Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

The Application of Metal-Organic Frameworks in the Adsorptive Removal of Harmful Species from Aqueous Solutions

Author(s): Zhichang Duan, Chunyan Sun, Xiangrui Zhang, Wensong Lin* and Xue-Rong Shi*

Volume 20, Issue 3, 2023

Published on: 05 August, 2022

Page: [227 - 239] Pages: 13

DOI: 10.2174/1570193X19666220404091505

Price: $65

Abstract

Removing harmful species from water is essential for the protection of the environment and human health. Among various treatment techniques, adsorption is particularly attractive because of its advantages of easy operation, high removal efficiency, environmental friendliness and simple regeneration of the adsorbent. As the key factor of this technique, the choice of adsorbent is vital. Metal-organic frameworks (MOFs) have been widely used as adsorbents to remove dyes, pharmaceuticals and personal care products (PPCPs), and metal ions from aqueous solutions because of their high porosity, structural diversity, and highly tunable pore shape/size and surface functionality. This work systematically reviews the recent progress on applying different types of MOFs, e.g., ZIF, MIL, and UiO series, in the field of adsorption of these harmful species. Modification of novel MOF materials can greatly improve their adsorption performance. This review provides a direction for the rational design of MOF adsorbents to effectively remove various pollutants from water.

Keywords: Metal-organic frameworks, adsorption, pollutants, pharmaceuticals and personal care products (PPCPs), metal ions, activated carbon.

Graphical Abstract

[1]
Wu, G.; Ma, J.; Wang, S.; Chai, H.; Guo, L.; Li, J.; Ostovan, A.; Guan, Y.; Chen, L. Cationic metal-organic framework based mixed-matrix membrane for extraction of phenoxy carboxylic acid (PCA) herbicides from water samples followed by UHPLC-MS/MS determination. J. Hazard. Mater., 2020, 394, 122556.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122556 ] [PMID: 32224376]
[2]
Xu, Q.; Sun, D.; Qi, Y.; Duan, L. Efficient removal of anionic organic dyes from aqueous solution with cu-organic frameworks. Chem. Eng. Technol., 2019, 42(5), 1070-1077.
[http://dx.doi.org/10.1002/ceat.201800398]
[3]
Liu, Y.; Liu, Y.; Qu, R.; Ji, C.; Sun, C. Comparison of adsorption properties for anionic dye by metal organic frameworks with different metal ions. Colloids Surf. A Physicochem. Eng. Asp., 2020, 586, 124259.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124259]
[4]
Meng, Z.; Liu, B.; Li, M.; Liu, X.; Li, S.; Su, B. Molecular imprinted materials PDA/Fe-MOFs/RGO for the selective and high removal of phenol. Desalination Water Treat., 2019, 169, 279-286.
[http://dx.doi.org/10.5004/dwt.2019.24734]
[5]
Zhuang, S.; Cheng, R.; Wang, J. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chem. Eng. J., 2019, 359, 354-362.
[http://dx.doi.org/10.1016/j.cej.2018.11.150]
[6]
Zeng, C.; Lu, N.; Wen, Y.; Liu, G.; Zhang, R.; Zhang, J.; Wang, F.; Liu, X.; Li, Q.; Tang, Z.; Zhang, M. Engineering nanozymes using DNA for catalytic regulation. ACS Appl. Mater. Interfaces, 2019, 11(2), 1790-1799.
[http://dx.doi.org/10.1021/acsami.8b16075 ] [PMID: 30582796]
[7]
Zhang, R.; Lu, N.; Zhang, J.; Yan, R.; Li, J.; Wang, L.; Wang, N.; Lv, M.; Zhang, M. Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens. Bioelectron., 2020, 150, 111881.
[http://dx.doi.org/10.1016/j.bios.2019.111881 ] [PMID: 31780408]
[8]
Zhang, J.; Lu, N.; Peng, H.; Li, J.; Yan, R.; Shi, X.; Ma, P.; Lv, M.; Wang, L.; Tang, Z.; Zhang, M. Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels. Nanoscale, 2020, 12(8), 5186-5195.
[http://dx.doi.org/10.1039/C9NR10779G ] [PMID: 32073092]
[9]
Yan, R.; Lu, N.; Han, S.; Lu, Z.; Xiao, Y.; Zhao, Z.; Zhang, M. Simultaneous detection of dual biomarkers using hierarchical MoS₂ nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens. Bioelectron., 2022, 197, 113797.
