Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

A Kind of Electro-hydraulic Servo System Cooperative Control Simulation: An Experimental Research

Author(s): Bingwei Gao*, Wei Shen, Ye Dai and Wei Wang

Volume 15, Issue 4, 2022

Published on: 20 May, 2022

Page: [309 - 322] Pages: 14

DOI: 10.2174/2352096515666220331143634

Price: $65

Abstract

Background: The single position control or force control of the electro-hydraulic servo system has long been unable to meet the actual needs of production and life. To achieve a good control effect and solve various problems in real life, people no longer only consider a single position control or force control.

Objective: The proposed method provides technical support for multi-objective collaborative control of the electro-hydraulic servo system, completes the requirements of multitasking operation, improves the positioning accuracy and response velocity of the electro-hydraulic servo system, and realizes the synergy between the position and force.

Methods: A control method of the outer loop control of force as feedforward compensation is adopted to realize the coordinated control of force and position based on position control. The position control part adopts the PID control algorithm to ensure real-time response accuracy and positioning accuracy. The outer force loop uses an adaptive fuzzy neural network control algorithm to reduce vibration and shock caused by system instability and nonlinear factors during the force control process.

Results: The control effect of the designed position/force collaborative controller is verified by simulation and experiment. It can effectively reduce the vibration and impact caused by the contact force during the working process of the system, at the same time greatly improving the accuracy of position control and improving the stability of the system.

Conclusion: The designed force/position collaborative control system has a good overall control effect.

Keywords: Electro-hydraulic servo systems, PID control, collaborative control, adaptive fuzzy neural network control, sensor fusion, signal processing algorithms.

Graphical Abstract

[1]
Y. He, J. Wang, and R. Hao, "Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection", J. Syst. Sci. Complex., vol. 28, no. 2, pp. 341-359, 2015.
[http://dx.doi.org/10.1007/s11424-014-2243-5]
[2]
D.M. Wonohadidjojo, G. Kothapalli, and M.Y. Hassan, "Position control of electro-hydraulic actuator system using fuzzy logic controller optimized by particle swarm optimization", Int. J. Autom. Comput, vol. 10, no. 10, pp. 181-193, 2013.
[http://dx.doi.org/10.1007/s11633-013-0711-3]
[3]
B. Swilling, E. Whitman, S. Berard, A.A. Rizzi, and A.Y. Khripin, Achieving a target gait behavior in a legged robot, p. US10017218,. 2018
[4]
G.R. Michael, Dynamic resource location coordination control system, p. US10492023. 2019
[5]
R. Zemouri, R. Gouriveau, and C.P. Paul, "Combining a recurrent neural network and a PID controller for prognostic purpose: A way to improve the accuracy of predictions", WSEAS Trans Syst Contr., vol. 5, no. 5, pp. 353-371, 2010.
[6]
R. Madonski, M. Ramirez-Neria, and M. Stankovi, "S. Shao, Z. Gao, J. Yang, and S. Li, "On vibration suppression and trajectory tracking in largely uncertain torsional system: An error-based ADRC approach"", Mech. Syst. Signal Process., vol. 134, p. 106300, . 2019
[http://dx.doi.org/10.1016/j.ymssp.2019.106300]
[7]
Z.M. Tong, S.S. Wu, S.G. Tong, Y. Yue, Y. Li, Z. Xu, and Y. Zhong, "Energy-saving technologies for construction machinery: A review of electro-hydraulic pump-valve coordinated system", J. Zhejiang Univ. Sci. A, vol. 21, no. 5, pp. 331-349, 2020.
[http://dx.doi.org/10.1631/jzus.A2000094]
[8]
M.V. Javier, "Velocity field control of robot manipulators by using only position measurements", J. Franklin Inst., vol. 344, no. 8, pp. 1021-1038, 2007.
[9]
M.H. Raibert, and J.J. Craig, "Hybrid position/force control of manipulators", J. Dyn. Syst. Meas. Control, vol. 103, no. 2, pp. 126-133, 1981.
[10]
D.Q. Lu, and H. Zhang, "Flexural-gravity wave resistances due to a surface-moving line source on a fluid covered by a thin elastic plate", Theor. Appl. Mech. Lett., vol. 3, no. 3, pp. 70-73, 2013.
[http://dx.doi.org/10.1063/2.1302202]
[11]
K. Awni, and A. Fathi, "The role of Nickel(II) on the homochirality of amino acids in living systems", Chin. Chem. Lett., vol. 21, no. 1, pp. 113-116, 2010.
[http://dx.doi.org/10.1016/j.cclet.2009.09.008]
[12]
M. Gurin, Dynamic resource location coordination control system, p. US10643155. 2019
[13]
Q.J. Liu, L. Ge, J.H. Wu, W. Zhang, H. Wu, and Y.F. Chen, Multi-energy coordinated control system and method suitable for ac/dc hybrid distributed system, p. WO2019233071. 2019
[14]
G. Wrat, M. Bhola, P. Ranjan, S.K. Mishra, and J. Das, "Energy saving and fuzzy-PID position control of electro-hydraulic system by leak-age compensation through proportional flow control valve", ISA Trans., vol. 101, pp. 269-280, 2020.
[http://dx.doi.org/10.1016/j.isatra.2020.01.003] [PMID: 31948681]
[15]
F. Cao, "PID controller optimized by genetic algorithm for direct-drive servo system", Neural Comput. Appl., vol. 32, no. 1, pp. 23-30, 2020.
[http://dx.doi.org/10.1007/s00521-018-3739-z]
[16]
N.D. Phu, N.N. Hung, A. Ahmadian, and N. Senu, "A new fuzzy PID control system based on fuzzy PID controller and fuzzy control pro-cess", Int. J. Fuzzy Syst., vol. 22, no. 7, pp. 2163-2187, 2020.
[http://dx.doi.org/10.1007/s40815-020-00904-y]
[17]
K.M. Elbayomy, J. Zongxia, and Z. Huaqing, "PID controller optimization by GA and its performances on the electro-hydraulic servo control system", Chin. J. Aeronauti., vol. 21, no. 4, pp. 378-384, 2008.
[http://dx.doi.org/10.1016/S1000-9361(08)60049-7]
[18]
K. Ito, T. Yamada, S. Ikeo, and K. Takahashi, "Application of simple adaptive control to water hydraulic servo cylinder system", Chin. J. Mech. Eng., vol. 25, no. 5, pp. 882-888, 2012.
[http://dx.doi.org/10.3901/CJME.2012.05.882]
[19]
K.H. Drees, Building management system with augmented deep learning using combined regression and artificial neural network model-ing, p. US20190041811. 2019
[20]
G.H. Liu, Z.X. Wang, C.L. Mei, S. Yu, and Y.H. Ding, Feedforward decoupling method of permanent magnet synchronous motor based on neural network online learning, p. CN103219936. 2013
[21]
D. Zhu, and Y. Fang, "Adaptive control of parallel manipulators via fuzzy-neural network algorithm", J. Control Theory Appl, vol. 5, no. 5, pp. 295-300, 2007.
[http://dx.doi.org/10.1007/s11768-006-6042-y]
[22]
T. Ye, Z. Luo, and G. Wang, "Adaptive sliding mode control of robot based on fuzzy neural network", J. Ambient Intell. Humaniz. Comput., vol. 11, no. 5, p. 3, 2020.
[http://dx.doi.org/10.1007/s12652-020-01809-2]
[23]
Y.K. Chen, S.W. Yang, I.J. Ndiour, Y.T. Liao, V.S. Somayazulu, O. Tickoo, and S. Varadarajan, Multi-domain cascade convolutional neural network, p. US20190042867. 2019
[24]
R.D. Turney, Predictive building control sysytem with neural network based constraint generation, p. US20180306459. 2018
[25]
B. Xu, and X. Wang, Aircraft global finite time neural network control method based on switching mechanism, p. CN108828957. 2018
[26]
B. Claessens, and P. Vrancx, Methods, controllers and systems for the control of distribution systems using a neural network architecture, p. US20190019080,. 2019
[27]
Y. Ye, C.B. Yin, Y. Gong, and J.J. Zhou, "Position control of nonlinear hydraulic system using an improved PSO based PID controller", Mech. Syst. Signal Process., vol. 83, pp. 241-259, 2017.
[http://dx.doi.org/10.1016/j.ymssp.2016.06.010]
[28]
J. Timothy, and J. Draelos, Adaptive neural network management system, p. US10891540. 2021
[29]
S. Matthew, and N.F. Jakob, Adaptive artificial neural network selection techniques, p. US10878318. 2020
[30]
W.M. Bessa, M.S. Dutra, and E. Kreuzer, "Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic ser-vo-system", J. Intell. Robot. Syst., vol. 58, no. 1, pp. 3-16, 2010.
[http://dx.doi.org/10.1007/s10846-009-9342-x]
[31]
Q. Guo, Z. Chen, and Y. Yan, "Terminal sliding mode velocity control of the electro-hydraulic actuator with lumped uncertainty", Aerosp. Syst., vol. 4, no. 4, pp. 345-352, 2021.
[32]
R.W. Van Dolah, M.G. Zabetakis, D.S. Burgess, and G.S. Scott, "Flame propagation, extinguishment and environmental effects on combus-tion", Fire Technol., vol. 1, no. 2, pp. 138-145, 1965.
[http://dx.doi.org/10.1007/BF02588484]
[33]
Z. Omar, X. Wang, K. Hussain, and M. Yang, "“Delay compensation based controller for rotary electrohydraulic servo system”, Int. J. Dy-nam", Control, vol. 9, no. 4, pp. 1645-1652, 2021.
[http://dx.doi.org/10.1007/s40435-020-00752-6]
[34]
H.H. Ali, and R.C. Fales, "A review of flow control methods", Int. J. Dynam. Control, vol. 9, no. 4, pp. 1847-1854, 2021.
[http://dx.doi.org/10.1007/s40435-020-00730-y]
[35]
R.T. Nichols, "Testing techniques for full-scale missile structures under simulated re-entry environment", Exp. Mech., vol. 1, no. 1, pp. 8-15, 1961.
[http://dx.doi.org/10.1007/BF02324902]
[36]
B. Gao, and Y. Ye, "Research on position/velocity synergistic control of electro hydraulic servo system", Recent Pat. Mech. Eng., vol. 13, no. 4, pp. 366-377, 2020.
[http://dx.doi.org/10.2174/2212797613999200420082115]
[37]
X. Zhang, Z. Li, Z. Li, S. Qiu, and H. Wang, "Differential pressure reset strategy based on reinforcement learning for chilled water sys-tems", Build. Simul., vol. 15, no. 2, pp. 233-248, 2022.
[http://dx.doi.org/10.1007/s12273-021-0808-5]
[38]
S. Asgari, A.A. Suratgar, and M. Kazemi, "Feedforward fractional order PID load frequency control of microgrid using harmony search algorithm", Iran. J. Sci. Technol. Trans. Electr. Eng., vol. 45, no. 4, pp. 1369-1381, 2021.
[http://dx.doi.org/10.1007/s40998-021-00428-7]
[39]
C.E. Kutz Jr, "Test methods and equipment-model KC-135 airplane wing fatigue test", Exp. Mech., vol. 3, no. 7, pp. 168-172, 1963.
[http://dx.doi.org/10.1007/BF02327425]
[40]
A. Bento, L. Oliveira, I. Rubio Scola, V.J.S. Leite, and F. Gomide, "Evolving granular control with high-gain observers for feedback linear-izable nonlinear systems", Evol. Syst., vol. 12, no. 4, pp. 935-948, 2021.
[http://dx.doi.org/10.1007/s12530-020-09349-y]
[41]
H. Yao, and D. Liu, "Utilization of low activity CFBC Ash in cemented paste backfill containing phosphate tailings", Min. Metall. Explor., vol. 38, no. 6, pp. 2485-2492, 2021.
[http://dx.doi.org/10.1007/s42461-021-00504-w]
[42]
G.A. Andreev, "Statistical analysis and synthesis of processes and optimal automatic systems with random loads", Radiophys. Quantum Electron., vol. 12, no. 7, pp. 778-787, 1969.
[http://dx.doi.org/10.1007/BF01031074]
[43]
B. Huang, Q. Cai, and C. Wang, "“Experimental investigation on the spallation characteristics of mudstone under biaxial compressive stress”, Geomech. Geophys", Geo-energ, Geo-resour., vol. 7, no. 4, p. 106, 2021.
[44]
J. Lukasiewicz, "Some problems in design and operation of blowdown wind tunnels", Z. Angew. Math. Phys., vol. 9, no. 5-6, pp. 422-437, 1958.
[http://dx.doi.org/10.1007/BF02424763]
[45]
Y. Yang, A. Luo, and H. Han, "Coordinating optimization-based sliding mode variable structure control for electro-hydraulic servo sys-tem", J. Control Theory Appl., vol. 4, no. 4, pp. 168-174, 2006.
[http://dx.doi.org/10.1007/s11768-006-5164-6]
[46]
C.N. Cho, H.J. Kim, and Y.H. Song, PID System and method for tuning the gains of PID controller using neural network, p. KR20180032453. 2018
[47]
A.J. Brian, M.L. Bruno, N.S. Richard, and D.B. Zachary, Fragrance intensity control mechanism with PID control, p. US2020276348. 2020
[48]
W. He, and Y. Dong, "Adaptive fuzzy neural network control for a constrained robot using impedance learning", IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1174-1186, 2018.
[http://dx.doi.org/10.1109/TNNLS.2017.2665581] [PMID: 28362618]
[49]
C.W. Wang, Analog turntable control system based on neural network PID control, p. CN107908101. 2018
[50]
Z.Z. Zeng, Intelligent PID control method, p. WO2020029217. 2020
[51]
W. Cheng, H.F. Chen, W.C. Yu, and D.K. Xu, Adaptive neural networks for node classification in dynamic networks, p. US2020366690. 2020
[52]
E. Takayuki, K. Kazuki, I. Hiroshi, T. Hiromasa, and A. Fumiji, Power coordination control system, power coordination control method, and non-transitory storage medium, p. US10734815. 2020
[53]
F. Doctor, and H. Hagras, An improved neuro type-2 fuzzy based method for decision making, p. EP2300965. 2019
[54]
J.J. YU, X. Xiao and Y. Zhang, "Non-linear adaptive neural network equalizer in optical communication",, p. WO2019191099,. 2019
[55]
S.G. David, S.A. Thomas, R.R. Spencer, S. Melanie, and I.H. Carrie, Adaptive neural network selection to extract particular results, p. US2019251402. 2019
[56]
N. Adib, and N. Ali, Systems and methods for real-time forecasting and predicting of electrical peaks and managing the energy, health, reliability, and performance of electrical power systems based on an artificial adaptive neural network, p. US2019171968. 2019
[57]
J.B. Douglas, E.D. Mark, and S. Catherine, Method and apparatus for constructing a dynamic adaptive neural network array, p. US10095718. 2018
[58]
W. Xue, W. Bai, S. Yang, K. Song, Y. Huang, and H. Xie, "ADRC with adaptive extended state observer and its application to air–fuel ratio control in gasoline engines", IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5847-5857, 2015.
[http://dx.doi.org/10.1109/TIE.2015.2435004]
[59]
A.T. Le, Y.H. Joo, and Q.T. Le, "Adaptive neural network second-order sliding mode control of dual arm robots", Int. J. Control. Autom. Syst., no. 15, pp. 1-9, 2017.
[60]
P.C. Pradhan, R.K. Sahu, and S. Panda, "Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power sys-tems with UPFC and SMES", Eng. Sci. Technol. Int. J., vol. 19, no. 1, pp. 338-354, 2016.
[http://dx.doi.org/10.1016/j.jestch.2015.08.007]
[61]
G. Michael, Dynamic resource location coordination control system, p. US10492023. 2019
[62]
T. Eda, K. Kasai, H. Imai, H. Takatsuka, and F. Aita, Power coordination control system, power coordination control method and power coordination control program, p. EP3422524. 2019
[63]
B.Q. Lin, T. Liu, Z. Wang, T. Liu, W. Yang, H. Li, Z.B. Huang, and H. Wang, Network integrated and coordinated control system and method for thin coal seam comprehensive mining and gas control, p. WO2018176892. 2018
[64]
M. Gheisarnejad, "An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control", Appl. Soft Comput., vol. 65, pp. 121-138, 2018.
[http://dx.doi.org/10.1016/j.asoc.2018.01.007]
[65]
K.M. Goher, and S.O. Fadlallah, "Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism", Robotics Biomim., vol. 4, no. 1, p. 1, 2017.
[http://dx.doi.org/10.1186/s40638-017-0057-3] [PMID: 28392992]
[66]
Y.B. Li, H. Chai, H. Zhang, G.T. Zhang, and X.L. Ma, Distributed type control system of hydraulic quadruped robot and control method, p. CN103279113. 2015
[67]
E. Zhu, J. Pang, N. Sun, H. Gao, Q. Sun, and Z. Chen, "Airship horizontal trajectory tracking control based on Active Disturbance Rejec-tion Control (ADRC)", Nonlinear Dyn., vol. 75, no. 4, pp. 725-734, 2014.
[http://dx.doi.org/10.1007/s11071-013-1099-x]
[68]
P.N. Babu, R. Peesapati, and G. Panda, "An adaptive differentiation frequency based advanced reference current generator in grid-tied PV applications", IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 8, pp. 3502-3515, 2020.
[http://dx.doi.org/10.1109/JESTPE.2019.2933140]
[69]
H.J. Tsubata, R.K. Hasui, T. Yamada, and H.S. Tanaka, PID control device, pid control method, and PID control program, p. EP3355136. 2019
[70]
O. Ashraf, and A.H. Brian, System and method for controlling PTO clutch engagement using adaptive incremental PID control, p. US10449944. 2019
[71]
A.B. Craig, Adaptive PID control for chilled water CRAC units, p. US10557641. 2020
[72]
T. Hajime, H. Ryosuke, Y. Takaaki, and T. Hitoshi, PID control device, "PID control method, and PID control program, p. US10558175. 2020
[73]
B. Gao, J. Shao, and X. Yang, "A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system", ISA Trans., vol. 53, no. 6, pp. 1910-1918, 2014.
[http://dx.doi.org/10.1016/j.isatra.2014.06.011] [PMID: 25085480]
[74]
N. Takayama, Coordination control system, p. JP2017180989. 2017
[75]
Y. Nakada, S. Dempoya, S. Ozeki, and I. Yoshida, Data coordination control system and data coordination control method, p. JP2017097476. 2017
[76]
Y.J. E. Higuchi, T. Babasaki, and K. Murai, Coordination control system for power supply and ICT DEVIC, p. JP2015056945. 2013

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy