Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Theoretical and Computational Chemistry

A Full-Dimensional ab initio Intermolecular Potential Energy Surface and Dipole Moment Surfaces for H2O-Ar

Author(s): Qiong Liu, Junyan Wang, Yanzi Zhou* and Daiqian Xie*

Volume 2, Issue 4, 2022

Published on: 20 May, 2022

Page: [325 - 334] Pages: 10

DOI: 10.2174/2210298102666220404103308

Abstract

Background: The H2O–Ar system has attracted significant interest in recent years because it is an important model to study inelastic scattering between atoms and triatomic molecules. A high-accuracy intermolecular potential energy surface (IPES) is the foundation for theoretical study on molecular collision dynamics for H2O–Ar. In addition, dipole moment surfaces (DMSs) are one of the prerequisites for spectral simulation.

Objective: This study aimed to obtain a full-dimensional intermolecular potential energy surface and dipole moment surfaces for the van der Waals complex H2O–Ar.

Methods: In this study, ab initio energy points were computed at the frozen-core (FC) explicitly correlated coupled-cluster [FC-CCSD(T)-F12a] level, with the augmented correlation-consistent polarized valence quadruple-zeta basis set plus bond functions. The permutation invariant polynomial neural network (PIP-NN) approach is adopted to fit the IPES, while the DMSs are constructed at the MP2/AVTZ level and fitted by the NN approach.

Results: With a root-mean-square-error (RMSE) of 0.284 cm-1, the IPES can accurately describe the motion of the H2O–Ar complex between R = 4 and 20 a0 in the energy range up to 10000 cm-1. The fitting errors of all the data points are 6.192 and 6.509 mDebye for the X and Z components, respectively. The global minimum of -140.633 cm-1 has the plane geometry, while the dipole moment of H2O–Ar is 1.853 Debye at the equilibrium structure.

Conclusion: In summary, we report a full-dimensional intermolecular potential energy surface for H2O–Ar. The IPES precisely reproduces CCSD(T)-F12a electronic energies with a large basis set. The corresponding dipole moment surfaces have also been reported. In comparison with previous work, the employment of the high-level ab initio method will make our IPES more reliable. Several typical 2D contour plots of the IPES and DMSs are also shown. The argon atom has a weak effect on the dipole moment of the H2O–Ar complex. The FORTRAN codes to generate 6D potentials and dipole moments reported here are available on request from the authors.

Keywords: Quantum dynamics, intermolecular potential energy surface, dipole moment surface, ab initio calculation, machine learning, neural network, van der Waals complex, intermolecular energy transfer, single- and double-excitation coupled cluster approach.

« Previous
Graphical Abstract

[1]
McCaffery, A.J. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2018, 376(2115), 20170150.
[http://dx.doi.org/10.1098/rsta.2017.0150] [PMID: 29431678]
[2]
Denis-Alpizar, O.; Stoecklin, T.; Guilloteau, S.; Dutrey, A. New rate coefficients of CS in collision with para- and ortho-H2 and astrophys-ical implications. Mon. Not. R. Astron. Soc., 2018, 478(2), 1811-1817.
[http://dx.doi.org/10.1093/mnras/sty1177]
[3]
Zhou, B.; Yang, B.; Balakrishnan, N.; Kendrick, B.K.; Chen, M.; Stancil, P.C. Inelastic, exchange, and reactive processes in rovibrationally excited collisions of HD with H. Mon. Not. R. Astron. Soc., 2021, 507(4), 6012-6019.
[http://dx.doi.org/10.1093/mnras/stab2381]
[4]
Wang, X.; Yang, X. A molecular double-slit experiment. Science, 2021, 374(6570), 938-939.
[http://dx.doi.org/10.1126/science.abm5536] [PMID: 34793226]
[5]
Yang, T.; Yang, X. Quantum resonances near absolute zero. Science, 2020, 368(6491), 582-583.
[http://dx.doi.org/10.1126/science.abb8020] [PMID: 32381705]
[6]
Li, H.; Zhao, T.; Li, J.; Jia, S.; Yang, D.; Huai, Y.; Sun, S.; Xie, D.; Duo, L.; Jin, Y. State-to-state chemical kinetic mechanism for HF chem-ical lasers. Combust. Theory Model., 2020, 24(1), 129-141.
[http://dx.doi.org/10.1080/13647830.2019.1662490]
[7]
Yang, D.; Huang, J.; Hu, X.; Guo, H.; Xie, D. Breakdown of energy transfer gap laws revealed by full-dimensional quantum scattering between HF molecules. Nat. Commun., 2019, 10(1), 4658.
[http://dx.doi.org/10.1038/s41467-019-12691-8] [PMID: 31604950]
[8]
An, F.; Hu, X.; Xie, D. Research advances on nonadiabatic energy transfer dynamics for triatomic molecules. Chem. J. Chin. Univ., 2021, 42(7), 2103-2110.
[9]
Chen, X.X.; Tan, Z.Y.; Liu, Y.D.; Wang, X.L.; Li, X.T. Effects of oxygen concentration on the electron energy distribution functions in atmospheric pressure helium/oxygen and argon/oxygen needle-electrode plasmas. J. Phys. D Appl. Phys., 2018, 51(37), 375202.
[http://dx.doi.org/10.1088/1361-6463/aad532]
[10]
Klippenstein, S.J. From theoretical reaction dynamics to chemical modeling of combustion. Proc. Combust. Inst., 2017, 36(1), 77-111.
[http://dx.doi.org/10.1016/j.proci.2016.07.100]
[11]
Daniel, F.; Faure, A.; Dagdigian, P.J.; Dubernet, M.L.; Lique, F.; des Forets, G.P. Collisional excitation of water by hydrogen atoms. Mon. Not. R. Astron. Soc., 2015, 446(3), 2312-2316.
[http://dx.doi.org/10.1093/mnras/stu2287]
[12]
Hou, D.; Ma, Y-T.; Zhang, X-L.; Li, H. The origins of intra- and inter-molecular vibrational couplings: A case study of H2O-Ar on full and reduced-dimensional potential energy surface. J. Chem. Phys., 2016, 144(1), 014301.
[http://dx.doi.org/10.1063/1.4939089] [PMID: 26747800]
[13]
Manuilova, R.; Feofilov, A.; Kutepov, A.; Yankovsky, V. Effect of updated relaxation rate constants on the H2O vibrational level popula-tions and ro-vibrational spectra in the mesosphere and lower thermosphere. Adv. Space Res., 2015, 56(9), 1806-1814.
[http://dx.doi.org/10.1016/j.asr.2014.12.002]
[14]
Stoecklin, T.; Cabrera-González, L.D.; Denis-Alpizar, O.; Páez-Hernández, D. A close coupling study of the bending relaxation of H2O by collision with He. J. Chem. Phys., 2021, 154(14), 144307.
[http://dx.doi.org/10.1063/5.0047718] [PMID: 33858145]
[15]
Zoltowski, M.; Lique, F.; Karska, A.; Zuchowski, P.S. Rotational excitation of highly excited H2O by H2. Mon. Not. R. Astron. Soc., 2021, 502(4), 5356-5361.
[http://dx.doi.org/10.1093/mnras/stab453]
[16]
Fraser, G.; Lovas, F.; Suenram, R.; Matsumura, K. Microwave spectrum of Ar–H2O: Dipole moment, isotopic studies, and 17O quadrupole coupling constants. J. Mol. Spectrosc., 1990, 144(1), 97-112.
[http://dx.doi.org/10.1016/0022-2852(90)90310-M]
[17]
Germann, T.; Gutowsky, H. Nuclear hyperfine interactions and dynamic state of H2O in Ar–H2O. J. Chem. Phys., 1993, 98(7), 5235-5238.
[http://dx.doi.org/10.1063/1.464923]
[18]
Arunan, E.; Dykstra, C.; Emilsson, T.; Gutowsky, H. Rotational spectra, structures, and dynamics of small Arm–(H2O)n clusters: The Ar2–H2O trimer. J. Chem. Phys., 1996, 105(19), 8495-8501.
[http://dx.doi.org/10.1063/1.472611]
[19]
Cohen, R.; Busarow, K.L.; Laughlin, K.; Blake, G.A.; Havenith, M.; Lee, Y.T.; Saykally, R. Tunable far infrared laser spectroscopy of van der Waals bonds: Vibration–rotation–tunneling spectra of Ar–H2O. J. Chem. Phys., 1988, 89(8), 4494-4504.
[http://dx.doi.org/10.1063/1.454789]
[20]
Cohen, R.; Busarow, K.L.; Lee, Y.T.; Saykally, R. Tunable far infrared laser spectroscopy of van der waals bonds: the intermolecular stretching vibration and effective radial potentials for Ar–H2O. J. Chem. Phys., 1990, 92(1), 169-177.
[http://dx.doi.org/10.1063/1.458459]
[21]
Cohen, R.; Saykally, R. Multidimensional intermolecular dynamics from tunable far-infrared laser spectroscopy: Angular-adial coupling in the intermolecular potential of argon–H2O. J. Chem. Phys., 1991, 95(11), 7891-7906.
[http://dx.doi.org/10.1063/1.461318]
[22]
Suzuki, S.; Bumgarner, R.; Stockman, P.A.; Green, P.G.; Blake, G.A. Tunable far-infrared laser spectroscopy of deuterated isotopomers of Ar–H2O. J. Chem. Phys., 1991, 94(1), 824-825.
[http://dx.doi.org/10.1063/1.460308]
[23]
Zou, L.; Weaver, S.L.W. Direct measurement of additional Ar–H2O vibration–rotation-tunneling bands in the millimeter–submillimeter range. J. Mol. Spectrosc., 2016, 324, 12-19.
[http://dx.doi.org/10.1016/j.jms.2016.04.010]
[24]
Zwart, E.; Meerts, W.L. The submillimeter rotation-tunneling spectrum of Ar–D2O and Ar–NH3. Chem. Phys., 1991, 151(3), 407-418.
[http://dx.doi.org/10.1016/0301-0104(91)80025-D]
[25]
Weida, M.J.; Nesbitt, D.J. High resolution mid-infrared spectroscopy of ArH2O: The v2 bend region of H2O. J. Chem. Phys., 1997, 106(8), 3078-3089.
[http://dx.doi.org/10.1063/1.473051]
[26]
Votava, O.; Plusquellic, D.F.; Myers, T.L.; Nesbitt, D.J. Bond-breaking in quantum state selected clusters: Inelastic and nonadiabatic intra-cluster collision dynamics in Ar–H2O→ Ar+ H (2S)+ OH (2Π1/2,3/2±; N). J. Chem. Phys., 2000, 112(17), 7449-7460.
[http://dx.doi.org/10.1063/1.481344]
[27]
Votava, O.; Mackenzie, S.R.; Nesbitt, D.J. Intracluster stereochemistry in van der Waals complexes: steric effects in ultraviolet photodis-sociation of state-selected Ar-HOD/H2O. J. Chem. Phys., 2004, 120(18), 8443-8452.
[http://dx.doi.org/10.1063/1.1697394] [PMID: 15267769]
[28]
Verdes, D.; Linnartz, H. Depletion modulation of Ar–H2O in a supersonic planar plasma. Chem. Phys. Lett., 2002, 355(5-6), 538-542.
[http://dx.doi.org/10.1016/S0009-2614(02)00298-1]
[29]
Vanfleteren, T.; Földes, T.; Herman, M.; Liévin, J.; Loreau, J.; Coudert, L.H. Experimental and theoretical investigations of H2O-Ar. J. Chem. Phys., 2017, 147(1), 014302.
[http://dx.doi.org/10.1063/1.4990738] [PMID: 28688396]
[30]
Vanfleteren, T.; Foeldes, T.; Herman, M. Analysis of a perpendicular band in Ar–H2O with origin close to the v1 + v3, R(0) line in H2O. Chem. Phys. Lett., 2015, 627, 36-38.
[http://dx.doi.org/10.1016/j.cplett.2015.03.032]
[31]
Plusquellic, D.F.; Votava, O.; Nesbitt, D.J. Photodissociation dynamics in quantum state-selected clusters: A test of the one-atom cage effect in Ar–H2O. J. Chem. Phys., 1994, 101(7), 6356-6358.
[http://dx.doi.org/10.1063/1.468389]
[32]
Nizkorodov, S.A.; Ziemkiewicz, M.; Nesbitt, D.J.; Knight, A.E.W. Overtone spectroscopy of H2O clusters in the VOH = 2 manifold: infra-red-ultraviolet vibrationally mediated dissociation studies. J. Chem. Phys., 2005, 122(19), 194316.
[http://dx.doi.org/10.1063/1.1899157] [PMID: 16161582]
[33]
Nesbitt, D.J.; Lascola, R. Vibration, rotation, and parity specific predissociation dynamics in asymmetric OH stretch excited ArH2O: A half collision study of resonant V–V energy transfer in a weakly bound complex. J. Chem. Phys., 1992, 97(11), 8096-8110.
[http://dx.doi.org/10.1063/1.463431]
[34]
Liu, X.; Xu, Y. New rovibrational bands of the Ar-H2O complex at the v2 bend region of H2O. J. Mol. Spectrosc., 2014, 301, 1-8.
[http://dx.doi.org/10.1016/j.jms.2014.04.005]
[35]
Li, S.; Zheng, R.; Zhu, Y.; Duan, C. Rovibrational spectra of the Ar–D2O and Kr–D2O van der Waals complexes in the v2 bend region of D2O. J. Mol. Spectrosc., 2012, 272(1), 27-31.
[http://dx.doi.org/10.1016/j.jms.2011.12.004]
[36]
Lascola, R.; Nesbitt, D.J. Slit-jet near-infrared spectroscopy and internal rotor dynamics of the ArH2O van der Waals complex: An angular potential-energy surface for internal H2O rotation. J. Chem. Phys., 1991, 95(11), 7917-7932.
[http://dx.doi.org/10.1063/1.461320]
[37]
Kuma, S.; Slipchenko, M.N.; Momose, T.; Vilesov, A.F. Infrared spectra and intensities of Ar-H2O and O2-H2O complexes in the range of the v3 band of H2O. J. Phys. Chem. A, 2010, 114(34), 9022-9027.
[http://dx.doi.org/10.1021/jp908450c] [PMID: 20669928]
[38]
Didriche, K.; Földes, T. High resolution spectroscopy of the Ar-D2O and Ar-HDO molecular complexes in the near-infrared range. J. Chem. Phys., 2013, 138(10), 104307.
[http://dx.doi.org/10.1063/1.4794161] [PMID: 23514489]
[39]
Kung, R.T.V.; Center, R.E. High temperature vibrational relaxation of H2O by H2O, He, Ar, and N2. J. Chem. Phys., 1975, 62(6), 2187-2194.
[http://dx.doi.org/10.1063/1.430786]
[40]
Keeton, R.G.; Bass, H.E. Vibrational and rotational relaxation of water vapor by water vapor, nitrogen, and argon at 500 K. J. Acoust. Soc. Am., 1976, 60(1), 78-82.
[http://dx.doi.org/10.1121/1.381051]
[41]
Finzi, J.; Hovis, F.E.; Panfilov, V.N.; Hess, P.; Moore, C.B. Vibrational relaxation of water vapor. J. Chem. Phys., 1977, 67(9), 4053-4061.
[http://dx.doi.org/10.1063/1.435379]
[42]
Zittel, P.F.; Masturzo, D.E. Vibrational relaxation of H2O from 295 to 1020 K. J. Chem. Phys., 1989, 90(2), 977-989.
[http://dx.doi.org/10.1063/1.456122]
[43]
Ree, J.; Shin, H.K. Vibrational relaxation of water molecules in H2O+Ar collisions between 200 and 1000 K: 001→020, 020→010, and 010→000 transitions. J. Chem. Phys., 1990, 93(9), 6463-6472.
[http://dx.doi.org/10.1063/1.458963]
[44]
Ree, J.; Shin, H.K. Importance of rotational motion in the vibrational-relaxation of H2O molecules relaxation of the bending level in H2O+Ar collisions. Chem. Phys. Lett., 1990, 167(3), 220-226.
[http://dx.doi.org/10.1016/0009-2614(90)85009-2]
[45]
Barnes, P.W.; Sims, I.R.; Smith, I.W.M. Relaxation of H2O from its/04>- vibrational state in collisions with H2O, Ar, H2, N2, and O2. J. Chem. Phys., 2004, 120(12), 5592-5600.
[http://dx.doi.org/10.1063/1.1649726] [PMID: 15267435]
[46]
Ree, J.; Shin, H. Temperature dependence of the probability of vibrational energy exchange between the stretching modes in H2O/D2O + Ar collisions. Chem. Phys. Lett., 1992, 193(4), 215-224.
[http://dx.doi.org/10.1016/0009-2614(92)85658-W]
[47]
Coronado, E.A.; Velardez, G.F.; Ferrero, J.C. Trajectory calculations of intermolecular energy transfer in H2O+Ar collisions. J. Phys. Chem. A, 1999, 103(28), 5409-5415.
[http://dx.doi.org/10.1021/jp990054z]
[48]
Chapman, W.B.; Kulcke, A.; Blackmon, B.W.; Nesbitt, D.J. Rotationally inelastic scattering of jet cooled H2O with Ar: State-to-state cross sections and rotational alignment effects. J. Chem. Phys., 1999, 110(17), 8543-8554.
[http://dx.doi.org/10.1063/1.478762]
[49]
Tao, F.M.; Klemperer, W. Accurate Ab initio potential energy surfaces of Ar–HF, Ar–H2O, and Ar–NH3. J. Chem. Phys., 1994, 101(2), 1129-1145.
[http://dx.doi.org/10.1063/1.468478]
[50]
Makarewicz, J. Ab initio intermolecular potential energy surfaces of the water-rare gas atom complexes. J. Chem. Phys., 2008, 129(18), 184310.
[http://dx.doi.org/10.1063/1.3009270] [PMID: 19045406]
[51]
Hodges, M.P.; Wheatley, R.J.; Harvey, A.H. Intermolecular potentials and second virial coefficients of the water-neon and water-argon complexes. J. Chem. Phys., 2002, 117(15), 7169-7179.
[http://dx.doi.org/10.1063/1.1504703]
[52]
Chalasinski, G.; Szczesniak, M.M.; Scheiner, S. Ab initio study of the intermolecular potential of Ar–H2O. J. Chem. Phys., 1991, 94(4), 2807-2816.
[http://dx.doi.org/10.1063/1.459857]
[53]
Bulski, M.; Wormer, P.E.S.; Vanderavoird, A. Ab initio potential energy surfaces of Ar–H2O and Ar–D2O. J. Chem. Phys., 1991, 94(12), 8096-8104.
[http://dx.doi.org/10.1063/1.460092]
[54]
Adler, T.B.; Knizia, G.; Werner, H-J. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys., 2007, 127(22), 221106.
[http://dx.doi.org/10.1063/1.2817618] [PMID: 18081383]
[55]
Knizia, G.; Adler, T.B.; Werner, H-J. Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys., 2009, 130(5), 054104.
[http://dx.doi.org/10.1063/1.3054300] [PMID: 19206955]
[56]
Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys., 1993, 98(2), 1358-1371.
[http://dx.doi.org/10.1063/1.464303]
[57]
Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. J. Chem. Phys., 2013, 139(5), 054112.
[http://dx.doi.org/10.1063/1.4817187] [PMID: 23927248]
[58]
Li, J.; Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom sys-tems. J. Chem. Phys., 2013, 139(20), 204103.
[http://dx.doi.org/10.1063/1.4832697] [PMID: 24289340]
[59]
Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions. J. Chem. Phys., 2014, 141(3), 034109.
[http://dx.doi.org/10.1063/1.4887363] [PMID: 25053303]
[60]
Truhlar, D.G. Basis-set extrapolation. Chem. Phys. Lett., 1998, 294(1-3), 45-48.
[http://dx.doi.org/10.1016/S0009-2614(98)00866-5]
[61]
Jiang, B.; Li, J.; Guo, H. Potential energy surfaces from high fidelity fitting of Ab initio points: the permutation invariant polynomial-neural network approach. Int. Rev. Phys. Chem., 2016, 35(3), 479-506.
[http://dx.doi.org/10.1080/0144235X.2016.1200347]
[62]
Pedersen, T.B.; Fernandez, B.; Koch, H.; Makarewicz, J. The helium–, neon–, and argon–cyclopropane van der Waals complexes: Ab initio ground state intermolecular potential energy surfaces and intermolecular dynamics. J. Chem. Phys., 2001, 115(18), 8431-8439.
[http://dx.doi.org/10.1063/1.1398102]
[63]
Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 1970, 19(4), 553-566.
[http://dx.doi.org/10.1080/00268977000101561]
[64]
Werner, H-J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K.R.; Adler, T.B.; Amos, R.D.; Bernhardsson, A.; Berning, A.; Cooper, D.L.; Deegan, M.J.O.; Dobbyn, A.J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A.W.; Mata, R.A.; May, A.J.; McNicholas, S.J.; Meyer, W.; Mura, M.E.; Nicklass, A.; O’Neill, D.P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shi-ozaki, T.; Stoll, H.; Stone, A.J.; Tarroni, R.; Thorsteinsson, T.; Wang, M. MOLPRO, Version 2015.1, a package of Ab initio programs 2015. Available from: www.molpro.net
[65]
Braams, B.J.; Bowman, J.M. Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem., 2009, 28(4), 577-606.
[http://dx.doi.org/10.1080/01442350903234923]
[66]
Xie, Z.; Bowman, J.M. Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization. J. Chem. Theory Comput., 2010, 6(1), 26-34.
[http://dx.doi.org/10.1021/ct9004917] [PMID: 26614316]
[67]
Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw., 1994, 5(6), 989-993.
[http://dx.doi.org/10.1109/72.329697] [PMID: 18267874]
[68]
Johnson, B.R.; Reinhardt, W.P. Adiabatic separations of stretching and bending vibrations: Application to H2O. J. Chem. Phys., 1986, 85(8), 4538-4556.
[http://dx.doi.org/10.1063/1.451775]
[69]
Shostak, S.L.; Ebenstein, W.L.; Muenter, J.S. The dipole moment of water. I. Dipole moments and hyperfine properties of H2O and HDO in the ground and excited vibrational states. J. Chem. Phys., 1991, 94(9), 5875-5882.
[http://dx.doi.org/10.1063/1.460471]

© 2024 Bentham Science Publishers | Privacy Policy