[http://dx.doi.org/10.1016/j.bios.2021.113797 ] [PMID: 34818600]
[10]
Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S.; Fu, D.; Chen, J.; Wang, X. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut., 2019, 246, 608-620.
[http://dx.doi.org/10.1016/j.envpol.2018.12.076 ] [PMID: 30605816]
[11]
Jiang, D.; Chen, M.; Wang, H.; Zeng, G.; Huang, D.; Cheng, M.; Liu, Y.; Xue, W.; Wang, Z.W. The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev., 2019, 380, 471-483.
[http://dx.doi.org/10.1016/j.ccr.2018.11.002]
[12]
Rasheed, T.; Bilal, M.; Hassan, A.A.; Nabeel, F.; Bharagava, R.N.; Romanholo Ferreira, L.F.; Tran, H.N.; Iqbal, H.M.N. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ. Res., 2020, 185, 109436.
[http://dx.doi.org/10.1016/j.envres.2020.109436 ] [PMID: 32278154]
[13]
Zhang, X.; Huang, J.; Kang, Z.; Yang, D-P.; Luque, R. Eggshell-templated synthesis of PbS/CaCO3 nanocomposites for CO3− mediated efficient degradation of tetracycline under solar light irradiation. Mol. Catal., 2020, 484, 110786.
[http://dx.doi.org/10.1016/j.mcat.2020.110786]
[14]
Zhao, X.; Li, J.; Li, X.; Huo, P.; Shi, W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chin. J. Catal., 2021, 42(6), 872-903.
[http://dx.doi.org/10.1016/S1872-2067(20)63715-9]
[15]
Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Y.; Xiao, J.; Li, Z. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J., 2018, 337, 351-371.
[http://dx.doi.org/10.1016/j.cej.2017.12.092]
[16]
Xia, Q.; Yu, X.; Zhao, H.; Wang, S.; Wang, H.; Guo, Z.; Xing, H. Syntheses of novel lanthanide metal-organic frameworks for highly efficient visible-light-driven dye degradation. Cryst. Growth Des., 2017, 17(8), 4189-4195.
[http://dx.doi.org/10.1021/acs.cgd.7b00504]
[17]
Feng, G.; Huo, C.F.; Deng, C.M.; Huang, L.; Li, Y.W.; Wang, J.G.; Jiao, H.J. Isopropanol adsorption on gamma-Al2O3 surfaces: A computational study. J. Mol. Catal. Chem., 2009, 304(1-2), 58-64.
[http://dx.doi.org/10.1016/j.molcata.2009.01.024]
[18]
Feng, G.; Lu, Z-H.; Kong, D.; Yang, D.; Guo, H.; Liu, J. First-principle calculation evaluations for MTW-type zeolite synthesis prescriptions. Chem. Lett., 2014, 43(7), 1026-1028.
[http://dx.doi.org/10.1246/cl.140175]
[19]
Feng, G.; Lian, Y-Y.; Yang, D.; Liu, J.; Kong, D. Distribution of Al and adsorption of NH3 and pyridine in ZSM-12: A computational study. Cancer J. Chem., 2013, 91(10), 925-934.
[http://dx.doi.org/10.1139/cjc-2013-0135]
[20]
Lu, Z.H.; Li, J.; Feng, G.; Yao, Q.; Zhang, F.; Zhou, R.; Tao, D.; Chen, X.; Yu, Z. Synergistic catalysis of MCM-41 immobilized Cu-Ni nanoparticles in hydrolytic dehydrogeneration of ammonia borane. Int. J. Hydrogen Energy, 2014, 39(25), 13389-13395.
[http://dx.doi.org/10.1016/j.ijhydene.2014.04.086]
[21]
Mohammadzadeh Pakdel, P.; Peighambardoust, S.J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym., 2018, 201, 264-279.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.070 ] [PMID: 30241819]
[22]
Huang, X.; Huang, Z.; Zhang, L.; Liu, R.; Lv, Y. Highly efficient cataluminescence gas sensor for acetone vapor based on UIO-66 metal-organic frameworks as preconcentrator. Sens. Actuators B Chem., 2020, 312, 127952.
[http://dx.doi.org/10.1016/j.snb.2020.127952]
[23]
Zong, S.; Huang, S.; Shi, X.R.; Sun, C.; Xu, S.; Ma, P.; Wang, J. Impact of linker functionalization on the adsorption of nitrogen-containing compounds in HKUST-1. Dalton Trans., 2020, 49(36), 12610-12621.
[http://dx.doi.org/10.1039/D0DT02165B ] [PMID: 32869805]
[24]
Zong, S.; Zhang, Y.; Lu, N.; Ma, P.; Wang, J.; Shi, X-R. A DFT screening of M-HKUST-1 MOFs for nitrogen-containing compounds adsorption. Nanomaterials (Basel), 2018, 8(11), 958.
[http://dx.doi.org/10.3390/nano8110958 ] [PMID: 30463353]
[25]
Huang, S.; Shi, X-R.; Sun, C.; Duan, Z.; Ma, P.; Xu, S. The application of metal-organic frameworks and their derivatives for supercapacitors. Nanomaterials (Basel), 2020, 10(11), 2268.
[http://dx.doi.org/10.3390/nano10112268 ] [PMID: 33207732]
[26]
Xu, S.; Liu, R.; Shi, X.; Ma, Y.; Hong, M.; Chen, X.; Wang, T.; Li, F.; Hu, N.; Yang, Z. A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors. Electrochim. Acta, 2020, 342, 136124.
[http://dx.doi.org/10.1016/j.electacta.2020.136124]
[27]
Xiang, H.; Shao, Y.; Ameen, A.; Chen, H.; Yang, W.; Gorgojo, P.; Siperstein, F.R.; Fan, X.; Pan, Q. Adsorptive separation of C2H6/C2H4 on metal-organic frameworks (MOFs) with pillared-layer structures. Separ. Purif. Tech., 2020, 242, 116819.
[http://dx.doi.org/10.1016/j.seppur.2020.116819]
[28]
Jia, Z.; Hao, S.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Electrochemical fabrication of metal-organic frameworks membranes and films: A review. Microporous Mesoporous Mater., 2020, 305, 110322.
[http://dx.doi.org/10.1016/j.micromeso.2020.110322]
[29]
Issa, R.; Ibrahim, F.A.; Al-Ghoul, M.; Hmadeh, M. Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process. Nano Res., 2021, 14(2), 423-431.
[http://dx.doi.org/10.1007/s12274-020-2870-1]
[30]
Sinha, V.; Chakma, S. Advances in the preparation of hydrogel for wastewater treatment: A concise review. J. Environ. Chem. Eng., 2019, 7(5), 103295.
[http://dx.doi.org/10.1016/j.jece.2019.103295]
[31]
Kumar, S.; Liu, S.; Mohan, B.; Zhang, M.; Tao, Z.; Wan, Z.; You, H.; Sun, F.; Li, M.; Ren, P. Fluorine-containing triazole-decorated silver(I)-based cationic metal-organic framework for separating organic dyes and removing oxoanions from water. Inorg. Chem., 2021, 60(10), 7070-7081.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03688 ] [PMID: 33884866]
[32]
Parmar, B.; Bisht, K.K.; Rajput, G.; Suresh, E. Recent advances in metal-organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Trans., 2021, 50(9), 3083-3108.
[http://dx.doi.org/10.1039/D0DT03824E ] [PMID: 33565532]
[33]
Zhao, J.; Xu, L.; Su, Y.; Yu, H.; Liu, H.; Qian, S.; Zheng, W.; Zhao, Y. Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J. Environ. Sci. (China), 2021, 101, 177-188.
[http://dx.doi.org/10.1016/j.jes.2020.08.021 ] [PMID: 33334514]
[34]
Ibrahim, A.O.; Adegoke, K.A.; Adegoke, R.O. AbdulWahab, Y.A.; Oyelami, V.B.; Adesina, M.O. Adsorptive removal of different pollutants using metal-organic framework adsorbents. J. Mol. Liq., 2021, 333, 115593.
[http://dx.doi.org/10.1016/j.molliq.2021.115593]
[35]
Glomb, S.; Woschko, D.; Makhloufi, G.; Janiak, C. Metal-organic frameworks with internal urea-functionalized dicarboxylate linkers for SO2 and NH3 adsorption. ACS Appl. Mater. Interfaces, 2017, 9(42), 37419-37434.
[http://dx.doi.org/10.1021/acsami.7b10884 ] [PMID: 28976188]
[36]
Rowsell, J.L.C.; Yaghi, O.M. Strategies for hydrogen storage in metal--organic frameworks. Angew. Chem. Int. Ed., 2005, 44(30), 4670-4679.
[http://dx.doi.org/10.1002/anie.200462786 ] [PMID: 16028207]
[37]
Andrew Lin, K-Y.; Hsieh, Y-T. Copper-based metal organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water. J. Taiwan Inst. Chem. Eng., 2015, 50, 223-228.
[http://dx.doi.org/10.1016/j.jtice.2014.12.008]
[38]
Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material Cu3(TMA)2(H2O)3]n. Science, 1999, 283, 1148-1150.
[http://dx.doi.org/10.1126/science.283.5405.1148]
[39]
Castillo, J.M.; Vlugt, T.J.H.; Calero, S. Understanding water adsorption in Cu-BTC metal-organic frameworks. J. Phys. Chem. C, 2008, 112(41), 15934-15939.
[http://dx.doi.org/10.1021/jp806363w]
[40]
Zhang, Y.W.; Liu, F.; Yang, Z.C.; Qian, J.S.; Pan, B.C. Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction. Nano Res., 2021, 14(7), 2383-2389.
[http://dx.doi.org/10.1007/s12274-020-3239-1]
[41]
Yang, W.; Shi, X.; Li, Y.; Pang, H. Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. J. Energy Storage, 2019, 26, 1-7.
[http://dx.doi.org/10.1016/j.est.2019.101018]
[42]
Konno, H.; Nakasaka, Y.; Yasuda, K.; Omata, M.; Masuda, T. Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution. Catal. Today, 2020, 352, 220-226.
[http://dx.doi.org/10.1016/j.cattod.2019.12.036]
[43]
Zeng, M.; Chai, Z.; Deng, X.; Li, Q.; Feng, S.; Wang, J.; Xu, D. Core-shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res., 2016, 9(9), 2729-2734.
[http://dx.doi.org/10.1007/s12274-016-1161-3]
[44]
Zhang, Z.; Tan, Y.; Zeng, T.; Yu, L.; Chen, R.; Cheng, N.; Mu, S.; Sun, X. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res., 2021, 14(7), 2353-2362.
[http://dx.doi.org/10.1007/s12274-020-3234-6]
[45]
DeCoste, J.B.; Demasky, T.J.; Katz, M.J.; Farha, O.K.; Hupp, J.T.A. UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New J. Chem., 2015, 39(4), 2396-2399.
[http://dx.doi.org/10.1039/C4NJ02093F]
[46]
Lv, G.; Liu, J.; Xiong, Z.; Zhang, Z.; Guan, Z. Selectivity adsorptive mechanism of different nitrophenols on UIO-66 and UIO-66-NH2 in aqueous solution. J. Chem. Eng. Data, 2016, 61(11), 3868-3876.
[http://dx.doi.org/10.1021/acs.jced.6b00581]
[47]
Li, J.; Li, S.; Zheng, A.; Liu, X.; Yu, N.; Deng, F. Solid-state NMR studies of host − guest interaction between UiO-67 and light alkane at room temperature. J. Phys. Chem. C, 2017, 121(26), 14261-14268.
[http://dx.doi.org/10.1021/acs.jpcc.7b04611]
[48]
Sompornpailin, D.; Ratanatawanate, C.; Sattayanon, C.; Namuangruk, S.; Punyapalakul, P. Selective adsorption mechanisms of pharmaceuticals on benzene-1,4-dicarboxylic acid-based MOFs: Effects of a flexible framework, adsorptive interactions and the DFT study. Sci. Total Environ., 2020, 720, 137449.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137449 ] [PMID: 32135284]
[49]
Yan, Y.; Zhang, J-Y.; Shi, X-R.; Zhu, Y.; Xia, C.; Zaman, S.; Hu, X.; Wang, X.; Xia, B.Y. A zeolitic-imidazole framework-derived trifunctional electrocatalyst for hydrazine fuel cells. ACS Nano, 2021, 15(6), 10286-10295.
[http://dx.doi.org/10.1021/acsnano.1c02440 ] [PMID: 34105939]
[50]
Liu, M.; Kong, L.J.; Wang, X.M.; He, J.; Zhang, J.J.; Zhu, J.; Bu, X.H. Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Res., 2021, 14(12), 4680-4688.
[http://dx.doi.org/10.1007/s12274-021-3404-1]
[51]
Yue, K.H.; Liu, J.L.; Zhu, Y.T.; Xia, C.F.; Wang, P.; Zhang, J.W.; Kong, Y.; Wang, X.Y.; Yan, Y.; Xia, B.Y. In situ ion-exchange preparation and topological transformation of trimetal-organic frameworks for efficient electrocatalytic water oxidation. Energy Environ. Sci., 2021, 14(12), 6546-6553.
[http://dx.doi.org/10.1039/D1EE02606B]
[52]
Li, Y.; Ling, W.; Liu, X.Y.; Shang, X.; Zhou, P.; Chen, Z.R.; Xu, H.; Huang, X. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res., 2021, 14(9), 2981-3009.
[http://dx.doi.org/10.1007/s12274-021-3421-0]
[53]
Guo, S.J.; Xiao, Y.B.; Wang, J.; Ouyang, Y.; Li, X.; Deng, H.Y.; He, W.C.; Zeng, Q.H.; Zhang, W.; Zhang, Q.; Huang, S.M. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano Res., 2021, 14(12), 4556-4562.
[http://dx.doi.org/10.1007/s12274-021-3372-5]
[54]
Xu, H.; Yu, W.; Pan, K.; Wang, G.; Zhu, P. Confinement and antenna effect for ultrasmall Y2O3:Eu3+nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res., 2021, 14(3), 720-729.
[http://dx.doi.org/10.1007/s12274-020-3104-2]
[55]
Wu, M-X.; Wang, Y.; Zhou, G.; Liu, X. Core-shell MOFs@MOFs: Diverse designability and enhanced selectivity. ACS Appl. Mater. Interfaces, 2020, 12(49), 54285-54305.
[http://dx.doi.org/10.1021/acsami.0c16428 ] [PMID: 33231416]
[56]
Huang, S.; Shi, X-R.; Sun, C.; Zhang, X.; Huang, M.; Liu, R.; Wang, H.; Xu, S. Template-controlled in-situ growing of NiCo-MOF nanosheets on Ni foam with mixed linkers for high performance asymmetric supercapacitors. Appl. Surf. Sci., 2022, 572, 151344.
[http://dx.doi.org/10.1016/j.apsusc.2021.151344]
[57]
Liu, R.; Xu, S.; Shao, X.; Wen, Y.; Shi, X.; Huang, L.; Hong, M.; Hu, J.; Yang, Z. Defect-engineered NiCo-S composite as a bifunctional electrode for high-performance supercapacitor and electrocatalysis. ACS Appl. Mater. Interfaces, 2021, 13(40), 47717-47727.
[http://dx.doi.org/10.1021/acsami.1c15824 ] [PMID: 34605245]
[58]
Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M.B.; Ji, S.W.; Jeon, B.H. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev., 2019, 380, 330-352.
[http://dx.doi.org/10.1016/j.ccr.2018.10.003]
[59]
Li, H.; Li, Y.; Li, B.; Liu, D.; Zhou, Y. Highly selective anchoring silver nanoclusters on MOF/SOF heterostructured framework for efficient adsorption of radioactive iodine from aqueous solution. Chemosphere, 2020, 252, 126448.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126448 ] [PMID: 32203781]
[60]
Chang, Z.; Li, F.; Qi, X.; Jiang, B.; Kou, J.; Sun, C. Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. J. Hazard. Mater., 2020, 391, 122175.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122175 ] [PMID: 32045802]
[61]
Zhu, H.; Yuan, J.; Tan, X.; Zhang, W.; Fang, M.; Wang, X. Efficient removal of Pb2+ by Tb-MOFs: Identifying the adsorption mechanism through experimental and theoretical investigations. Environ. Sci. Nano, 2019, 6(1), 261-272.
[http://dx.doi.org/10.1039/C8EN01066H]
[62]
Haque, E.; Lee, J.E.; Jang, I.T.; Hwang, Y.K.; Chang, J.S.; Jegal, J.; Jhung, S.H. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater., 2010, 181(1-3), 535-542.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.047 ] [PMID: 20627406]
[63]
Jun, B.M.; Kim, S.; Rho, H.; Park, C.M.; Yoon, Y. Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: Removal performance and mechanism analyses via dynamic light scattering. Chemosphere, 2020, 254, 126827.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126827 ] [PMID: 32957271]
[64]
Tan, Y.; Sun, Z.; Meng, H.; Han, Y.; Wu, J.; Xu, J.; Xu, Y.; Zhang, X. A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue. Separ. Purif. Tech., 2019, 215, 217-226.
[http://dx.doi.org/10.1016/j.seppur.2019.01.008]
[65]
Hong, Y.; Sun, S.; Sun, Q.; Gao, E-Q.; Ye, M. Tuning adsorption capacity through ligand pre-modification in functionalized Zn-MOF analogues. Mater. Chem. Phys., 2020, 243, 122601.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122601]
[66]
Liu, Y.; Wang, S.; Lu, Y.; Zhao, Y.; Zhang, Y.; Xu, G.; Zhang, J.; Fang, Z.; Xu, W.; Chen, X. Loading control of metal-organic frameworks in Fe3O4@MOFs series composite adsorbents for optimizing dye adsorption. Ind. Eng. Chem. Res., 2019, 58(49), 22244-22249.
[http://dx.doi.org/10.1021/acs.iecr.9b03501]
[67]
Kaur, R.; Kaur, A.; Umar, A.; Anderson, W.A.; Kansal, S.K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced absorption properties. Mater. Res. Bull., 2019, 109, 124-133.
[http://dx.doi.org/10.1016/j.materresbull.2018.07.025]
[68]
Zhang, X.; Qian, L.; Yang, S.; Peng, Y.; Xiong, B.; Li, J.; Fang, P.; He, C. Comparative studies of methyl orange adsorption in various metal-organic frameworks by nitrogen adsorption and positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater., 2020, 296, 109993.
[http://dx.doi.org/10.1016/j.micromeso.2019.109993]
[69]
Tao, X.; Sun, C.; Han, Y.; Huang, L.; Xu, D. The plasma assisted preparation of Fe-MOFs with high adsorption capacity. CrystEngComm, 2019, 21(15), 2541-2550.
[http://dx.doi.org/10.1039/C9CE00015A]
[70]
Yang, Q.; Jia, Y.; Wei, F.; Zhuang, L.; Yang, D.; Liu, J.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. Understanding the activity of Co-N4-x Cx in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem. Int. Ed. Engl., 2020, 59(15), 6122-6127.
[http://dx.doi.org/10.1002/anie.202000324 ] [PMID: 31960551]
[71]
Ma, P.; Jia, Y.; Prashanth, K.G.; Yu, Z.; Li, C.; Zhao, J.; Yang, S.; Huang, L. Effect of Si content on the microstructure and properties of Al-Si alloys fabricated using hot extrusion. J. Mater. Res., 2017, 32(11), 2210-2217.
[http://dx.doi.org/10.1557/jmr.2017.97]
[72]
Zhang, Y.; Shi, X-R.; Sun, C.; Huang, S.; Duan, Z.; Ma, P.; Wang, J. CO oxidation on Ni-based single-atom alloys surfaces. Mol Catal, 2020, 495, 111154.
[http://dx.doi.org/10.1016/j.mcat.2020.111154]
[73]
Liu, X.; Ma, P.; Jia, Y.D.; Wei, Z.J.; Suo, C.J.; Ji, P.C.; Shi, X.R.; Yu, Z.S.; Prashanth, K.G. Solidification of Al-xCu alloy under high pressures. J. Mater. Res. Technol., 2020, 9(3), 2983-2991.
[http://dx.doi.org/10.1016/j.jmrt.2020.01.049]
[74]
Sun, C.; Huang, S.; Huang, M.; Zhang, X.; Xu, S.; Wang, H.; Chen, Y.; Shi, X-R. Single-metal-atom catalysts supported on graphdiyne catalyze CO oxidation. Dalton Trans., 2021, 50(31), 10867-10879.
[http://dx.doi.org/10.1039/D1DT00934F ] [PMID: 34297016]
[75]
Zhao, W.; Liu, H.; Shen, X.; Wang, L.; Mei, X. Percussion drilling hole in Cu, Al, Ti, and Ni alloys using ultra-short pulsed laser ablation. Materials (Basel), 2019, 13(1), 31.
[http://dx.doi.org/10.3390/ma13010031 ] [PMID: 31861680]
[76]
Jia, Y.D.; Ma, P.; Prashanth, K.G.; Wang, G.; Yi, J.; Scudino, S.; Cao, F.Y.; Sun, J.F.; Eckert, J. Microstructure and thermal expansion behavior of Al-50Si synthesized by selective laser melting. J. Alloys Compd., 2017, 699, 548-553.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.429]
[77]
Adlnasab, L.; Shabanian, M.; Ezoddin, M.; Maghsodi, A. Amine rich functionalized mesoporous silica for the effective removal of alizarin yellow and phenol red dyes from waste waters based on response surface methodology. Mater. Sci. Eng. B. Solid-State Mater. Adv. Technol., 2017, 226, 188-198.
[http://dx.doi.org/10.1016/j.mseb.2017.09.017]
[78]
Zolgharnein, J.; Asanjrani, N.; Bagtash, M.; Azimi, G. Multi-response optimization using Taguchi design and principle component analysis for removing binary mixture of alizarin red and alizarin yellow from aqueous solution by nano γ-alumina. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 126, 291-300.
[http://dx.doi.org/10.1016/j.saa.2014.01.100 ] [PMID: 24608013]
[79]
Al-Rubayee, W.T.; Abdul-Rasheed, O.F.; Ali, N.M. Preparation of a modified nanoalumina sorbent for the removal of alizarin yellow r and methylene blue dyes from aqueous solutions. J. Chem., 2016, 2016, 4683859.
[http://dx.doi.org/10.1155/2016/4683859]
[80]
Yoon, S.; Calvo, J.J.; So, M.C. Removal of acid orange 7 from aqueous solution by metal-organic frameworks. Crystals (Basel), 2019, 9(1), 17.
[http://dx.doi.org/10.3390/cryst9010017]
[81]
Zhang, M.; Ding, L.; Zheng, J.; Liu, L.; Alsulami, H.; Kutbi, M.A.; Xu, J. Surface modification of carbon fibers with hydrophilic Fe3O4 nanoparticles for nickel-based multifunctional composites. Appl. Surf. Sci., 2020, 509, 145348.
[http://dx.doi.org/10.1016/j.apsusc.2020.145348]
[82]
Zha, Q.; Sang, X.; Liu, D.; Wang, D.; Shi, G.; Ni, C. Modification of hydrophilic amine-functionalized metal-organic frameworks to hydrophobic for dye adsorption. J. Solid State Chem., 2019, 275, 23-29.
[http://dx.doi.org/10.1016/j.jssc.2019.04.001]
[83]
Li, W.; Cao, J.; Xiong, W.; Yang, Z.; Sun, S.; Jia, M.; Xu, Z. In-situ growing of metal-organic frameworks on three-dimensional iron network as an efficient adsorbent for antibiotics removal. Chem. Eng. J., 2020, 392, 124844.
[http://dx.doi.org/10.1016/j.cej.2020.124844]
[84]
Wu, Q.; Fan, J.; Chen, X.; Zhu, Z.; Luo, J.; Wan, Y. Sandwich structured membrane adsorber with metal organic frameworks for aflatoxin B1 removal. Separ. Purif. Tech., 2020, 246, 116907.
[http://dx.doi.org/10.1016/j.seppur.2020.116907]
[85]
Jin, E.; Lee, S.; Kang, E.; Kim, Y.; Choe, W. Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products. Coord. Chem. Rev., 2020, 425, 213526.
[http://dx.doi.org/10.1016/j.ccr.2020.213526]
[86]
Lu, N.; Zhang, M.; Ding, L.; Zheng, J.; Zeng, C.; Wen, Y.; Liu, G.; Aldalbahi, A.; Shi, J.; Song, S.; Zuo, X.; Wang, L. Yolk-shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale, 2017, 9(13), 4508-4515.
[http://dx.doi.org/10.1039/C7NR00819H ] [PMID: 28317969]
[87]
Hasan, Z.; Jeon, J.; Jhung, S.H. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J. Hazard. Mater., 2012, 209-210, 151-157.
[http://dx.doi.org/10.1016/j.jhazmat.2012.01.005 ] [PMID: 22277335]
[88]
Yu, K.; Ahmed, I.; Won, D.I.; Lee, W.I.; Ahn, W.S. Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere, 2020, 250, 126133.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126133 ] [PMID: 32234615]
[89]
Azhar, M.R.; Abid, H.R.; Periasamy, V.; Sun, H.; Tade, M.O.; Wang, S. Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. J. Colloid Interface Sci., 2017, 500, 88-95.
[http://dx.doi.org/10.1016/j.jcis.2017.04.001 ] [PMID: 28402845]
[90]
Sun, S.; Yang, Z.; Cao, J.; Wang, Y.; Xiong, W. Copper-doped ZIF-8 with high adsorption performance for removal of tetracycline from aqueous solution. J. Solid State Chem., 2020, 285, 121219.
[http://dx.doi.org/10.1016/j.jssc.2020.121219]
[91]
Yang, Q.; Hong, H.; Luo, Y. Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline. Chem. Eng. J., 2020, 392, 123680.
[http://dx.doi.org/10.1016/j.cej.2019.123680]
[92]
Chen, C.; Chen, D.; Xie, S.; Quan, H.; Luo, X.; Guo, L. Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: Analysis of surface interactions. ACS Appl. Mater. Interfaces, 2017, 9(46), 41043-41054.
[http://dx.doi.org/10.1021/acsami.7b13443 ] [PMID: 29077388]
[93]
Liu, L.; Cui, W.; Lu, C.; Zain, A.; Zhang, W.; Shen, G.; Hu, S.; Qian, X. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms. J. Environ. Manage., 2020, 268, 110630.
[http://dx.doi.org/10.1016/j.jenvman.2020.110630 ] [PMID: 32510425]
[94]
Bhadra, B.N.; Ahmed, I.; Kim, S.; Jhung, S.H. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem. Eng. J., 2017, 314, 50-58.
[http://dx.doi.org/10.1016/j.cej.2016.12.127]
[95]
Huang, Z.; Zhao, M.; Wang, S.; Dai, L.; Zhang, L.; Wang, C. Selective recovery of gold ions in aqueous solutions by a novel trithiocyanuric-Zr based MOFs adsorbent. J. Mol. Liq., 2020, 298, 112090.
[http://dx.doi.org/10.1016/j.molliq.2019.112090]
[96]
Zhang, M.; Ling, Y.; Liu, L.; Xu, J.; Li, J.; Fang, Q. Carbon supported PdNi alloy nanoparticles on SiO2 nanocages with enhanced catalytic performance. Inorg. Chem. Front., 2020, 7(17), 3081-3091.
[http://dx.doi.org/10.1039/D0QI00596G]
[97]
Tokalıoğlu, Ş. Yavuz, E.; Demir, S.; Patat, Ş. Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples. Food Chem., 2017, 237, 707-715.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.005 ] [PMID: 28764057]
[98]
Zhou, G.; Luo, J.; Liu, C.; Chu, L.; Ma, J.; Tang, Y.; Zeng, Z.; Luo, S. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Res., 2016, 89, 151-160.
[http://dx.doi.org/10.1016/j.watres.2015.11.053 ] [PMID: 26650450]
[99]
Yuan, G.; Tian, Y.; Li, M.; Zeng, Y.; Tu, H.; Liao, J.; Yang, J.; Yang, Y.; Liu, N. Removal of Co(II) from aqueous solution with functionalized metal-organic frameworks (MOFs) composite. J. Radioanal. Nucl. Chem., 2019, 322(2), 827-838.
[http://dx.doi.org/10.1007/s10967-019-06764-7]
[100]
Wang, Z.; Zhao, D.; Wu, C.; Chen, S.; Wang, Y.; Chen, C. Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution. Appl. Radiat. Isot., 2020, 162, 109160.
[http://dx.doi.org/10.1016/j.apradiso.2020.109160 ] [PMID: 32310090]
[101]
Luo, X.; Ding, L.; Luo, J. Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal-organic frameworks MIL-101(Cr). J. Chem. Eng. Data, 2015, 60(6), 1732-1743.
[http://dx.doi.org/10.1021/je501115m]
[102]
An, H.J.; Sarker, M.; Yoo, D.K.; Jhung, S.H. Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chem. Eng. J., 2019, 373, 1064-1071.
[http://dx.doi.org/10.1016/j.cej.2019.05.121]
[103]
Han, B.; Chakraborty, A. Advanced cooling heat pump and desalination employing functional UiO-66 (Zr) metal-organic frameworks. Energy Convers. Manage., 2020, 213, 112825.
[http://dx.doi.org/10.1016/j.enconman.2020.112825]
[104]
Huang, Y.; Jiao, Y.; Chen, T.; Gong, Y.; Wang, S.; Liu, Y.; Sholl, D.S.; Walton, K.S. Tuning the wettability of metal-organic frameworks via defect engineering for efficient oil/water separation. ACS Appl. Mater. Interfaces, 2020, 12(30), 34413-34422.
[http://dx.doi.org/10.1021/acsami.0c08803 ] [PMID: 32551472]
[105]
Gurnani, R.; Yu, Z.; Kim, C.; Sholl, D.S.; Ramprasad, R. Interpretable machine learning-based predictions of methane uptake isotherms in metal-organic frameworks. Chem. Mater., 2021, 33(10), 3543-3552.
[http://dx.doi.org/10.1021/acs.chemmater.0c04729]
[106]
Chung, Y.G.; Camp, J.; Haranczyk, M.; Sikora, B.J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O.K.; Sholl, D.S.; Snurr, R.Q. Computation-ready, experimental metal-organic frameworks: A tool to enable high-throughput screening of nanoporous crystals. Chem. Mater., 2014, 26(21), 6185-6192.
[http://dx.doi.org/10.1021/cm502594j]
[107]
Yan, Y.; Zhang, L.; Li, S.; Liang, H.; Qiao, Z. Adsorption behavior of metal-organic frameworks: From single simulation, high-throughput computational screening to machine learning. Comput. Mater. Sci., 2021, 193, 110383.
[http://dx.doi.org/10.1016/j.commatsci.2021.110383]
[108]
Daglar, H.; Keskin, S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coord. Chem. Rev., 2020, 422, 213470.
[http://dx.doi.org/10.1016/j.ccr.2020.213470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy