Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Selective Delivery of Clinically Approved Tubulin Binding Agents through Covalent Conjugation to an Active Targeting Moiety

Author(s): Samuel E. Collyer, Gary D. Stack and John J. Walsh*

Volume 29, Issue 31, 2022

Published on: 21 June, 2022

Page: [5179 - 5211] Pages: 33

DOI: 10.2174/0929867329666220401105929

Price: $65

Abstract

The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents that target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells while having limited uptake by normal cells, thereby improving efficacy and tolerability. Approaches used include an attachment to small molecules, polysaccharides, peptides, proteins, and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date, with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.

Keywords: Tubulin binding agents, drug conjugate, covalent conjugation, active targeting, cancer, microtubules.

[1]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[2]
Murray, S.; Briasoulis, E.; Linardou, H.; Bafaloukos, D.; Papadimitriou, C. Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat. Rev., 2012, 38(7), 890-903.
[http://dx.doi.org/10.1016/j.ctrv.2012.02.011] [PMID: 22465195]
[3]
McGrogan, B.T.; Gilmartin, B.; Carney, D.N.; McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta, 2008, 1785(2), 96-132.
[PMID: 18068131]
[4]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[5]
Sun, B.; Straubinger, R.M.; Lovell, J.F. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res., 2018, 11(10), 5193-5218.
[http://dx.doi.org/10.1007/s12274-018-2171-0]
[6]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, E.L. The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[http://dx.doi.org/10.1016/S0959-8049(01)00171-X] [PMID: 11527683]
[7]
Schwartzberg, L.S.; Navari, R.M. Safety of polysorbate 80 in the oncology setting. Adv. Ther., 2018, 35(6), 754-767.
[http://dx.doi.org/10.1007/s12325-018-0707-z] [PMID: 29796927]
[8]
Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett., 2015, 596, 90-107.
[http://dx.doi.org/10.1016/j.neulet.2014.10.014] [PMID: 25459280]
[9]
Schiff, D.; Wen, P.Y.; van den Bent, M.J. Neurological adverse effects caused by cytotoxic and targeted therapies. Nat. Rev. Clin. Oncol., 2009, 6(10), 596-603.
[http://dx.doi.org/10.1038/nrclinonc.2009.128] [PMID: 19707193]
[10]
Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci., 2019, 20(6), E1451.
[http://dx.doi.org/10.3390/ijms20061451] [PMID: 30909387]
[11]
Kaufman, P.A.; Awada, A.; Twelves, C.; Yelle, L.; Perez, E.A.; Velikova, G.; Olivo, M.S.; He, Y.; Dutcus, C.E.; Cortes, J. Phase III open-label randomized study of eribulin mesylate versus capecitabine in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol., 2015, 33(6), 594-601.
[http://dx.doi.org/10.1200/JCO.2013.52.4892] [PMID: 25605862]
[12]
Jackson, J.R.; Patrick, D.R.; Dar, M.M.; Huang, P.S. Targeted anti-mitotic therapies: Can we improve on tubulin agents? Nat. Rev. Cancer, 2007, 7(2), 107-117.
[http://dx.doi.org/10.1038/nrc2049] [PMID: 17251917]
[13]
de Weger, V.A.; Beijnen, J.H.; Schellens, J.H. Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel--a review. Anticancer Drugs, 2014, 25(5), 488-494.
[http://dx.doi.org/10.1097/CAD.0000000000000093] [PMID: 24637579]
[14]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[15]
Caster, J.M.; Patel, A.N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1), 1416.
[http://dx.doi.org/10.1002/wnan.1416] [PMID: 27312983]
[16]
Sofias, A.M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev., 2017, 122, 20-30.
[http://dx.doi.org/10.1016/j.addr.2017.02.003] [PMID: 28257998]
[17]
Lee, J.H.; Yeo, Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci., 2015, 125, 75-84.
[http://dx.doi.org/10.1016/j.ces.2014.08.046] [PMID: 25684779]
[18]
Wang, Y.; Cheetham, A.G.; Angacian, G.; Su, H.; Xie, L.; Cui, H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 112-126.
[http://dx.doi.org/10.1016/j.addr.2016.06.015] [PMID: 27370248]
[19]
Dal Corso, A.; Pignataro, L.; Belvisi, L.; Gennari, C. Innovative linker strategies for tumor-targeted drug conjugates. Chemistry, 2019, 25(65), 14740-14757.
[http://dx.doi.org/10.1002/chem.201903127] [PMID: 31418970]
[20]
Zhuang, C.; Guan, X.; Ma, H.; Cong, H.; Zhang, W.; Miao, Z. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. Eur. J. Med. Chem., 2019, 163, 883-895.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.035] [PMID: 30580240]
[21]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[22]
Srinivasarao, M.; Galliford, C.V.; Low, P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov., 2015, 14(3), 203-219.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[23]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[24]
Shan, L.; Zhuo, X.; Zhang, F.; Dai, Y.; Zhu, G.; Yung, B.C.; Fan, W.; Zhai, K.; Jacobson, O.; Kiesewetter, D.O.; Ma, Y.; Gao, G.; Chen, X. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy. Theranostics, 2018, 8(7), 2018-2030.
[http://dx.doi.org/10.7150/thno.24382] [PMID: 29556370]
[25]
Dai, Y.; Cai, X.; Bi, X.; Liu, C.; Yue, N.; Zhu, Y.; Zhou, J.; Fu, M.; Huang, W.; Qian, H. Synthesis and anti-cancer evaluation of folic acid-peptide- paclitaxel conjugates for addressing drug resistance. Eur. J. Med. Chem., 2019, 171, 104-115.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.031] [PMID: 30913525]
[26]
Tavakolifard, S.; Biazar, E.; Pourshamsian, K.; Moslemin, M.H. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artif. Cells Nanomed. Biotechnol., 2016, 44(5), 1247-1253.
[http://dx.doi.org/10.3109/21691401.2015.1019670] [PMID: 25783856]
[27]
Shen, H.; Wang, L.; Chen, W.; Menard, K.; Hong, Y.; Tian, Y.; Bonacorsi, S.J.; Humphreys, W.G.; Lee, F.Y.; Gan, J. Tissue distribution and tumor uptake of folate receptor-targeted epothilone folate conjugate, BMS-753493, in CD2F1 mice after systemic administration. Acta Pharm. Sin. B, 2016, 6(5), 460-467.
[http://dx.doi.org/10.1016/j.apsb.2016.07.009] [PMID: 27709015]
[28]
Peethambaram, P.P.; Hartmann, L.C.; Jonker, D.J.; de Jonge, M.; Plummer, E.R.; Martin, L.; Konner, J.; Marshall, J.; Goss, G.D.; Teslenko, V.; Clemens, P.L.; Cohen, L.J.; Ahlers, C.M.; Alland, L. A phase I pharmacokinetic and safety analysis of epothilone folate (BMS-753493), a folate receptor targeted chemotherapeutic agent in humans with advanced solid tumors. Invest. New Drugs, 2015, 33(2), 321-331.
[http://dx.doi.org/10.1007/s10637-014-0171-9] [PMID: 25380635]
[29]
Vergote, I.; Leamon, C.P. Vintafolide: A novel targeted therapy for the treatment of folate receptor expressing tumors. Ther. Adv. Med. Oncol., 2015, 7(4), 206-218.
[http://dx.doi.org/10.1177/1758834015584763] [PMID: 26136852]
[30]
Leamon, C.P.; Reddy, J.A.; Vlahov, I.R.; Westrick, E.; Parker, N.; Nicoson, J.S.; Vetzel, M. Comparative preclinical activity of the folate-targeted Vinca alkaloid conjugates EC140 and EC145. Int. J. Cancer, 2007, 121(7), 1585-1592.
[http://dx.doi.org/10.1002/ijc.22853] [PMID: 17551919]
[31]
Schülke, N.; Varlamova, O.A.; Donovan, G.P.; Ma, D.; Gardner, J.P.; Morrissey, D.M.; Arrigale, R.R.; Zhan, C.; Chodera, A.J.; Surowitz, K.G.; Maddon, P.J.; Heston, W.D.; Olson, W.C. The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12590-12595.
[http://dx.doi.org/10.1073/pnas.1735443100] [PMID: 14583590]
[32]
Israeli, R.S.; Powell, C.T.; Corr, J.G.; Fair, W.R.; Heston, W.D. Expression of the prostate-specific membrane antigen. Cancer Res., 1994, 54(7), 1807-1811.
[PMID: 7511053]
[33]
Ghosh, A.; Heston, W.D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem., 2004, 91(3), 528-539.
[http://dx.doi.org/10.1002/jcb.10661] [PMID: 14755683]
[34]
Liu, T.; Wu, L.Y.; Kazak, M.; Berkman, C.E. Cell-Surface labeling and internalization by a fluorescent inhibitor of prostate-specific membrane antigen. Prostate, 2008, 68(9), 955-964.
[http://dx.doi.org/10.1002/pros.20753] [PMID: 18361407]
[35]
Lv, Q.; Yang, J.; Zhang, R.; Yang, Z.; Yang, Z.; Wang, Y.; Xu, Y.; He, Z. Prostate-specific membrane antigen targeted therapy of prostate cancer using a DUPA-paclitaxel conjugate. Mol. Pharm., 2018, 15(5), 1842-1852.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00026] [PMID: 29608845]
[36]
Machulkin, A.E.; Skvortsov, D.A.; Ivanenkov, Y.A.; Ber, A.P.; Kavalchuk, M.V.; Aladinskaya, A.V.; Uspenskaya, A.A.; Shafikov, R.R.; Plotnikova, E.A.; Yakubovskaya, R.I.; Nimenko, E.A.; Zyk, N.U.; Beloglazkina, E.K.; Zyk, N.V.; Koteliansky, V.E.; Majouga, A.G. Synthesis and biological evaluation of PSMA-targeting paclitaxel conjugates. Bioorg. Med. Chem. Lett., 2019, 29(16), 2229-2235.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.035] [PMID: 31248772]
[37]
Snyder, J.P.; Nettles, J.H.; Cornett, B.; Downing, K.H.; Nogales, E. The binding conformation of Taxol in β-tubulin: A model based on electron crystallographic density. Proc. Natl. Acad. Sci. USA, 2001, 98(9), 5312-5316.
[http://dx.doi.org/10.1073/pnas.051309398] [PMID: 11309480]
[38]
Petrov, S.A.; Machulkin, A.E.; Uspenskaya, A.A.; Zyk, N.Y.; Nimenko, E.A.; Garanina, A.S.; Petrov, R.A.; Polshakov, V.I.; Grishin, Y.K.; Roznyatovsky, V.A.; Zyk, N.V.; Majouga, A.G.; Beloglazkina, E.K. Polypeptide-based molecular platform and its docetaxel/Sulfo- Cy5-containing conjugate for targeted delivery to prostate specific membrane antigen. Molecules, 2020, 25(24), E5784.
[http://dx.doi.org/10.3390/molecules25245784] [PMID: 33302417]
[39]
Boinapally, S.; Ahn, H.H.; Cheng, B.; Brummet, M.; Nam, H.; Gabrielson, K.L.; Banerjee, S.R.; Minn, I.; Pomper, M.G. A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile. Sci. Rep., 2021, 11(1), 7114.
[http://dx.doi.org/10.1038/s41598-021-86551-1] [PMID: 33782486]
[40]
Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst., 1998, 90(12), 889-905.
[http://dx.doi.org/10.1093/jnci/90.12.889] [PMID: 9637138]
[41]
Vicente, M.G. Porphyrin-based sensitizers in the detection and treatment of cancer: Recent progress. Curr. Med. Chem. Anticancer Agents, 2001, 1(2), 175-194.
[http://dx.doi.org/10.2174/1568011013354769] [PMID: 12678766]
[42]
Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 2011, 40(1), 340-362.
[http://dx.doi.org/10.1039/B915149B] [PMID: 20694259]
[43]
Patriquin, L.; Merrick, D.T.; Hill, D.; Holcomb, R.G.; Lemieux, M.E.; Bennett, G.; Karia, B.; Rebel, V.I.; Bauer, T., II Early detection of lung cancer with meso tetra (4-Carboxyphenyl) porphyrin-labeled sputum. J. Thorac. Oncol., 2015, 10(9), 1311-1318.
[http://dx.doi.org/10.1097/JTO.0000000000000627] [PMID: 26200451]
[44]
Kessel, D. Porphyrin-lipoprotein association as a factor in porphyrin localization. Cancer Lett., 1986, 33(2), 183-188.
[http://dx.doi.org/10.1016/0304-3835(86)90023-6] [PMID: 3791189]
[45]
Elzi, D.; Fatland, P.; Karia, B.; Iza, M.; Pertsemlidis, A.; Rebel, V. American society of cell biology annual meeting American Society of Cell BiologySan Diego, CA 2015.
[46]
El-Sayed, A.S.A.; Fathalla, M.; Yassin, M.A.; Zein, N.; Morsy, S.; Sitohy, M.; Sitohy, B. Conjugation of Aspergillus flavipes taxol with porphyrin increases the anticancer activity of taxol and ameliorates its cytotoxic effects. Molecules, 2020, 25(2), E263.
[http://dx.doi.org/10.3390/molecules25020263] [PMID: 31936458]
[47]
Zheng, X.; Li, Z.; Chen, L.; Xie, Z.; Jing, X. Self-assembly of porphyrin-paclitaxel conjugates into nanomedicines: Enhanced cytotoxicity due to endosomal escape. Chem. Asian J., 2016, 11(12), 1780-1784.
[http://dx.doi.org/10.1002/asia.201600423] [PMID: 27124552]
[48]
Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov., 2010, 9(7), 537-550.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[49]
Li, F.; Lu, J.; Liu, J.; Liang, C.; Wang, M.; Wang, L.; Li, D.; Yao, H.; Zhang, Q.; Wen, J.; Zhang, Z.K.; Li, J.; Lv, Q.; He, X.; Guo, B.; Guan, D.; Yu, Y.; Dang, L.; Wu, X.; Li, Y.; Chen, G.; Jiang, F.; Sun, S.; Zhang, B.T.; Lu, A.; Zhang, G. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat. Commun., 2017, 8(1), 1390.
[http://dx.doi.org/10.1038/s41467-017-01565-6] [PMID: 29123088]
[50]
Almond, A. Hyaluronan. Cell. Mol. Life Sci., 2007, 64(13), 1591-1596.
[http://dx.doi.org/10.1007/s00018-007-7032-z] [PMID: 17502996]
[51]
Rosato, A.; Banzato, A.; De Luca, G.; Renier, D.; Bettella, F.; Pagano, C.; Esposito, G.; Zanovello, P.; Bassi, P. HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urol. Oncol., 2006, 24(3), 207-215.
[http://dx.doi.org/10.1016/j.urolonc.2005.08.020] [PMID: 16678050]
[52]
McAtee, C.O.; Barycki, J.J.; Simpson, M.A. Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv. Cancer Res., 2014, 123, 1-34.
[http://dx.doi.org/10.1016/B978-0-12-800092-2.00001-0] [PMID: 25081524]
[53]
Liu, D.; Pearlman, E.; Diaconu, E.; Guo, K.; Mori, H.; Haqqi, T.; Markowitz, S.; Willson, J.; Sy, M.S. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7832-7837.
[http://dx.doi.org/10.1073/pnas.93.15.7832] [PMID: 8755562]
[54]
Harada, H.; Takahashi, M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem., 2007, 282(8), 5597-5607.
[http://dx.doi.org/10.1074/jbc.M608358200] [PMID: 17170110]
[55]
Yin, S.; Huai, J.; Chen, X.; Yang, Y.; Zhang, X.; Gan, Y.; Wang, G.; Gu, X.; Li, J. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater., 2015, 26, 274-285.
[http://dx.doi.org/10.1016/j.actbio.2015.08.029] [PMID: 26300335]
[56]
Chen, Y.; Peng, F.; Song, X.; Wu, J.; Yao, W.; Gao, X. Conjugation of paclitaxel to C-6 hexanediamine-modified hyaluronic acid for targeted drug delivery to enhance antitumor efficacy. Carbohydr. Polym., 2018, 181, 150-158.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.017] [PMID: 29253957]
[57]
Wang, W.; Li, M.; Zhang, Z.; Cui, C.; Zhou, J.; Yin, L.; Lv, H. Design, synthesis and evaluation of multi-functional tLyP-1-hyaluronic acid-paclitaxel conjugate endowed with broad anticancer scope. Carbohydr. Polym., 2017, 156, 97-107.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.100] [PMID: 27842858]
[58]
Zhong, Y.; Goltsche, K.; Cheng, L.; Xie, F.; Meng, F.; Deng, C.; Zhong, Z.; Haag, R. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials, 2016, 84, 250-261.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.049] [PMID: 26851390]
[59]
Bumbaca, B.; Li, Z.; Shah, D.K. Pharmacokinetics of protein and peptide conjugates. Drug Metab. Pharmacokinet., 2019, 34(1), 42-54.
[http://dx.doi.org/10.1016/j.dmpk.2018.11.001] [PMID: 30573392]
[60]
Vhora, I.; Patil, S.; Bhatt, P.; Misra, A. Protein- and Peptide-drug conjugates: An emerging drug delivery technology. Adv. Protein Chem. Struct. Biol., 2015, 98, 1-55.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.001] [PMID: 25819275]
[61]
Liu, Z.; Wang, F.; Chen, X. Integrin alpha(v)beta(3)-targeted cancer therapy. Drug Dev. Res., 2008, 69(6), 329-339.
[http://dx.doi.org/10.1002/ddr.20265] [PMID: 20628538]
[62]
Marinelli, L.; Gottschalk, K.E.; Meyer, A.; Novellino, E.; Kessler, H. Human integrin alphavbeta5: Homology modeling and ligand binding. J. Med. Chem., 2004, 47(17), 4166-4177.
[http://dx.doi.org/10.1021/jm030635j] [PMID: 15293989]
[63]
Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; Maltsev, O.V.; Cavalcanti-Adam, E.A.; Zarka, R.; Reuning, U.; Notni, J.; Wester, H.J.; Mas-Moruno, C.; Spatz, J.; Geiger, B.; Kessler, H. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep., 2017, 7(1), 39805.
[http://dx.doi.org/10.1038/srep39805] [PMID: 28074920]
[64]
Kumar, C.C. Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr. Drug Targets, 2003, 4(2), 123-131.
[http://dx.doi.org/10.2174/1389450033346830] [PMID: 12558065]
[65]
López Rivas, P.; Ranđelović, I.; Raposo Moreira Dias, A.; Arianna Pina, A.; Arosio, D.; Tóvári, J.; Mező, G.; Dal Corso, A.; Pignataro, L.; Gennar, C. Synthesis and biological evaluation of paclitaxel conjugates involving lysosomally cleavable linkers and αVβ3 integrin ligands for tumor targeting. Eur. J. Org. Chem., 2018, 2018(23), 2902-2909.
[http://dx.doi.org/10.1002/ejoc.201800447]
[66]
Bianchi, A.; Arosio, D.; Perego, P.; De Cesare, M.; Carenini, N.; Zaffaroni, N.; De Matteo, M.; Manzoni, L. Design, synthesis and biological evaluation of novel dimeric and tetrameric cRGD-paclitaxel conjugates for integrin-assisted drug delivery. Org. Biomol. Chem., 2015, 13(27), 7530-7541.
[http://dx.doi.org/10.1039/C5OB00497G] [PMID: 26074454]
[67]
Shi, J.; Liu, S.; Yu, Y.; He, C.; Tan, L.; Shen, Y.M. RGD peptide-decorated micelles assembled from polymer-paclitaxel conjugates towards gastric cancer therapy. Colloids Surf. B Biointerfaces, 2019, 180, 58-67.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.042] [PMID: 31028965]
[68]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[69]
Mosquera, J.; García, I.; Liz-Marzán, L.M. Cellular uptake of nanoparticles versus small molecules: A matter of size. Acc. Chem. Res., 2018, 51(9), 2305-2313.
[http://dx.doi.org/10.1021/acs.accounts.8b00292] [PMID: 30156826]
[70]
Raposo Moreira Dias, A.; Pina, A.; Dean, A.; Lerchen, H.G.; Caruso, M.; Gasparri, F.; Fraietta, I.; Troiani, S.; Arosio, D.; Belvisi, L.; Pignataro, L.; Dal Corso, A.; Gennari, C. Neutrophil elastase promotes linker cleavage and paclitaxel release from an integrin-targeted conjugate. Chemistry, 2019, 25(7), 1696-1700.
[http://dx.doi.org/10.1002/chem.201805447] [PMID: 30452790]
[71]
Tolomelli, A.; Galletti, P.; Baiula, M.; Giacomini, D. Can integrin agonists have cards to play against cancer? A literature survey of small molecules integrin activators. Cancers (Basel), 2017, 9(7), E78.
[http://dx.doi.org/10.3390/cancers9070078] [PMID: 28678151]
[72]
Lerman, I.; Hammes, S.R. Neutrophil elastase in the tumor microenvironment. Steroids, 2018, 133, 96-101.
[http://dx.doi.org/10.1016/j.steroids.2017.11.006] [PMID: 29155217]
[73]
Raposo Moreira Dias, A.; Pina, A.; Dal Corso, A.; Arosio, D.; Belvisi, L.; Pignataro, L.; Caruso, M.; Gennari, C. Multivalency increases the binding strength of RGD peptidomimetic-paclitaxel conjugates to integrin αV β3. Chemistry, 2017, 23(58), 14410-14415.
[http://dx.doi.org/10.1002/chem.201703093] [PMID: 28816404]
[74]
Papotti, M.; Croce, S.; Bellò, M.; Bongiovanni, M.; Allìa, E.; Schindler, M.; Bussolati, G. Expression of somatostatin receptor types 2, 3 and 5 in biopsies and surgical specimens of human lung tumours. Correlation with preoperative octreotide scintigraphy. Virchows Arch., 2001, 439(6), 787-797.
[http://dx.doi.org/10.1007/s004280100494] [PMID: 11787852]
[75]
Shen, Y.; Zhang, X.Y.; Chen, X.; Fan, L.L.; Ren, M.L.; Wu, Y.P.; Chanda, K.; Jiang, S.W. Synthetic paclitaxel-octreotide conjugate reverses the resistance of paclitaxel in A2780/Taxol ovarian cancer cell line. Oncol. Rep., 2017, 37(1), 219-226.
[http://dx.doi.org/10.3892/or.2016.5260] [PMID: 27878277]
[76]
Chen, X.; Zhang, X.Y.; Shen, Y.; Fan, L.L.; Ren, M.L.; Wu, Y.P. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice. Oncotarget, 2016, 7(50), 83451-83461.
[http://dx.doi.org/10.18632/oncotarget.13120] [PMID: 27825139]
[77]
Huang, C.M.; Wu, Y.T.; Chen, S.T. Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem. Biol., 2000, 7(7), 453-461.
[http://dx.doi.org/10.1016/S1074-5521(00)00131-9] [PMID: 10903942]
[78]
Yin, T.; Wu, Q.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Well-defined redox-sensitive polyethene glycol-paclitaxel prodrug conjugate for tumor-specific delivery of paclitaxel using octreotide for tumor targeting. Mol. Pharm., 2015, 12(8), 3020-3031.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00280] [PMID: 26086430]
[79]
Luck, A.N.; Mason, A.B. Transferrin-mediated cellular iron delivery. Curr. Top. Membr., 2012, 69, 3-35.
[http://dx.doi.org/10.1016/B978-0-12-394390-3.00001-X] [PMID: 23046645]
[80]
Shan, L.; Shan, X.; Zhang, T.; Zhai, K.; Gao, G.; Chen, X.; Gu, Y. Transferrin-conjugated paclitaxel prodrugs for targeted cancer therapy. RSC Advances, 2016, 6(81), 77987-77998.
[http://dx.doi.org/10.1039/C6RA15141H]
[81]
Li, Y.; Zheng, X.; Gong, M.; Zhang, J. Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma. Oncotarget, 2016, 7(48), 79401-79407.
[http://dx.doi.org/10.18632/oncotarget.12708] [PMID: 27765902]
[82]
Duan, Z.; Chen, C.; Qin, J.; Liu, Q.; Wang, Q.; Xu, X.; Wang, J. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv., 2017, 24(1), 752-764.
[http://dx.doi.org/10.1080/10717544.2017.1321060] [PMID: 28468542]
[83]
Shinde, A.; Feher, K.M.; Hu, C.; Slowinska, K. Peptide internalization enabled by folding: Triple helical cell-penetrating peptides. J. Pept. Sci., 2015, 21(2), 77-84.
[http://dx.doi.org/10.1002/psc.2725] [PMID: 25524829]
[84]
Ayalew, L.; Acuna, J.; Urfano, S.F.; Morfin, C.; Sablan, A.; Oh, M.; Gamboa, A.; Slowinska, K. Conjugation of paclitaxel to hybrid peptide carrier and biological evaluation in jurkat and A549 cancer cell lines. ACS Med. Chem. Lett., 2017, 8(8), 814-819.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00117] [PMID: 28835794]
[85]
Demeule, M.; Charfi, C.; Currie, J-C.; Larocque, A.; Béliveau, R.; Marsolais, C.; Annab, B. Receptor-mediated chemotherapy using a new docetaxel-peptide conjugate for sortilin-positive triple-negative breast cancer. Proc. San Antonio Breast Cancer Sympos., 2020, 80(4), p. SABCS19-P3-10-07.
[http://dx.doi.org/10.1158/1538-7445.SABCS19-P3-10-07]
[86]
Annabi, B.; Béliveau, R.; Currie, J.; Demeule, M.; Larocque, A.; Zgheib, A. Methods and compounds for targeting sortilin receptors and inhibiting vasculogenic mimicry. WO/2020/037434, 2020.
[87]
Teesalu, T.; Sugahara, K.N.; Kotamraju, V.R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16157-16162.
[http://dx.doi.org/10.1073/pnas.0908201106] [PMID: 19805273]
[88]
Saha, A.; Mohapatra, S.; Kurkute, P.; Jana, B.; Sarkar, J.; Mondal, P.; Ghosh, S. Targeted delivery of a novel peptide–docetaxel conjugate to MCF-7 cells through neuropilin-1 receptor: Reduced toxicity and enhanced efficacy of docetaxel. RSC Advances, 2015, 5(112), 92596-92601.
[http://dx.doi.org/10.1039/C5RA16741H]
[89]
Gaugaz, F.Z.; Chicca, A.; Redondo-Horcajo, M.; Barasoain, I.; Díaz, J.F.; Altmann, K.H. Synthesis, microtubule-binding affinity, and antiproliferative activity of new epothilone analogs and of an egfr-targeted epothilone-peptide conjugate. Int. J. Mol. Sci., 2019, 20(5), E1113.
[http://dx.doi.org/10.3390/ijms20051113] [PMID: 30841526]
[90]
Brunetti, J.; Pillozzi, S.; Falciani, C.; Depau, L.; Tenori, E.; Scali, S.; Lozzi, L.; Pini, A.; Arcangeli, A.; Menichetti, S.; Bracci, L. Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug. Sci. Rep., 2015, 5(1), 17736.
[http://dx.doi.org/10.1038/srep17736] [PMID: 26626158]
[91]
FDA. Grants accelerated approval to tisotumab vedotin-tftv for recurrent or metastatic cervical cancer, 2021. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tisotumab-vedotin-tftv-recurrent-or-metastatic-cervical- cancer
[92]
FDA. Granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma, 2020. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda- granted-accelerated-approval-belantamab-mafodotin-blmf- multiple-myeloma
[93]
FDA. Approves first chemoimmunotherapy regimen for patients with relapsed or refractory diffuse large B-cell lymphoma, 2020. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-chemoimmunotherapy-regimen-patients-relapsed-or-refractory-diffuse-large-b-cell
[94]
FDA. Grants accelerated approval to enfortumab vedotin-ejfv for metastatic urothelial cancer, 2021. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-enfortumab-vedotin-ejfv-metastatic-urothelial-cancer
[95]
Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[96]
Amiri-Kordestani, L.; Blumenthal, G.M.; Xu, Q.C.; Zhang, L.; Tang, S.W.; Ha, L.; Weinberg, W.C.; Chi, B.; Candau-Chacon, R.; Hughes, P.; Russell, A.M.; Miksinski, S.P.; Chen, X.H.; McGuinn, W.D.; Palmby, T.; Schrieber, S.J.; Liu, Q.; Wang, J.; Song, P.; Mehrotra, N.; Skarupa, L.; Clouse, K.; Al-Hakim, A.; Sridhara, R.; Ibrahim, A.; Justice, R.; Pazdur, R.; Cortazar, P. FDA approval: Ado- trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin. Cancer Res., 2014, 20(17), 4436-4441.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0012] [PMID: 24879797]
[97]
FDA. FDA approves gemtuzumab ozogamicin for CD33- positive AML, 2020. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-gemtuzumab-ozogamicin-cd33-positive-aml (Accessed on: October 14, 2020).
[98]
FDA. FDA approves inotuzumab ozogamicin for relapsed or refractory B-cell precursor ALL. 2020. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-inotuzumab-ozogamicin-relapsed-or-refractory-b-cell-precursor-all (Accessed on:October 14, 2020).
[99]
FDA. FDA approves new treatment option for patients with HER2-positive breast cancer who have progressed on available therapies, 2020. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves- new-treatment-option-patients-her2-positive-breast- cancer-who-have-progressed-available (Accessed on: October 14, 2020).
[100]
FDA. FDA approves moxetumomab pasudotox-tdfk for hairy cell leukemia, 2021. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-moxetumomab-pasudotox-tdfk-hairy-cell-leukemia (Accessed on: November 22, 2021).
[101]
FDA. FDA grants accelerated approval to loncastuximab tesirine-lpyl for large B-cell lymphoma, 2021. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-moxetumomab-pasudotox-tdfk-hairy-cell-leukemia (Accessed on: November 22, 2021).
[102]
FDA. FDA approves new therapy for triple negative breast cancer that has spread, not responded to other treatments, 2020. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-therapy-triple-negative-breast-cancer-has-spread-not-responded-other-treatments (Accessed on: October 14, 2020).
[103]
Casi, G.; Neri, D. Antibody-drug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem., 2015, 58(22), 8751-8761.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00457] [PMID: 26079148]
[104]
Yu, B.; Liu, D. Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia. Biomark. Res., 2019, 7(1), 24.
[http://dx.doi.org/10.1186/s40364-019-0175-x] [PMID: 31695916]
[105]
Stack, G.D.; Walsh, J.J. Optimising the delivery of tubulin targeting agents through antibody conjugation. Pharm. Res., 2012, 29(11), 2972-2984.
[http://dx.doi.org/10.1007/s11095-012-0810-9] [PMID: 22777294]
[106]
Bornstein, G.G. Antibody drug conjugates: Preclinical considerations. AAPS J., 2015, 17(3), 525-534.
[http://dx.doi.org/10.1208/s12248-015-9738-4] [PMID: 25724883]
[107]
Deng, C.; Pan, B.; O’Connor, O.A. Brentuximab vedotin. Clin. Cancer Res., 2013, 19(1), 22-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0290] [PMID: 23155186]
[108]
Tong, J.T.W.; Harris, P.W.R.; Brimble, M.A.; Kavianinia, I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules, 2021, 26(19), 5847.
