02678292.2017.1325018]
[83]
El-Newehy MH, El-Naggar ME, Alotaiby S, El-Hamshary H, Moydeen M, Al-Deyab S. Green electrospining of hydroxypropyl cellulose nanofibres for drug delivery applications. J Nanosci Nanotechnol 2018; 18(2): 805-14.
[http://dx.doi.org/10.1166/jnn.2018.13852] [PMID: 29448497]
[84]
Walters CM, Boott CE, Nguyen TD, Hamad WY, MacLachlan MJ. Iridescent cellulose nanocrystal films modified with hydroxypropyl cellulose. Biomacromolecules 2020; 21(3): 1295-302.
[http://dx.doi.org/10.1021/acs.biomac.0c00056] [PMID: 32053370]
[85]
Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Bhagat PR. Biopolymer composites in electronics 3 – biopolymer composites with high dielectric performance: Interface. Elsevier Inc. 2018.
[86]
Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A. In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: Optimization study by factorial design. Heliyon 2020; 6(11): e05365.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05365] [PMID: 33251348]
[87]
Rowe RC, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Excipients. In: Kanzaki Z. Academia. 6th Edition. 2009.
[88]
Mortazavi S. Investigation of various parameters influencing the duration of mucoadhesion of some polymer containing discs. J Pharm Sci 2002; 10: 98-104.
[89]
Madsen F, Eberth K, Smart JD. A rheological examination of the mucoadhesive/mucus interaction: The effect of mucoadhesive type and concentration. J Control Release 1998; 50(1-3): 167-78.
[http://dx.doi.org/10.1016/S0168-3659(97)00138-7] [PMID: 9685883]
[90]
Liu J, Li H, Jiang X, Zhang C, Ping Q. Novel pH-sensitive chitosan-derived micelles loaded with paclitaxel. Carbohydr Polym 2010; 82(2): 432-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.084]
[91]
Takeuchi H, Thongborisute J, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev 2005; 57(11): 1583-94.
[http://dx.doi.org/10.1016/j.addr.2005.07.008] [PMID: 16169120]
[92]
Tuğcu-Demiröz F, Acartürk F, Erdoğan D. Development of long-acting bioadhesive vaginal gels of oxybutynin: Formulation, in vitro and in vivo evaluations. Int J Pharm 2013; 457(1): 25-39.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.003] [PMID: 24036011]
[93]
Accili D, Menghi G, Bonacucina G, Martino PD, Palmieri GF. Mucoadhesion dependence of pharmaceutical polymers on mucosa characteristics. Eur J Pharm Sci 2004; 22(4): 225-34.
[http://dx.doi.org/10.1016/j.ejps.2003.12.011] [PMID: 15196578]
[94]
Convention USP. USP 32 NF 27: United States pharmacopeia [and] national formulary. United States Rockville, MD: United States Pharmacopeial Convention In: 2009.
[95]
Müller SA, Weis C, Odermatt EK, Knaebel HP, Wente MN. A hydrogel for adhesion prevention: Characterization and efficacy study in a rabbit uterus model. Eur J Obstet Gynecol Reprod Biol 2011; 158(1): 67-71.
[http://dx.doi.org/10.1016/j.ejogrb.2010.11.008] [PMID: 21146281]
[96]
Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels: Design and applications. Materials (Basel) 2009; 2(2): 353-73.
[http://dx.doi.org/10.3390/ma2020353]
[97]
Fini A, Bergamante V, Ceschel GC. Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics 2011; 3(4): 665-79.
[http://dx.doi.org/10.3390/pharmaceutics3040665] [PMID: 24309302]
[98]
Sigurdsson HH, Loftsson T, Lehr CM. Assessment of mucoadhesion by a resonant mirror biosensor. Int J Pharm 2006; 325(1-2): 75-81.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.027] [PMID: 16904852]
[99]
Jones DS, Woolfson AD, Brown AF. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int J Pharm 1997; 151(2): 223-33.
[http://dx.doi.org/10.1016/S0378-5173(97)04904-1]
[100]
Rossi S, Bonferoni MC, Ferrari F, Bertoni M, Caramella C. Characterization of mucin interaction with three viscosity grades of sodium carboxymethylcellulose. Comparison between rheological and tensile testing. Eur J Pharm Sci 1996; 4(3): 189-96.
[http://dx.doi.org/10.1016/0928-0987(95)00049-6]
[101]
Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 2015; 65: 252-67.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[102]
Tapolsky GH, Osborne DW. Pharmaceutical carrier device sutable for delivery of pharmaceutical compounds to mucosal surfaces. US 2008/0254105 A1, 2008.
[103]
Jain S, Sandhu PS, Malvi R, Gupta B. Cellulose derivatives as thermoresponsive polymer: An overview. J Appl Pharm Sci 2013; 3: 139-44.
[104]
Bassi da Silva J, Ferreira SBS, Reis AV, Cook MT, Bruschi ML. Assessing mucoadhesion in polymer gels: The effect of method type and instrument variables. Polymers (Basel) 2018; 10(3): 1-19.
[http://dx.doi.org/10.3390/polym10030254] [PMID: 30966289]
[105]
Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers (Basel) 2011; 3(3): 1215-42.
[http://dx.doi.org/10.3390/polym3031215]
[106]
Roy D, Brooks WLA, Sumerlin BS. New directions in thermoresponsive polymers. Chem Soc Rev 2013; 42(17): 7214-43.
[http://dx.doi.org/10.1039/c3cs35499g] [PMID: 23450220]
[107]
Scarpa JS, Mueller DD, Klotz IM. Slow hydrogen-deuterium exchange in a non-.alpha.-helical polyamide. J Am Chem Soc 1967; 2: 6024-30.
[108]
Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008; 68(1): 34-45.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.025] [PMID: 17881200]
[109]
Abou-Shamat MA, Calvo-Castro J, Stair JL, Cook MT. Modifying the properties of thermogelling poloxamer 407 Solutions through covalent modification and the use of polymer additives. Macromol Chem Phys 2019; 220(16): 1-19.
[http://dx.doi.org/10.1002/macp.201900173]
[110]
De Souza Ferreira SB, Moço TD, Borghi-Pangoni FB, Junqueira MV, Bruschi ML. Rheological, mucoadhesive and textural properties of thermoresponsive polymer blends for biomedical applications. J Mech Behav Biomed Mater 2015; 55: 164-78.
[http://dx.doi.org/10.1016/j.jmbbm.2015.10.026] [PMID: 26590909]
[111]
Bekturov EA, Bimendina LA. Interpolymer complexes. In: Speciality Polymers Advances in Polymer Science. Springer Berlin, Heidelberg 1981.
[112]
Sarkar N. Kinetics of thermal gelation of methylcellulose and hydroxypropylmethylcellulose in aqueous solutions. Carbohydr Polym 1995; 26(3): 195-203.
[http://dx.doi.org/10.1016/0144-8617(94)00107-5]
[113]
Takahashi M, Shimazaki M, Yamamoto J. Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci, B, Polym Phys 2001; 39(1): 91-100.
[http://dx.doi.org/10.1002/1099-0488(20010101)39:1<91:AID-POLB80>3.0.CO;2-C]
[114]
Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X. Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 2002; 18(20): 7291-8.
[http://dx.doi.org/10.1021/la020029b]
[115]
Jones DS, Bruschi ML, de Freitas O, Gremião MPD, Lara EHG, Andrews GP. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int J Pharm 2009; 372(1-2): 49-58.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.006] [PMID: 19429268]
[116]
De Souza Ferreira SB, Da Silva JB, Borghi-Pangoni FB, Junqueira MV, Bruschi ML. Linear correlation between rheological, mechanical and mucoadhesive properties of polycarbophil polymer blends for biomedical applications. J Mech Behav Biomed Mater 2017; 68: 265-75.
[http://dx.doi.org/10.1016/j.jmbbm.2017.02.016] [PMID: 28219852]
[117]
Wu W, Liu J, Cao S, et al. Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly. [2-(dimethylamino)ethyl methacrylate] Int J Pharm 2011; 416(1): 104-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.015] [PMID: 21704139]
[118]
Wang W, Hui PCL, Wat E, et al. In vitro drug release and percutaneous behavior of poloxamer-based hydrogel formulation containing traditional Chinese medicine. Colloids Surf B Biointerfaces 2016; 148: 526-32.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.036] [PMID: 27690241]
[119]
Wang L, Li L, Sun Y, et al. In vitro and in vivo evaluation of chitosan graft glyceryl monooleate as peroral delivery carrier of enoxaparin. Int J Pharm 2014; 471(1-2): 391-9.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.050] [PMID: 24882036]
[120]
Hantash BM, Wang Y. Hybrid hydrogels caffold compositions and methods of use. US 2013/0115196A1, 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy