Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

A Causal-Pathway Phenotype of Chronic Fatigue Syndrome due to Hemodialysis in Patients with End-Stage Renal Disease

Author(s): Halah Nori Asad, Hussein Kadhem Al-Hakeim, Shatha Rouf Moustafa and Michael Maes*

Volume 22, Issue 2, 2023

Published on: 03 August, 2022

Page: [191 - 206] Pages: 16

DOI: 10.2174/1871527321666220401140747

open access plus

Abstract

Background: End-stage renal disease (ESRD) is associated with fatigue and physiosomatic symptoms.

Objective: The objective of this study is to delineate the associations between severity of fatigue and physio-somatic symptoms and glomerular filtration rate, inflammatory biomarkers, and Wnt/cateninpathway proteins.

Methods: The Wnt-pathway related proteins β-catenin, Dickkopf-related protein 1 (DKK1), R-spondin- 1, and sclerostin were measured by ELISA technique in 60 ESRD patients and 30 controls. The Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale was used to assess the severity of FF symptoms.

Results: ESRD is characterized by a significant increase in the total FF score, muscle tension, fatigue, sadness, sleep disorders, gastro-intestinal (GI) symptoms, and a flu-like malaise. The total-FF score was significantly correlated with serum levels of urea, creatinine, and copper (positively), and β-catenin, eGFR, hemoglobin, albumin, and zinc (inversely). The total-FF score was associated with the number of total dialysis and weekly dialysis sessions, and these dialysis characteristics were more important in predicting FF scores than eGFR measurements. Partial Least Squares analysis showed that the FF score comprised two factors that are differently associated with biomarkers: a) 43.0% of the variance in fatigue, GI symptoms, muscle tension, sadness, and insomnia is explained by hemoglobin, albumin, zinc, β-catenin, and R-spondin-1; and b) 22.3% of the variance in irritability, concentration and memory impairments by increased copper and cations/chloride ratio, and male sex.

Conclusion: ESRD patients show high levels of fatigue and physio-somatic symptoms associated with hemodialysis and mediated by dialysis-induced changes in inflammatory pathways, the Wnt/catenin pathway, and copper.

Keywords: Myalgic Encephalomyelitis/chronic fatigue syndrome, physiological stress, inflammation, neuro-immune, oxidative stress, biomarkers.

Graphical Abstract

[1]
Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical decision support for in-hospital AKI. J Am Soc Nephrol 2018; 29(2): 654-60.
[http://dx.doi.org/10.1681/ASN.2017070765] [PMID: 29097621]
[2]
Louzada CF, Ferreira AR. Evaluation of the prevalence and factors associated with acute kidney injury in a pediatric intensive care unit. J Pediatr (Rio J) 2021; 97(4): 426-32.
[http://dx.doi.org/10.1016/j.jped.2020.08.003] [PMID: 32919936]
[3]
Chew ST, Ng RR, Liu W, Chow KY, Ti LK. Acute kidney injury increases the risk of end-stage renal disease after cardiac surgery in an Asian population: A prospective cohort study. BMC Nephrol 2017; 18(1): 60.
[http://dx.doi.org/10.1186/s12882-017-0476-y] [PMID: 28193259]
[4]
Ishani A, Xue JL, Himmelfarb J, et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 2009; 20(1): 223-8.
[http://dx.doi.org/10.1681/ASN.2007080837] [PMID: 19020007]
[5]
Abbasi MA, Chertow GM, Hall YN. End-stage renal disease. BMJ Clinical Evidence 2010; 2010.
[6]
USRDS USRDS 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases 2020.
[7]
Karakan S, Sezer S, Ozdemir FN. Factors related to fatigue and subgroups of fatigue in patients with end-stage renal disease. Clin Nephrol 2011; 76(5): 358-64.
[http://dx.doi.org/10.5414/CN106960] [PMID: 22000555]
[8]
Afshar M, Rebollo-Mesa I, Murphy E, Murtagh FE, Mamode N. Symptom burden and associated factors in renal transplant patients in the U.K. J Pain Symptom Manage 2012; 44(2): 229-38.
[http://dx.doi.org/10.1016/j.jpainsymman.2011.08.005] [PMID: 22578312]
[9]
Yoong RK, Mooppil N, Khoo EY, et al. Prevalence and determinants of anxiety and depression in End Stage Renal Disease (ESRD). A comparison between ESRD patients with and without coexisting diabetes mellitus. J Psychosom Res 2017; 94: 68-72.
[http://dx.doi.org/10.1016/j.jpsychores.2017.01.009] [PMID: 28183405]
[10]
Brown SA, Tyrer FC, Clarke AL, et al. Symptom burden in patients with chronic kidney disease not requiring renal replacement therapy. Clin Kidney J 2017; 10(6): 788-96.
[http://dx.doi.org/10.1093/ckj/sfx057] [PMID: 29225808]
[11]
Lee BO, Lin CC, Chaboyer W, Chiang CL, Hung CC. The fatigue experience of haemodialysis patients in Taiwan. J Clin Nurs 2007; 16(2): 407-13.
[http://dx.doi.org/10.1111/j.1365-2702.2005.01409.x] [PMID: 17239077]
[12]
Hamed SA. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: Presentations, causes, and treatment strategies. Expert Rev Clin Pharmacol 2019; 12(1): 61-90.
[http://dx.doi.org/10.1080/17512433.2019.1555468] [PMID: 30501441]
[13]
Aminoff MJ. Neurologic dysfunction and kidney disease. In: Aminoff MJ, Josephson SA, Eds. Aminoff’s Neurology and General Medicine. Amsterdam: Elsevier 2014; pp. 293-316.
[http://dx.doi.org/10.1016/B978-0-12-407710-2.00016-3]
[14]
Artom M, Moss-Morris R, Caskey F, Chilcot J. Fatigue in advanced kidney disease. Kidney Int 2014; 86(3): 497-505.
[http://dx.doi.org/10.1038/ki.2014.86] [PMID: 24694985]
[15]
Evangelidis N, Tong A, Manns B, et al. Developing a set of core outcomes for trials in hemodialysis: An international delphi survey. Am J Kidney Dis 2017; 70(4): 464-75.
[http://dx.doi.org/10.1053/j.ajkd.2016.11.029] [PMID: 28238554]
[16]
Flythe JE, Hilliard T, Castillo G, et al. Symptom prioritization among adults receiving in-center hemodialysis: A mixed methods study. Clin J Am Soc Nephrol 2018; 13(5): 735-45.
[http://dx.doi.org/10.2215/CJN.10850917] [PMID: 29559445]
[17]
Roshanravan B, Gamboa J, Wilund K. Exercise and CKD: Skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. Am J Kidney Dis 2017; 69(6): 837-52.
[http://dx.doi.org/10.1053/j.ajkd.2017.01.051] [PMID: 28427790]
[18]
Maes M, Twisk FN. Chronic fatigue syndrome: Harvey and Wessely’s (bio)psychosocial model versus a bio(psychosocial) model based on inflammatory and oxidative and nitrosative stress pathways. BMC Med 2010; 8(1): 35.
[http://dx.doi.org/10.1186/1741-7015-8-35] [PMID: 20550693]
[19]
Maes M, Ringel K, Kubera M, et al. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation. J Affect Disord 2013; 150(2): 223-30.
[http://dx.doi.org/10.1016/j.jad.2013.03.029] [PMID: 23664637]
[20]
Rapa SF, Di Iorio BR, Campiglia P, Heidland A, Marzocco S. Inflammation and oxidative stress in chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int J Mol Sci 2019; 21(1): 263.
[http://dx.doi.org/10.3390/ijms21010263] [PMID: 31906008]
[21]
Oweis AO, Al-Qarqaz F, Bodoor K, et al. Elevated interleukin 31 serum levels in hemodialysis patients are associated with uremic pruritus. Cytokine 2021; 138: 155369.
[http://dx.doi.org/10.1016/j.cyto.2020.155369] [PMID: 33221158]
[22]
Chen L, Chen G, Kong X. Serum level of high mobility group box protein-1 and prognosis of patients with end-stage renal disease on hemodialysis and peritoneal dialysis. Medicine (Baltimore) 2021; 100(5): e24275.
[http://dx.doi.org/10.1097/MD.0000000000024275] [PMID: 33592871]
[23]
Malekmakan L, Karimi Z, Mansourian A, Pakfetrat M, Roozbeh J, Rahimi Jaberi K. Role of vitamin D in oxidative stress modulation in end-stage renal disease patients: A double-blind randomized clinical trial. Hemodial Int 2020; 24(3): 367-73.
[http://dx.doi.org/10.1111/hdi.12849] [PMID: 32519507]
[24]
Song YR, Kim JK, Lee HS, Kim SG, Choi EK. Serum levels of protein carbonyl, a marker of oxidative stress, are associated with overhydration, sarcopenia and mortality in hemodialysis patients. BMC Nephrol 2020; 21(1): 281.
[http://dx.doi.org/10.1186/s12882-020-01937-z] [PMID: 32677905]
[25]
Almeida A, Gajewska K, Duro M, Costa F, Pinto E. Trace element imbalances in patients undergoing chronic hemodialysis therapy - Report of an observational study in a cohort of Portuguese patients. J Trace Elem Med Biol 2020; 62: 126580.
[http://dx.doi.org/10.1016/j.jtemb.2020.126580] [PMID: 32619919]
[26]
Nguyen-Khoa T, Massy ZA, De Bandt JP, et al. Oxidative stress and haemodialysis: Role of inflammation and duration of dialysis treatment. Nephrol Dial Transplant 2001; 16(2): 335-40.
[http://dx.doi.org/10.1093/ndt/16.2.335] [PMID: 11158409]
[27]
Russa D, Pellegrino D, Montesanto A, et al. Oxidative balance and inflammation in hemodialysis patients: Biomarkers of cardiovascular risk? Oxid Med Cell Longev 2019; 2019: 8567275.
[http://dx.doi.org/10.1155/2019/8567275] [PMID: 30886674]
[28]
Vijayalakshmi UB, Rayidi M. Laboratory profiles of patients on hemodialysis - A retrospective one year study in a rural tertiary care hospital. J Clin Diagn Res 2015; 9(10): BC12-5.
[http://dx.doi.org/10.7860/JCDR/2015/14928.6697] [PMID: 26557511]
[29]
Gluba-Brzَzka A, Franczyk B, Olszewski R, Rysz J. The influence of inflammation on anemia in CKD patients. Int J Mol Sci 2020; 21(3): 725.
[http://dx.doi.org/10.3390/ijms21030725] [PMID: 31979104]
[30]
van Gelder MK, Abrahams AC, Joles JA, Kaysen GA, Gerritsen KGF. Albumin handling in different hemodialysis modalities. Nephrol Dial Transplant 2018; 33(6): 906-13.
[http://dx.doi.org/10.1093/ndt/gfx191] [PMID: 29106652]
[31]
Danielski M, Ikizler TA, McMonagle E, et al. Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving maintenance hemodialysis therapy. Am J Kidney Dis 2003; 42(2): 286-94.
[http://dx.doi.org/10.1016/S0272-6386(03)00653-X] [PMID: 12900810]
[32]
Nishime K, Kondo M, Saito K, Miyawaki H, Nakagawa T. Zinc burden evokes copper deficiency in the hypoalbuminemic hemodialysis patients. Nutrients 2020; 12(2): E577.
[http://dx.doi.org/10.3390/nu12020577] [PMID: 32102170]
[33]
Kestenbaum B, Sampson JN, Rudser KD, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005; 16(2): 520-8.
[http://dx.doi.org/10.1681/ASN.2004070602] [PMID: 15615819]
[34]
Einhorn LM, Zhan M, Hsu VD, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med 2009; 169(12): 1156-62.
[http://dx.doi.org/10.1001/archinternmed.2009.132] [PMID: 19546417]
[35]
Barbour SJ, Er L, Djurdjev O, Karim MA, Levin A. The prevalence of hematologic and metabolic abnormalities during chronic kidney disease stages in different ethnic groups. Kidney Int 2008; 74(1): 108-14.
[http://dx.doi.org/10.1038/ki.2008.151] [PMID: 18432185]
[36]
Morris G, Maes M. Oxidative and nitrosative stress and immune-inflammatory pathways in patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol 2014; 12(2): 168-85.
[http://dx.doi.org/10.2174/1570159X11666131120224653] [PMID: 24669210]
[37]
Zachrisson O, Regland B, Jahreskog M, Kron M, Gottfries CG. A rating scale for fibromyalgia and chronic fatigue syndrome (the FibroFatigue scale). J Psychosom Res 2002; 52(6): 501-9.
[http://dx.doi.org/10.1016/S0022-3999(01)00315-4] [PMID: 12069875]
[38]
Maes M, Kubera M, Stoyanova K, Leunis JC. The reification of the clinical diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) as an immune and oxidative stress disorder: Construction of a data-driven nomothethic network and exposure of ME/CFS subgroups. Curr Top Med Chem 2021; 21(16): 1488-99.
[http://dx.doi.org/10.2174/1568026621666210727170147] [PMID: 34315375]
[39]
Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med 2013; 11(1): 205.
[http://dx.doi.org/10.1186/1741-7015-11-205] [PMID: 24229326]
[40]
Morris G, Berk M, Galecki P, Walder K, Maes M. The neuro-immune pathophysiology of central and peripheral fatigue in systemic immune-inflammatory and neuro-immune diseases. Mol Neurobiol 2016; 53(2): 1195-219.
[http://dx.doi.org/10.1007/s12035-015-9090-9] [PMID: 25598355]
[41]
Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: Dual roles in renal injury and repair. J Pathol 2013; 229(2): 221-31.
[http://dx.doi.org/10.1002/path.4121] [PMID: 23097132]
[42]
Duan P, Bonewald L F. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 2016; 77(Pt A): 23-9.
[43]
Wang Y, Zhou CJ, Liu Y. Wnt signaling in kidney development and disease. Prog Mol Biol Transl Sci 2018; 153: 181-207.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.019] [PMID: 29389516]
[44]
Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 2001; 3(7): 683-6.
[http://dx.doi.org/10.1038/35083081] [PMID: 11433302]
[45]
Lee H, Seidl C, Sun R, Glinka A, Niehrs C. R-spondins are BMP receptor antagonists in Xenopus early embryonic development. Nat Commun 2020; 11(1): 5570.
[http://dx.doi.org/10.1038/s41467-020-19373-w] [PMID: 33149137]
[46]
Binnerts ME, Kim KA, Bright JM, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci USA 2007; 104(37): 14700-5.
[http://dx.doi.org/10.1073/pnas.0702305104] [PMID: 17804805]
[47]
Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303(5663): 1483-7.
[http://dx.doi.org/10.1126/science.1094291] [PMID: 15001769]
[48]
Chae WJ, Bothwell ALM. Dickkopf1: An immunomodulatory ligand and Wnt antagonist in pathological inflammation. Differentiation 2019; 108: 33-9.
[http://dx.doi.org/10.1016/j.diff.2019.05.003] [PMID: 31221431]
[49]
Scali C, Caraci F, Gianfriddo M, et al. Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiol Dis 2006; 24(2): 254-65.
[http://dx.doi.org/10.1016/j.nbd.2006.06.016] [PMID: 16919965]
[50]
Dickins EM, Salinas PC. Wnts in action: From synapse formation to synaptic maintenance. Front Cell Neurosci 2013; 7: 162.
[http://dx.doi.org/10.3389/fncel.2013.00162] [PMID: 24223536]
[51]
Orellana JA. Sáez JC, Bennett MV, Berman JW, Morgello S, Eugenin EA. HIV increases the release of dickkopf-1 protein from human astrocytes by a Cx43 hemichannel-dependent mechanism. J Neurochem 2014; 128(5): 752-63.
[http://dx.doi.org/10.1111/jnc.12492] [PMID: 24134157]
[52]
Seib DR, Corsini NS, Ellwanger K, et al. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 2013; 12(2): 204-14.
[http://dx.doi.org/10.1016/j.stem.2012.11.010] [PMID: 23395445]
[53]
Ross RD, Shah RC, Leurgans S, Bottiglieri T, Wilson RS, Sumner DR. Circulating Dkk1 and TRAIL are associated with cognitive decline in community-dwelling, older adults with cognitive concerns. J Gerontol A Biol Sci Med Sci 2018; 73(12): 1688-94.
[http://dx.doi.org/10.1093/gerona/glx252] [PMID: 29432613]
[54]
Wang G, Li Z, Li S, et al. Minocycline preserves the integrity and permeability of BBB by altering the activity of DKK1-Wnt signaling in ICH model. Neuroscience 2019; 415: 135-46.
[http://dx.doi.org/10.1016/j.neuroscience.2019.06.038] [PMID: 31344398]
[55]
Artus C, Glacial F, Ganeshamoorthy K, et al. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab 2014; 34(3): 433-40.
[http://dx.doi.org/10.1038/jcbfm.2013.213] [PMID: 24346691]
[56]
Liu HC, Zhang J, Wong S, Han D, Zhao HS, Feng HL. Association between rs11001553 of DKK1 and non-syndromic tooth agenesis in the Chinese Han population. Genet Mol Res 2014; 13(3): 7133-9.
[http://dx.doi.org/10.4238/2014.April.3.4] [PMID: 24737523]
[57]
Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48: 277-86.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.022] [PMID: 23123365]
[58]
Mousa RF, Al-Hakeim HK, Alhaideri A, Maes M. Chronic fatigue syndrome and fibromyalgia-like symptoms are an integral component of the phenome of schizophrenia: Neuro-immune and opioid system correlates. Metab Brain Dis 2021; 36(1): 169-83.
[http://dx.doi.org/10.1007/s11011-020-00619-x] [PMID: 32965599]
[59]
Al-Dujaili AH, Mousa RF, Al-Hakeim HK, Maes M. High mobility group protein 1 and dickkopf-related protein 1 in schizophrenia and treatment-resistant schizophrenia: Associations with interleukin-6, symptom domains, and neurocognitive impairments. Schizophr Bull 2021; 47(2): 530-41.
[PMID: 32971537]
[60]
Stevens PE, Levin A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013; 158(11): 825-30.
[http://dx.doi.org/10.7326/0003-4819-158-11-201306040-00007] [PMID: 23732715]
[61]
Kanchanatawan B, Thika S, Sirivichayakul S, Carvalho AF, Geffard M, Maes M. In schizophrenia, depression, anxiety, and physiosomatic symptoms are strongly related to psychotic symptoms and excitation, impairments in episodic memory, and increased production of neurotoxic tryptophan catabolites: A multivariate and machine learning study. Neurotox Res 2018; 33(3): 641-55.
[http://dx.doi.org/10.1007/s12640-018-9868-4] [PMID: 29380275]
[62]
Levey AS, Coresh J, Greene T, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 2007; 53(4): 766-72.
[http://dx.doi.org/10.1373/clinchem.2006.077180] [PMID: 17332152]
[63]
Lorenzo-Seva U, Ferrando PJ. Not positive definite correlation matrices in exploratory item factor analysis: Causes, consequences and a proposed solution. Struct Equ Modeling 2020; 28(1): 138-47.
[http://dx.doi.org/10.1080/10705511.2020.1735393]
[64]
Ferrando PJ, Lorenzo-Seva U. Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educ Psychol Meas 2018; 78(5): 762-80.
[http://dx.doi.org/10.1177/0013164417719308] [PMID: 32655169]
[65]
Ringle, C.M. , Wende, S. , Becker, J.M . (2015) SmartPLS 3. SmartPLS GmbH, Boenningstedt. http://www.smartpls.com
[66]
Luo Y, He H, Zhang J, Ou Y, Fan N. Changes in serum TNF-α IL-18, and IL-6 concentrations in patients with chronic schizophrenia at admission and at discharge. Compr Psychiatry 2019; 90: 82-7.
[http://dx.doi.org/10.1016/j.comppsych.2019.01.003] [PMID: 30782515]
[67]
Horigan AE, Schneider SM, Docherty S, Barroso J. The experience and self-management of fatigue in patients on hemodialysis. Nephrol Nurs J 2013; 40(2): 113-22.
[PMID: 23767335]
[68]
Chan W, Jones D, Bosch JA, et al. Cardiovascular, muscular and perceptual contributions to physical fatigue in prevalent kidney transplant recipients. Transpl Int 2016; 29(3): 338-51.
[http://dx.doi.org/10.1111/tri.12727] [PMID: 26614985]
[69]
Jhamb M, Argyropoulos C, Steel JL, et al. Correlates and outcomes of fatigue among incident dialysis patients. Clin J Am Soc Nephrol 2009; 4(11): 1779-86.
[http://dx.doi.org/10.2215/CJN.00190109] [PMID: 19808226]
[70]
Manns B, Hemmelgarn B, Lillie E, et al. Setting research priorities for patients on or nearing dialysis. Clin J Am Soc Nephrol 2014; 9(10): 1813-21.
[http://dx.doi.org/10.2215/CJN.01610214] [PMID: 24832095]
[71]
Horigan AE. Fatigue in hemodialysis patients: A review of current knowledge. J Pain Symptom Manage 2012; 44(5): 715-24.
[http://dx.doi.org/10.1016/j.jpainsymman.2011.10.015] [PMID: 22743156]
[72]
Zyga S, Alikari V, Sachlas A, et al. Assessment of fatigue in end stage renal disease patients undergoing hemodialysis: Prevalence and associated factors. Med Arh 2015; 69(6): 376-80.
[http://dx.doi.org/10.5455/medarh.2015.69.376-380] [PMID: 26843728]
[73]
Heiwe S, Clyne N, Dahlgren MA. Living with chronic renal failure: Patients’ experiences of their physical and functional capacity. Physiother Res Int 2003; 8(4): 167-77.
[http://dx.doi.org/10.1002/pri.287] [PMID: 14730721]
[74]
Bossola M, Luciani G, Tazza L. Fatigue and its correlates in chronic hemodialysis patients. Blood Purif 2009; 28(3): 245-52.
[http://dx.doi.org/10.1159/000231985] [PMID: 19684391]
[75]
Farragher JF, Polatajko HJ, Jassal SV. The relationship between fatigue and depression in adults with end-stage renal disease on chronic in-hospital hemodialysis: A scoping review. J Pain Symptom Manage 2017; 53(4): 783-803.
[http://dx.doi.org/10.1016/j.jpainsymman.2016.10.365]
[76]
Jacobson J, Ju A, Baumgart A, et al. Patient perspectives on the meaning and impact of fatigue in hemodialysis: A systematic review and thematic analysis of qualitative studies. Am J Kidney Dis 2019; 74(2): 179-92.
[http://dx.doi.org/10.1053/j.ajkd.2019.01.034] [PMID: 30955947]
[77]
Caravaca F, Gonzales B, Bayo MÁ,, Luna E. Musculoskeletal pain in patients with chronic kidney disease. Nefrologia 2016; 36(4): 433-40.
[http://dx.doi.org/10.1016/j.nefro.2016.03.024] [PMID: 27267921]
[78]
Maes M, Twisk FN, Ringel K. Inflammatory and cell-mediated immune biomarkers in myalgic encephalomyelitis/chronic fatigue syndrome and depression: Inflammatory markers are higher in myalgic encephalomyelitis/chronic fatigue syndrome than in depression. Psychother Psychosom 2012; 81(5): 286-95.
[http://dx.doi.org/10.1159/000336803] [PMID: 22832503]
[79]
Al-Hakeim HK, Al-Issa AAR, Maes M. Serum agrin and talin are increased in major depression while agrin and creatine phosphokinase are associated with chronic fatigue and fibromyalgia symptoms in depression. Metab Brain Dis 2020; 35(1): 225-35.
[http://dx.doi.org/10.1007/s11011-019-00506-0] [PMID: 31734845]
[80]
Almulla AF, Al-Rawi KF, Maes M, Al-Hakeim HK. In schizophrenia, immune-inflammatory pathways are strongly associated with depressive and anxiety symptoms, which are part of a latent trait which comprises neurocognitive impairments and schizophrenia symptoms. J Affect Disord 2021; 287: 316-26.
[http://dx.doi.org/10.1016/j.jad.2021.03.062] [PMID: 33812245]
[81]
Morsch CM, Gonçalves LF, Barros E. Health-related quality of life among haemodialysis patients--relationship with clinical indicators, morbidity and mortality. J Clin Nurs 2006; 15(4): 498-504.
[http://dx.doi.org/10.1111/j.1365-2702.2006.01349.x] [PMID: 16553764]
[82]
O’Sullivan D, McCarthy G. An exploration of the relationship between fatigue and physical functioning in patients with end stage renal disease receiving haemodialysis. J Clin Nurs 2007; 16(11C): 276-84.
[http://dx.doi.org/10.1111/j.1365-2702.2007.01965.x] [PMID: 17931321]
[83]
Letchmi S, Das S, Halim H, et al. Fatigue experienced by patients receiving maintenance dialysis in hemodialysis units. Nurs Health Sci 2011; 13(1): 60-4.
[http://dx.doi.org/10.1111/j.1442-2018.2011.00579.x] [PMID: 21392194]
[84]
Unruh ML, Larive B, Chertow GM, et al. Effects of 6-times-weekly versus 3-times-weekly hemodialysis on depressive symptoms and self-reported mental health: Frequent Hemodialysis Network (FHN) Trials. Am J Kidney Dis 2013; 61(5): 748-58.
[http://dx.doi.org/10.1053/j.ajkd.2012.11.047] [PMID: 23332990]
[85]
Garg AX, Suri RS, Eggers P, et al. Patients receiving frequent hemodialysis have better health-related quality of life compared to patients receiving conventional hemodialysis. Kidney Int 2017; 91(3): 746-54.
[http://dx.doi.org/10.1016/j.kint.2016.10.033] [PMID: 28094031]
[86]
Karadag E, Kilic SP, Metin O. Relationship between fatigue and social support in hemodialysis patients. Nurs Health Sci 2013; 15(2): 164-71.
[http://dx.doi.org/10.1111/nhs.12008] [PMID: 23552015]
[87]
Bossola M, Tazza L. Postdialysis fatigue: A frequent and debilitating symptom, Semin Dial. Wiley Online Library 2016; pp. 222-7.
[88]
Jhamb M, Pike F, Ramer S, et al. Impact of fatigue on outcomes in the hemodialysis (HEMO) study. Am J Nephrol 2011; 33(6): 515-23.
[http://dx.doi.org/10.1159/000328004] [PMID: 21555875]
[89]
Chan W, Bosch JA, Jones D, et al. Predictors and consequences of fatigue in prevalent kidney transplant recipients. Transplantation 2013; 96(11): 987-94.
[http://dx.doi.org/10.1097/TP.0b013e3182a2e88b] [PMID: 23982341]
[90]
Cabrera VJ, Hansson J, Kliger AS, Finkelstein FO. Symptom management of the patient with CKD: The role of dialysis. Clin J Am Soc Nephrol 2017; 12(4): 687-93.
[http://dx.doi.org/10.2215/CJN.01650216] [PMID: 28148557]
[91]
Chao C-T, Huang J-W, Chiang C-K. Functional assessment of chronic illness therapy-the fatigue scale exhibits stronger associations with clinical parameters in chronic dialysis patients compared to other fatigue-assessing instruments. PeerJ 2016; 4: e1818.
[http://dx.doi.org/10.7717/peerj.1818] [PMID: 26998414]
[92]
Westerblad H, Allen DG. Lännergren J. Muscle fatigue: Lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17(1): 17-21.
[http://dx.doi.org/10.1152/physiologyonline.2002.17.1.17] [PMID: 11821531]
[93]
Chen YY, Kao TW, Chou CW, et al. Exploring the link between serum phosphate levels and low muscle strength, dynapenia, and sarcopenia. Sci Rep 2018; 8(1): 3573.
[http://dx.doi.org/10.1038/s41598-018-21784-1] [PMID: 29476104]
[94]
Hsu HJ, Yen CH, Hsu KH, et al. Factors associated with chronic musculoskeletal pain in patients with chronic kidney disease. BMC Nephrol 2014; 15(1): 6.
[http://dx.doi.org/10.1186/1471-2369-15-6] [PMID: 24400957]
[95]
Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant 2018; 33 (Suppl. 3): iii35-40.
[http://dx.doi.org/10.1093/ndt/gfy175] [PMID: 30281126]
[96]
Bonner A, Wellard S, Caltabiano M. Levels of fatigue in people with ESRD living in far North Queensland. J Clin Nurs 2008; 17(1): 90-8.
[PMID: 18088261]
[97]
Miller MA, Cappuccio FP. Inflammation, sleep, obesity and cardiovascular disease. Curr Vasc Pharmacol 2007; 5(2): 93-102.
[http://dx.doi.org/10.2174/157016107780368280] [PMID: 17430213]
[98]
Maes M, Mihaylova I, De Ruyter M. Lower serum zinc in Chronic Fatigue Syndrome (CFS): Relationships to immune dysfunctions and relevance for the oxidative stress status in CFS. J Affect Disord 2006; 90(2-3): 141-7.
[http://dx.doi.org/10.1016/j.jad.2005.11.002] [PMID: 16338007]
[99]
Zaoui P, Hakim RM. The effects of the dialysis membrane on cytokine release. J Am Soc Nephrol 1994; 4(9): 1711-8.
[http://dx.doi.org/10.1681/ASN.V491711] [PMID: 8011981]
[100]
Supasitthumrong T, Tunvirachaisakul C, Aniwattanapong D, et al. Peripheral blood biomarkers coupled with the apolipoprotein e4 genotype are strongly associated with semantic and episodic memory impairments in elderly subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2019; 71(3): 797-811.
[http://dx.doi.org/10.3233/JAD-190114] [PMID: 31424390]
[101]
Potharajaroen S, Tangwongchai S, Tayjasanant T, Thawitsri T, Anderson G, Maes M. Bright light and oxygen therapies decrease delirium risk in critically ill surgical patients by targeting sleep and acid-base disturbances. Psychiatry Res 2018; 261: 21-7.
[http://dx.doi.org/10.1016/j.psychres.2017.12.046] [PMID: 29276990]
[102]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[103]
Glinka A, Dolde C, Kirsch N, et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep 2011; 12(10): 1055-61.
[http://dx.doi.org/10.1038/embor.2011.175] [PMID: 21909076]
[104]
Clevers H, Loh KM, Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 2014; 346(6205): 1248012.
[105]
Nagano K. R-spondin signaling as a pivotal regulator of tissue development and homeostasis. Jpn Dent Sci Rev 2019; 55(1): 80-7.
[http://dx.doi.org/10.1016/j.jdsr.2019.03.001] [PMID: 31049116]
[106]
Chen X, Yang J, Evans PM, Liu C. Wnt signaling: The good and the bad. Acta Biochim Biophys Sin (Shanghai) 2008; 40(7): 577-94.
[http://dx.doi.org/10.1111/j.1745-7270.2008.00440.x] [PMID: 18604449]
[107]
Kuncewitch M, Yang WL, Jacob A, et al. Stimulation of Wnt/β-catenin signaling pathway with Wnt agonist reduces organ injury after hemorrhagic shock. J Trauma Acute Care Surg 2015; 78(4): 793-800.
[http://dx.doi.org/10.1097/TA.0000000000000566] [PMID: 25742253]
[108]
Ng LF, Kaur P, Bunnag N, et al. WNT signaling in disease. Cells 2019; 8(8): E826.
[http://dx.doi.org/10.3390/cells8080826] [PMID: 31382613]
[109]
Teo CH, Soga T, Parhar IS. Brain beta-catenin signalling during stress and depression. Neurosignals 2018; 26(1): 31-42.
[http://dx.doi.org/10.1159/000487764] [PMID: 29490303]
[110]
Roomruangwong C, Maes M. Biomarker validation of a new case definition of Menstrual Cycle-Associated Syndrome (MCAS) opinion paper. CNS Neurol Disord Drug Targets 2021; 20(2): 105-11.
[http://dx.doi.org/10.2174/1871527319666200930095149] [PMID: 32998680]
[111]
Roomruangwong C, Sirivichayakul S, Matsumoto AK, et al. Menstruation distress is strongly associated with hormone-immune-metabolic biomarkers. J Psychosom Res 2021; 142: 110355.
[http://dx.doi.org/10.1016/j.jpsychores.2020.110355] [PMID: 33444909]
[112]
Panerai AE, Vecchiet J, Panzeri P, et al. Peripheral blood mononuclear cell β-endorphin concentration is decreased in chronic fatigue syndrome and fibromyalgia but not in depression: Preliminary report. Clin J Pain 2002; 18(4): 270-3.
[http://dx.doi.org/10.1097/00002508-200207000-00008] [PMID: 12131069]
[113]
Al-Jassas HK, Al-Hakeim HK, Maes M. Intersections between pneumonia, lowered oxygen saturation percentage and immune activation mediate depression, anxiety, and chronic fatigue syndrome-like symptoms due to COVID-19: A nomothetic network approach. J Affect Disord 2022; 297: 233-45.
[http://dx.doi.org/10.1016/j.jad.2021.10.039] [PMID: 34699853]

© 2024 Bentham Science Publishers | Privacy Policy