[http://dx.doi.org/10.3390/molecules26195847] [PMID: 34641391]
[109]
FDA. FDA approves brentuximab vedotin for previously untreated sALCL and CD30-expressing PTCL, 2020. Available from: https://www.fda.gov/drugs/fda-approves-brentuximab-vedotin-previously-untreated-salcl-and-cd30-expressing-ptcl (Accessed on: October 14, 2020).
[110]
FDA. Brentuximab vedotin, 2020. Available from: https://www.fda.gov/drugs/resources-information-approved- drugs/brentuximab-vedotin (Accessed on: October 14, 2020).
[111]
Younes, A.; Yasothan, U.; Kirkpatrick, P. Brentuximab vedotin. Nat. Rev. Drug Discov., 2012, 11(1), 19-20.
[http://dx.doi.org/10.1038/nrd3629] [PMID: 22212672]
[112]
FDA. FDA approves Brentuximab vedotin for the treatment of adult patients with primary cutaneous anaplastic large cell lymphoma, 2020. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-brentuximab-vedotin-treatment-adult-patients-primary-cutaneous-anaplastic-large-cell (Accessed on: October 14, 2020).
[113]
Scott, L.J. Brentuximab vedotin: A review in CD30-positive hodgkin lymphoma. Drugs, 2017, 77(4), 435-445.
[http://dx.doi.org/10.1007/s40265-017-0705-5] [PMID: 28190142]
[114]
Deeks, E.D. Polatuzumab vedotin: First global approval. Drugs, 2019, 79(13), 1467-1475.
[http://dx.doi.org/10.1007/s40265-019-01175-0] [PMID: 31352604]
[115]
Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; Capo, L.; Verlinsky, A.; Leavitt, M.; Malik, F.; Aviña, H.; Guevara, C.I.; Dinh, N.; Karki, S.; Anand, B.S.; Pereira, D.S.; Joseph, I.B.; Doñate, F.; Morrison, K.; Stover, D.R. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res., 2016, 76(10), 3003-3013.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1313] [PMID: 27013195]
[116]
Astellas. Astellas and seattle genetics receive fda breakthrough therapy designation for PADCEV™ (enfortumab vedotin-ejfv) in combination with pembrolizumab in first- line advanced bladder cancer, 2020. Available from: https://www.astellas.com/en/news/15601 (Accessed on: October 14, 2020).
[117]
Hanna, K.S. Clinical overview of enfortumab vedotin in the management of locally advanced or metastatic urothelial carcinoma. Drugs, 2020, 80(1), 1-7.
[http://dx.doi.org/10.1007/s40265-019-01241-7] [PMID: 31823332]
[118]
Breij, E.C.; de Goeij, B.E.; Verploegen, S.; Schuurhuis, D.H.; Amirkhosravi, A.; Francis, J.; Miller, V.B.; Houtkamp, M.; Bleeker, W.K.; Satijn, D.; Parren, P.W. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res., 2014, 74(4), 1214-1226.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2440] [PMID: 24371232]
[119]
Cocco, E.; Varughese, J.; Buza, N.; Bellone, S.; Glasgow, M.; Bellone, M.; Todeschini, P.; Carrara, L.; Silasi, D.A.; Azodi, M.; Schwartz, P.E.; Rutherford, T.J.; Pecorelli, S.; Lockwood, C.J.; Santin, A.D. Expression of tissue factor in adenocarcinoma and squamous cell carcinoma of the uterine cervix: Implications for immunotherapy with hI- con1, a factor VII-IgGFc chimeric protein targeting tissue factor. BMC Cancer, 2011, 11(1), 263.
[http://dx.doi.org/10.1186/1471-2407-11-263] [PMID: 21693061]
[120]
Fadare, O.; Renshaw, I.L.; Liang, S.X. Expression of tissue factor and heparanase in endometrial clear cell carcinoma: Possible role for tissue factor in thromboembolic events. Int. J. Gynecol. Pathol., 2011, 30(3), 252-261.
[http://dx.doi.org/10.1097/PGP.0b013e3181ff9234] [PMID: 21464728]
[121]
Akashi, T.; Furuya, Y.; Ohta, S.; Fuse, H. Tissue factor expression and prognosis in patients with metastatic prostate cancer. Urology, 2003, 62(6), 1078-1082.
[http://dx.doi.org/10.1016/S0090-4295(03)00768-4] [PMID: 14665359]
[122]
Yao, J.L.; Ryan, C.K.; Francis, C.W.; Kohli, M.; Taubman, M.B.; Khorana, A.A. Tissue factor and VEGF expression in prostate carcinoma: A tissue microarray study. Cancer Invest., 2009, 27(4), 430-434.
[http://dx.doi.org/10.1080/07357900802527247] [PMID: 19219655]
[123]
Cocco, E.; Varughese, J.; Buza, N.; Bellone, S.; Lin, K.Y.; Bellone, M.; Todeschini, P.; Silasi, D.A.; Azodi, M.; Schwartz, P.E.; Rutherford, T.J.; Carrara, L.; Tassi, R.; Pecorelli, S.; Lockwood, C.J.; Santin, A.D. Tissue factor expression in ovarian cancer: Implications for immunotherapy with hI-con1, a factor VII-IgGF(c) chimeric protein targeting tissue factor. Clin. Exp. Metastasis, 2011, 28(7), 689-700.
[http://dx.doi.org/10.1007/s10585-011-9401-0] [PMID: 21725665]
[124]
Seidel, U.J.; Schlegel, P.; Lang, P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front. Immunol., 2013, 4, 76.
[http://dx.doi.org/10.3389/fimmu.2013.00076] [PMID: 23543707]
[125]
Alley, S.C.; Benjamin, D.R.; Jeffrey, S.C.; Okeley, N.M.; Meyer, D.L.; Sanderson, R.J.; Senter, P.D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem., 2008, 19(3), 759-765.
[http://dx.doi.org/10.1021/bc7004329] [PMID: 18314937]
[126]
Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs, 2016, 8(4), 659-671.
[http://dx.doi.org/10.1080/19420862.2016.1156829] [PMID: 27045800]
[127]
Dorywalska, M.; Dushin, R.; Moine, L.; Farias, S.E.; Zhou, D.; Navaratnam, T.; Lui, V.; Hasa-Moreno, A.; Casas, M.G.; Tran, T.T.; Delaria, K.; Liu, S.H.; Foletti, D.; O’Donnell, C.J.; Pons, J.; Shelton, D.L.; Rajpal, A.; Strop, P. Molecular basis of Valine-Citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol. Cancer Ther., 2016, 15(5), 958-970.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-1004] [PMID: 26944918]
[128]
Zhao, H.; Gulesserian, S.; Malinao, M.C.; Ganesan, S.K.; Song, J.; Chang, M.S.; Williams, M.M.; Zeng, Z.; Mattie, M.; Mendelsohn, B.A.; Stover, D.R.; Doñate, F. A potential mechanism for ADC-induced neutropenia: Role of neutrophils in their own demise. Mol. Cancer Ther., 2017, 16(9), 1866-1876.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0133] [PMID: 28522588]
[129]
Yu, B.; Jiang, T.; Liu, D. BCMA-targeted immunotherapy for multiple myeloma. J. Hematol. Oncol., 2020, 13(1), 125.
[http://dx.doi.org/10.1186/s13045-020-00962-7] [PMID: 32943087]
[130]
Smith, L.M.; Nesterova, A.; Alley, S.C.; Torgov, M.Y.; Carter, P.J. Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol. Cancer Ther., 2006, 5(6), 1474-1482.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0026] [PMID: 16818506]
[131]
Staudacher, A.H.; Brown, M.P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br. J. Cancer, 2017, 117(12), 1736-1742.
[http://dx.doi.org/10.1038/bjc.2017.367] [PMID: 29065110]
[132]
van den Bent, M.; Gan, H.K.; Lassman, A.B.; Kumthekar, P.; Merrell, R.; Butowski, N.; Lwin, Z.; Mikkelsen, T.; Nabors, L.B.; Papadopoulos, K.P.; Penas-Prado, M.; Simes, J.; Wheeler, H.; Walbert, T.; Scott, A.M.; Gomez, E.; Lee, H.J.; Roberts-Rapp, L.; Xiong, H.; Bain, E.; Ansell, P.J.; Holen, K.D.; Maag, D.; Reardon, D.A. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: Results from a multi-center, international study. Cancer Chemother. Pharmacol., 2017, 80(6), 1209-1217.
[http://dx.doi.org/10.1007/s00280-017-3451-1] [PMID: 29075855]
[133]
Lambert, J.M. Drug-conjugated antibodies for the treatment of cancer. Br. J. Clin. Pharmacol., 2013, 76(2), 248-262.
[http://dx.doi.org/10.1111/bcp.12044] [PMID: 23173552]
[134]
Shen, B.Q.; Bumbaca, D.; Saad, O.; Yue, Q.; Pastuskovas, C.V.; Khojasteh, S.C.; Tibbitts, J.; Kaur, S.; Wang, B.; Chu, Y.W.; LoRusso, P.M.; Girish, S. Catabolic fate and pharmacokinetic characterization of trastuzumab emtansine (T-DM1): An emphasis on preclinical and clinical catabolism. Curr. Drug Metab., 2012, 13(7), 901-910.
[http://dx.doi.org/10.2174/138920012802138598] [PMID: 22475269]
[135]
FDA. FDA approves ado-trastuzumab emtansine for early breast cancer, 2020. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ado-trastuzumab-emtansine-early-breast-cancer (Accessed on: October 15, 2020).
[136]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab emtansine: Mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer, 2020, 6(2), 130-146.
[http://dx.doi.org/10.1016/j.trecan.2019.12.010] [PMID: 32061303]
[137]
Cheng, X.; Li, J.; Tanaka, K.; Majumder, U.; Milinichik, A.Z.; Verdi, A.C.; Maddage, C.J.; Rybinski, K.A.; Fernando, S.; Fernando, D.; Kuc, M.; Furuuchi, K.; Fang, F.; Uenaka, T.; Grasso, L.; Albone, E.F. MORAb-202, an antibody-drug conjugate utilizing humanized anti-human frα farletuzumab and the microtubule-targeting agent eribulin, has potent antitumor activity. Mol. Cancer Ther., 2018, 17(12), 2665-2675.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1215] [PMID: 30262588]
[138]
Eisai. Eribulin antibody-drug conjugate (ADC) payload. Available from: https://us.eisai.com/our-science/discovery- centers/epochal-precision-anti-cancer-therapeutics/proprietary-cytotoxic-payload-technology (Accessed on: February 04, 2021).
[139]
Roy, A.; Bhattacharyya, M.; Ernsting, M.J.; May, J.P.; Li, S.D. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(4), 349-368.
[http://dx.doi.org/10.1002/wnan.1264] [PMID: 24652678]
[140]
Zhao, P.; Zhang, Y.; Li, W.; Jeanty, C.; Xiang, G.; Dong, Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm. Sin. B, 2020, 10(9), 1589-1600.
[http://dx.doi.org/10.1016/j.apsb.2020.04.012] [PMID: 33088681]
[141]
Brachet, G.; Respaud, R.; Arnoult, C.; Henriquet, C.; Dhommée, C.; Viaud-Massuard, M.C.; Heuze-Vourc’h, N.; Joubert, N.; Pugnière, M.; Gouilleux-Gruart, V. Increment in drug loading on an antibody-drug conjugate increases its binding to the human neonatal Fc receptor in vitro. Mol. Pharm., 2016, 13(4), 1405-1412.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00082] [PMID: 26900766]
[142]
Collins, D.M.; Bossenmaier, B.; Kollmorgen, G.; Niederfellner, G. Acquired resistance to antibody-drug conjugates. Cancers (Basel), 2019, 11(3), E394.
[http://dx.doi.org/10.3390/cancers11030394] [PMID: 30897808]
[143]
Masters, J.C.; Nickens, D.J.; Xuan, D.; Shazer, R.L.; Amantea, M. Clinical toxicity of antibody drug conjugates: A meta-analysis of payloads. Invest. New Drugs, 2018, 36(1), 121-135.
[http://dx.doi.org/10.1007/s10637-017-0520-6] [PMID: 29027591]
[144]
Joubert, N.; Beck, A.; Dumontet, C.; Denevault-Sabourin, C. Antibody-drug conjugates: The last decade. Pharmaceuticals (Basel), 2020, 13(9), E245.
[http://dx.doi.org/10.3390/ph13090245] [PMID: 32937862]
[145]
Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: The nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192.
[http://dx.doi.org/10.1021/bc5004982] [PMID: 25494884]
[146]
Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J.R. Site-specific antibody drug conjugates for cancer therapy. MAbs, 2014, 6(1), 34-45.
[http://dx.doi.org/10.4161/mabs.27022] [PMID: 24423619]
[147]
Jackson, D. Processes for constructing homogeneous antibody drug conjugates. Org. Process Res. Dev., 2016, 20(5), 852-866.
[http://dx.doi.org/10.1021/acs.oprd.6b00067]
[148]
You, Y.; Xu, Z.; Chen, Y. Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer. Drug Deliv., 2018, 25(1), 448-460.
[http://dx.doi.org/10.1080/10717544.2018.1435746] [PMID: 29405790]
[149]
Massa, S.; Xavier, C.; De Vos, J.; Caveliers, V.; Lahoutte, T.; Muyldermans, S.; Devoogdt, N. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug. Chem., 2014, 25(5), 979-988.
[http://dx.doi.org/10.1021/bc500111t] [PMID: 24815083]
[150]
Albrecht, H.; Burke, P.A.; Natarajan, A.; Xiong, C.Y.; Kalicinsky, M.; DeNardo, G.L.; DeNardo, S.J. Production of soluble ScFvs with C-terminal-free thiol for site-specific conjugation or stable dimeric ScFvs on demand. Bioconjug. Chem., 2004, 15(1), 16-26.
[http://dx.doi.org/10.1021/bc030018+] [PMID: 14733579]
[151]
Badescu, G.; Bryant, P.; Bird, M.; Henseleit, K.; Swierkosz, J.; Parekh, V.; Tommasi, R.; Pawlisz, E.; Jurlewicz, K.; Farys, M.; Camper, N.; Sheng, X.; Fisher, M.; Grygorash, R.; Kyle, A.; Abhilash, A.; Frigerio, M.; Edwards, J.; Godwin, A. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug. Chem., 2014, 25(6), 1124-1136.
[http://dx.doi.org/10.1021/bc500148x] [PMID: 24791606]
[152]
Gébleux, R.; Wulhfard, S.; Casi, G.; Neri, D. Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody-drug conjugates. Mol. Cancer Ther., 2015, 14(11), 2606-2612.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0480] [PMID: 26294742]
[153]
Perrino, E.; Steiner, M.; Krall, N.; Bernardes, G.J.; Pretto, F.; Casi, G.; Neri, D. Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res., 2014, 74(9), 2569-2578.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2990] [PMID: 24520075]
[154]
Kung Sutherland, M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: A novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122(8), 1455-1463.
[http://dx.doi.org/10.1182/blood-2013-03-491506] [PMID: 23770776]
[155]
Sandall, S.; McCormick, R.; Miyamoto, J.; Biechele, T.; Law, C.; Lewis, T. SGN-CD70A, a pyrrolobenzodiazepine (PBD) dimer linked ADC, mediates DNA damage pathway activation and G2 cell cycle arrest leading to cell death. Cancer Res., 2015, 75, 15.
[156]
Pahl, A.; Lutz, C.; Hechler, T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov. Today. Technol., 2018, 30, 85-89.
[http://dx.doi.org/10.1016/j.ddtec.2018.08.005] [PMID: 30553524]
[157]
Yu, S.F.; Zheng, B.; Go, M.; Lau, J.; Spencer, S.; Raab, H.; Soriano, R.; Jhunjhunwala, S.; Cohen, R.; Caruso, M.; Polakis, P.; Flygare, J.; Polson, A.G. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin. Cancer Res., 2015, 21(14), 3298-3306.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2035] [PMID: 25840969]
[158]
Skwarczynski, M.; Hayashi, Y.; Kiso, Y. Paclitaxel prodrugs: Toward smarter delivery of anticancer agents. J. Med. Chem., 2006, 49(25), 7253-7269.
[http://dx.doi.org/10.1021/jm0602155] [PMID: 17149855]
[159]
Bensaid, F.; Thillaye du Boullay, O.; Amgoune, A.; Pradel, C.; Harivardhan Reddy, L.; Didier, E.; Sablé, S.; Louit, G.; Bazile, D.; Bourissou, D. Y-shaped mPEG-PLA cabazitaxel conjugates: Well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core-corona nanoparticles. Biomacromolecules, 2013, 14(4), 1189-1198.
[http://dx.doi.org/10.1021/bm400161g] [PMID: 23432356]
[160]
He, R.; Yin, C. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomater., 2017, 53, 355-366.
[http://dx.doi.org/10.1016/j.actbio.2017.02.012] [PMID: 28189812]
[161]
Zhang, X.; Li, Y.; Chen, X.; Wang, X.; Xu, X.; Liang, Q.; Hu, J.; Jing, X. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials, 2005, 26(14), 2121-2128.
[http://dx.doi.org/10.1016/j.biomaterials.2004.06.024] [PMID: 15576187]
[162]
Jin, C.; Wen, S.; Zhang, Q.; Zhu, Q.; Yu, J.; Lu, W. Synthesis and biological evaluation of paclitaxel and camptothecin prodrugs on the basis of 2-nitroimidazole. ACS Med. Chem. Lett., 2017, 8(7), 762-765.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00189] [PMID: 28740613]
[163]
Saga, T.; Neumann, R.D.; Heya, T.; Sato, J.; Kinuya, S.; Le, N.; Paik, C.H.; Weinstein, J.N. Targeting cancer micrometastases with monoclonal antibodies: A binding-site barrier. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8999-9003.
[http://dx.doi.org/10.1073/pnas.92.19.8999] [PMID: 7568060]
[164]
Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res., 2001, 61(12), 4750-4755.
[PMID: 11406547]
[165]
Rudnick, S.I.; Lou, J.; Shaller, C.C.; Tang, Y.; Klein-Szanto, A.J.; Weiner, L.M.; Marks, J.D.; Adams, G.P. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res., 2011, 71(6), 2250-2259.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2277] [PMID: 21406401]
[166]
Krall, N.; Scheuermann, J.; Neri, D. Small targeted cytotoxics: Current state and promises from DNA-encoded chemical libraries. Angew. Chem. Int. Ed. Engl., 2013, 52(5), 1384-1402.
[http://dx.doi.org/10.1002/anie.201204631] [PMID: 23296451]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy