Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

A Concise Review on Tyrosine Kinase Targeted Cancer Therapy

Author(s): Ashish Shah*, Chhagan Patel, Ghanshaym Parmar, Ashish Patel and Manav Jain

Volume 17, Issue 2, 2022

Published on: 25 May, 2022

Page: [96 - 107] Pages: 12

DOI: 10.2174/1574885517666220331104025

Price: $65

Abstract

Tyrosine Kinase (TK) is considered one of the important family members of the kinase family due to its important role in various cellular processes like cell growth, cell differentiation, apoptosis, etc. Mutation, overexpression, and dysfunction of tyrosine kinase receptors lead to the development of malignancy; thus, they are considered one of the important targets for the development of anti-cancer molecules. The tyrosine kinase family is majorly divided into two classes; receptor and non-receptor tyrosine kinase. Both of the classes have an important role in the development of tumour cells. Currently, more than 40 FDA-approved tyrosine kinase inhibitors are used to treat various types of cancers. Tyrosine kinase inhibitors mainly block the phosphorylation of tyrosine residue of the corresponding kinase substrate, so activation of downstream signalling pathways can be inhibited. The promising results of tyrosine kinase inhibitors in solid tumours have revolutionized oncology research. In this article, we summarized the role of some important members of the tyrosine kinase family in the development and progression of tumour cells and the significance of tyrosine kinase inhibitors in the treatment of various types of cancer.

Keywords: Tyrosine kinase, types of receptors, tyrosine kinase inhibitors, cancer, small molecules, targeted therapy.

Graphical Abstract

[1]
Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci Rep 2011; 1(1): 90.
[http://dx.doi.org/10.1038/srep00090] [PMID: 22034591]
[2]
Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature 2014; 509(7502): 582-7.
[http://dx.doi.org/10.1038/nature13319] [PMID: 24870543]
[3]
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298(5600): 1912-34.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[4]
Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009; 9(1): 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[5]
Li E, Hristova K. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry 2006; 45(20): 6241-51.
[http://dx.doi.org/10.1021/bi060609y] [PMID: 16700535]
[6]
Paul MK, Mukhopadhyay AK. Tyrosine kinase - Role and significance in Cancer. Int J Med Sci 2004; 1(2): 101-15.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[7]
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141(7): 1117-34.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[8]
Gibbs JB. Anticancer drug targets: Growth factors and growth factor signaling. J Clin Invest 2000; 105(1): 9-13.
[http://dx.doi.org/10.1172/JCI9084] [PMID: 10619855]
[9]
Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol 2005; 23(9): 2078-93.
[http://dx.doi.org/10.1200/JCO.2005.02.047] [PMID: 15774796]
[10]
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12(1): 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[11]
Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 2010; 277(2): 301-8.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07448.x] [PMID: 19922469]
[12]
Walter JW, North PE, Waner M, et al. Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer 2002; 33(3): 295-303.
[http://dx.doi.org/10.1002/gcc.10028] [PMID: 11807987]
[13]
Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005; 69(Suppl. 3): 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[14]
Karaman S, Leppänen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development 2018; 145(14): dev151019.
[http://dx.doi.org/10.1242/dev.151019] [PMID: 30030240]
[15]
Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 2010; 8(11): 1439-52.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0168] [PMID: 21047773]
[16]
Turner N, Grose R. Fibroblast growth factor signalling: From development to cancer. Nat Rev Cancer 2010; 10(2): 116-29.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[17]
Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 2005; 16(2): 179-86.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.003] [PMID: 15863033]
[18]
Fleming TP, Saxena A, Clark WC, et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 1992; 52(16): 4550-3.
[PMID: 1322795]
[19]
Gotlib J, Cools J, Malone JM III, Schrier SL, Gilliland DG, Coutré SE. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: Implications for diagnosis, classification, and management. Blood 2004; 103(8): 2879-91.
[http://dx.doi.org/10.1182/blood-2003-06-1824] [PMID: 15070659]
[20]
Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 2017; 17(5): 318-32.
[http://dx.doi.org/10.1038/nrc.2017.8] [PMID: 28303906]
[21]
Touat M, Ileana E, Postel-Vinay S, André F, Soria JC. Targeting FGFR signaling in cancer. Clin Cancer Res 2015; 21(12): 2684-94.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2329] [PMID: 26078430]
[22]
Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: An update. Nat Rev Cancer 2012; 12(3): 159-69.
[http://dx.doi.org/10.1038/nrc3215] [PMID: 22337149]
[23]
Xu Y, Kong GK, Menting JG, et al. How ligand binds to the type 1 insulin-like growth factor receptor. Nat Commun 2018; 9(1): 821.
[http://dx.doi.org/10.1038/s41467-018-03219-7] [PMID: 29483580]
[24]
Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: Novel targeted therapies. BioMed Res Int 2015; 2015: 538019.
[http://dx.doi.org/10.1155/2015/538019] [PMID: 25866791]
[25]
Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52: 112-20.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.002] [PMID: 30184463]
[26]
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50(1): 12-36.
[http://dx.doi.org/10.1093/abbs/gmx126] [PMID: 29293886]
[27]
Syed V. TGF-β Signaling in cancer. J Cell Biochem 2016; 117(6): 1279-87.
[http://dx.doi.org/10.1002/jcb.25496] [PMID: 26774024]
[28]
Gocek E, Moulas AN, Studzinski GP. Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 2014; 51(3): 125-37.
[http://dx.doi.org/10.3109/10408363.2013.874403] [PMID: 24446827]
[29]
Chang YM, Kung HJ, Evans CP. Nonreceptor tyrosine kinases in prostate cancer. Neoplasia 2007; 9(2): 90-100.
[http://dx.doi.org/10.1593/neo.06694] [PMID: 17357254]
[30]
Ingley E. Src family kinases: Regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta 2008; 1784(1): 56-65.
[http://dx.doi.org/10.1016/j.bbapap.2007.08.012] [PMID: 17905674]
[31]
Kawakami T, Pennington CY, Robbins KC. Isolation and oncogenic potential of a novel human src-like gene. Mol Cell Biol 1986; 6(12): 4195-201.
[PMID: 3099169]
[32]
Tuhácková Z. Molecular therapeutics-lessons from the role of Src in cellular signalling. Folia Biol (Praha) 2005; 51(4): 114-20.
[PMID: 16180547]
[33]
Roskoski R Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res 2015; 94: 9-25.
[http://dx.doi.org/10.1016/j.phrs.2015.01.003] [PMID: 25662515]
[34]
Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997; 13: 513-609.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.513] [PMID: 9442882]
[35]
Martin GS. The hunting of the Src. Nat Rev Mol Cell Biol 2001; 2(6): 467-75.
[http://dx.doi.org/10.1038/35073094] [PMID: 11389470]
[36]
Sabe H, Knudsen B, Okada M, Nada S, Nakagawa H, Hanafusa H. Molecular cloning and expression of chicken C-terminal Src kinase: Lack of stable association with c-Src protein. Proc Natl Acad Sci USA 1992; 89(6): 2190-4.
[http://dx.doi.org/10.1073/pnas.89.6.2190] [PMID: 1372437]
[37]
Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci 2012; 8(10): 1385-97.
[http://dx.doi.org/10.7150/ijbs.5141] [PMID: 23139636]
[38]
Cao H, Courchesne WE, Mastick CC. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: Recruitment of C-terminal Src kinase. J Biol Chem 2002; 277(11): 8771-4.
[http://dx.doi.org/10.1074/jbc.C100661200] [PMID: 11805080]
[39]
Wong L, Lieser SA, Miyashita O, et al. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. J Mol Biol 2005; 351(1): 131-43.
[http://dx.doi.org/10.1016/j.jmb.2005.05.042] [PMID: 16002086]
[40]
Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18(5): 516-23.
[http://dx.doi.org/10.1016/j.ceb.2006.08.011] [PMID: 16919435]
[41]
Genna A, Gil-Henn H. FAK family kinases: The Yin and Yang of cancer cell invasiveness. Mol Cell Oncol 2018; 5(4): e1449584.
[http://dx.doi.org/10.1080/23723556.2018.1449584] [PMID: 30250911]
[42]
Hussain A, Yu L, Faryal R, Mohammad DK, Mohamed AJ, Smith CI. TEC family kinases in health and disease-loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. FEBS J 2011; 278(12): 2001-10.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08134.x] [PMID: 21518255]
[43]
Smith CI, Islam TC, Mattsson PT, Mohamed AJ, Nore BF, Vihinen M. The Tec family of cytoplasmic tyrosine kinases: Mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. BioEssays 2001; 23(5): 436-46.
[http://dx.doi.org/10.1002/bies.1062] [PMID: 11340625]
[44]
Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: Beyond AKT. Curr Opin Cell Biol 2017; 45: 62-71.
[http://dx.doi.org/10.1016/j.ceb.2017.02.007] [PMID: 28343126]
[45]
Wu J, Liu C, Tsui ST, Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol 2016; 9(1): 80.
[http://dx.doi.org/10.1186/s13045-016-0313-y] [PMID: 27590878]
[46]
Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene 2004; 23(48): 7918-27.
[http://dx.doi.org/10.1038/sj.onc.1208081] [PMID: 15489910]
[47]
Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: From leukaemia to solid tumours. Nat Rev Cancer 2013; 13(8): 559-71.
[http://dx.doi.org/10.1038/nrc3563] [PMID: 23842646]
[48]
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. Int Rev Cell Mol Biol 2011; 286: 271-300.
[http://dx.doi.org/10.1016/B978-0-12-385859-7.00006-9] [PMID: 21199784]
[49]
Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 2012; 83(8): 1021-32.
[http://dx.doi.org/10.1016/j.bcp.2011.12.016] [PMID: 22209898]
[50]
Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 2005; 44(9): 879-94.
[http://dx.doi.org/10.2165/00003088-200544090-00001] [PMID: 16122278]
[51]
Yanagi S, Inatome R, Takano T, Yamamura H. Syk expression and novel function in a wide variety of tissues. Biochem Biophys Res Commun 2001; 288(3): 495-8.
[http://dx.doi.org/10.1006/bbrc.2001.5788] [PMID: 11676469]
[52]
Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ. Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc Natl Acad Sci USA 1994; 91(11): 4683-7.
[http://dx.doi.org/10.1073/pnas.91.11.4683] [PMID: 8197119]
[53]
Chen L, Monti S, Juszczynski P, et al. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 2013; 23(6): 826-38.
[http://dx.doi.org/10.1016/j.ccr.2013.05.002] [PMID: 23764004]
[54]
Markham A. Fostamatinib: First global approval. Drugs 2018; 78(9): 959-63.
[http://dx.doi.org/10.1007/s40265-018-0927-1] [PMID: 29869203]
[55]
Ungureanu D, Wu J, Pekkala T, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18(9): 971-6.
[http://dx.doi.org/10.1038/nsmb.2099] [PMID: 21841788]
[56]
Yu H, Jove R. The STATs of cancer-new molecular targets come of age. Nat Rev Cancer 2004; 4(2): 97-105.
[http://dx.doi.org/10.1038/nrc1275] [PMID: 14964307]
[57]
Jatiani SS, Baker SJ, Silverman LR, Reddy EP. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: Approaches for targeted therapies. Genes Cancer 2010; 1(10): 979-93.
[http://dx.doi.org/10.1177/1947601910397187] [PMID: 21442038]
[58]
Pencik J, Pham HT, Schmoellerl J, et al. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine 2016; 87: 26-36.
[http://dx.doi.org/10.1016/j.cyto.2016.06.017] [PMID: 27349799]
[59]
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer 2009; 9(11): 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[60]
Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malignancies. Oncogene 2013; 32(21): 2601-13.
[http://dx.doi.org/10.1038/onc.2012.347] [PMID: 22869151]
[61]
Tabassum S, Abbasi R, Ahmad N, Farooqi AA. Targeting of JAK-STAT esignaling in breast cancr: Therapeutic strategies to overcome drug resistance. Adv Exp Med Biol 2019; 1152: 271-81.
[http://dx.doi.org/10.1007/978-3-030-20301-6_14] [PMID: 31456189]
[62]
Kanda S, Miyata Y, Kanetake H, Smithgall TE. Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (Review). Int J Mol Med 2007; 20(1): 113-21.
[http://dx.doi.org/10.3892/ijmm.20.1.113] [PMID: 17549397]
[63]
Choudhary C, Müller-Tidow C, Berdel WE, Serve H. Signal transduction of oncogenic Flt3. Int J Hematol 2005; 82(2): 93-9.
[http://dx.doi.org/10.1532/IJH97.05090] [PMID: 16146838]
[64]
Craig AW. FES/FER kinase signaling in hematopoietic cells and leukemias. Front Biosci 2012; 17: 861-75.
[http://dx.doi.org/10.2741/3961] [PMID: 22201778]
[65]
Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia 2012; 26(10): 2176-85.
[http://dx.doi.org/10.1038/leu.2012.114] [PMID: 22614177]
[66]
Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: Biology and therapeutic implications. J Hematol Oncol 2011; 4: 13.
[http://dx.doi.org/10.1186/1756-8722-4-13] [PMID: 21453545]
[67]
Voisset E, Lopez S, Chaix A, et al. FES kinases are required for oncogenic FLT3 signaling. Leukemia 2010; 24(4): 721-8.
[http://dx.doi.org/10.1038/leu.2009.301] [PMID: 20111072]
[68]
Galisteo ML, Yang Y, Ureña J, Schlessinger J. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA 2006; 103(26): 9796-801.
[http://dx.doi.org/10.1073/pnas.0603714103] [PMID: 16777958]
[69]
Chan W, Tian R, Lee YF, Sit ST, Lim L, Manser E. Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J Biol Chem 2009; 284(12): 8185-94.
[http://dx.doi.org/10.1074/jbc.M806877200] [PMID: 19144635]
[70]
van der Horst EH, Degenhardt YY, Strelow A, et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA 2005; 102(44): 15901-6.
[http://dx.doi.org/10.1073/pnas.0508014102] [PMID: 16247015]
[71]
Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T. Receptor tyrosine kinase-targeted cancer therapy. Int J Mol Sci 2018; 19(11): 3491.
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[72]
Crisci S, Amitrano F, Saggese M, et al. Overview of current targeted anti-cancer drugs for therapy in onco-hematology. Medicina (Kaunas) 2019; 55(8): 414.
[73]
Zámečníkova A. Novel approaches to the development of tyrosine kinase inhibitors and their role in the fight against cancer. Expert Opin Drug Discov 2014; 9(1): 77-92.
[http://dx.doi.org/10.1517/17460441.2014.865012] [PMID: 24294890]
[74]
Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2019; 144: 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[75]
Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR Review 14. Br J Pharmacol 2015; 172(11): 2675-700.
[http://dx.doi.org/10.1111/bph.13096] [PMID: 25630872]
[76]
Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol Cancer 2018; 17(1): 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[77]
Rosell R, Moran T, Queralt C, et al. Spanish Lung Cancer Group. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361(10): 958-67.
[http://dx.doi.org/10.1056/NEJMoa0904554] [PMID: 19692684]
[78]
Shi Y, Au JS, Thongprasert S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 2014; 9(2): 154-62.
[http://dx.doi.org/10.1097/JTO.0000000000000033] [PMID: 24419411]
[79]
Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361(10): 947-57.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
[80]
Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13(3): 239-46.
[http://dx.doi.org/10.1016/S1470-2045(11)70393-X] [PMID: 22285168]
[81]
Shi Y, Zhang L, Liu X, et al. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): A randomised, double-blind phase 3 non-inferiority trial. Lancet Oncol 2013; 14(10): 953-61.
[http://dx.doi.org/10.1016/S1470-2045(13)70355-3] [PMID: 23948351]
[82]
Wu Y-L, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol 2017; 18(11): 1454-66.
[http://dx.doi.org/10.1016/S1470-2045(17)30608-3] [PMID: 28958502]
[83]
Mok TS, Wu YL, Ahn MJ, et al. AURA3 Investigators. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 2017; 376(7): 629-40.
[http://dx.doi.org/10.1056/NEJMoa1612674] [PMID: 27959700]
[84]
Tan DS, Leighl NB, Riely GJ, et al. Safety and efficacy of nazartinib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: A multicentre, open-label, phase 1 study. Lancet Respir Med 2020; 8(6): 561-72.
[http://dx.doi.org/10.1016/S2213-2600(19)30267-X] [PMID: 31954624]
[85]
Ahn M-J, Han J-Y, Lee KH, et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study. Lancet Oncol 2019; 20(12): 1681-90.
[http://dx.doi.org/10.1016/S1470-2045(19)30504-2] [PMID: 31587882]
[86]
Yang JC, Camidge DR, Yang CT, et al. Safety, efficacy, and pharmacokinetics of almonertinib (hs-10296) in pretreated patients with EGFR-mutated advanced NSCLC: A multicenter, open-label, phase 1 trial. J Thorac Oncol 2020; 15(12): 1907-18.
[http://dx.doi.org/10.1016/j.jtho.2020.09.001] [PMID: 32916310]
[87]
Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013; 381(9863): 303-12.
[http://dx.doi.org/10.1016/S0140-6736(12)61900-X] [PMID: 23177514]
[88]
Brose MS, Nutting CM, Jarzab B, et al. DECISION investigators. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet 2014; 384(9940): 319-28.
[http://dx.doi.org/10.1016/S0140-6736(14)60421-9] [PMID: 24768112]
[89]
Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30(5): 706-20.
[http://dx.doi.org/10.1093/annonc/mdz056] [PMID: 30788497]
[90]
Han B, Li K, Wang Q, et al. Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: The alter 0303 phase 3 randomized clinical trial. JAMA Oncol 2018; 4(11): 1569-75.
[http://dx.doi.org/10.1001/jamaoncol.2018.3039] [PMID: 30098152]
[91]
Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol 2011; 3(1): S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[92]
Paik PK, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med 2020; 383(10): 931-43.
[http://dx.doi.org/10.1056/NEJMoa2004407] [PMID: 32469185]
[93]
Wolf J, Seto T, Han JY, et al. GEOMETRY mono-1 Investigators. Capmatinib in MET Exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med 2020; 383(10): 944-57.
[http://dx.doi.org/10.1056/NEJMoa2002787] [PMID: 32877583]
[94]
Lu S, Fang J, Li X, et al. Phase II study of savolitinib in patients (pts) with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations (METex14+). J Clin Oncol 2020; 38(15_suppl): 9519-9.
[95]
Subbiah V, Hu MIN, Gainor JF, et al. Clinical activity of the RET inhibitor pralsetinib (BLU-667) in patients with RET fusion–positive solid tumors. J Clin Oncol 2021; 39(3): 467-7.
[http://dx.doi.org/10.1200/JCO.2021.39.3_suppl.467]
[96]
Drilon A, Oxnard GR, Tan DSW, et al. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med 2020; 383(9): 813-24.
[http://dx.doi.org/10.1056/NEJMoa2005653] [PMID: 32846060]
[97]
Subbiah V, Velcheti V, Tuch BB, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol 2018; 29(8): 1869-76.
[http://dx.doi.org/10.1093/annonc/mdy137] [PMID: 29912274]
[98]
Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med 2005; 353(16): 1652-4.
[http://dx.doi.org/10.1056/NEJMp058197] [PMID: 16236735]
[99]
Cetin B, Benekli M, Turker I, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer: A multicentre study of Anatolian Society of Medical Oncology (ASMO). J Chemother 2014; 26(5): 300-5.
[http://dx.doi.org/10.1179/1973947813Y.0000000147] [PMID: 24112786]
[100]
Martin M, Holmes FA, Ejlertsen B, et al. ExteNET Study Group. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2017; 18(12): 1688-700.
[http://dx.doi.org/10.1016/S1470-2045(17)30717-9] [PMID: 29146401]
[101]
Murthy RK, Loi S, Okines A, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med 2020; 382(7): 597-609.
[http://dx.doi.org/10.1056/NEJMoa1914609] [PMID: 31825569]
[102]
Hyman DM, Laetsch TW, Kummar S. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J Clin Oncol 2017; 35(Suppl 18): LBA2501-1.
[103]
Robinson GW, Gajjar AJ, Gauvain KM, et al. Phase 1/1B trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors. J Clin Oncol 2019; 37(Suppl. 15): 10009.
[104]
Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol 2019; 30(Suppl. 8): viii23-30.
[http://dx.doi.org/10.1093/annonc/mdz282]
[105]
Drilon A, Nagasubramanian R, Blake JF, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov 2017; 7(9): 963-72.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0507] [PMID: 28578312]
[106]
Shaw AT, Solomon BJ, Besse B, et al. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol 2019; 37(16): 1370-9.
[http://dx.doi.org/10.1200/JCO.18.02236] [PMID: 30892989]
[107]
Solomon BJ, Mok T, Kim DW, et al. PROFILE 1014 Investigators. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371(23): 2167-77.
[http://dx.doi.org/10.1056/NEJMoa1408440] [PMID: 25470694]
[108]
Duruisseaux M, Besse B, Cadranel J, et al. Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): A French nationwide cohort retrospective study. Oncotarget 2017; 8(13): 21903-17.
[http://dx.doi.org/10.18632/oncotarget.15746] [PMID: 28423535]
[109]
Gainor JF, Dardaei L, Yoda S, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 2016; 6(10): 1118-33.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0596] [PMID: 27432227]
[110]
Chi Y, Yao Y, Wang S, et al. Anlotinib for metastasis soft tissue sarcoma: A randomized, double-blind, placebo-controlled and multi-centered clinical trial. Am Soc Clin Oncol 2018; 36: 11503.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.11503]
[111]
Li J, Qin S, Xu RH, et al. Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: The fresco randomized clinical trial. JAMA 2018; 319(24): 2486-96.
[http://dx.doi.org/10.1001/jama.2018.7855] [PMID: 29946728]
[112]
Elisei R, Schlumberger MJ, Müller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013; 31(29): 3639-46.
[http://dx.doi.org/10.1200/JCO.2012.48.4659] [PMID: 24002501]
[113]
Thornton K, Kim G, Maher VE, et al. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res 2012; 18(14): 3722-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0411] [PMID: 22665903]
[114]
Llovet JM, Ricci S, Mazzaferro V, et al. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359(4): 378-90.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[115]
Escudier B, Eisen T, Stadler WM, et al. TARGET Study Group. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356(2): 125-34.
[http://dx.doi.org/10.1056/NEJMoa060655] [PMID: 17215530]
[116]
Martinelli E, Morgillo F, Troiani T, Ciardiello F. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: The role of MEK. Cancer Treat Rev 2017; 53: 61-9.
[http://dx.doi.org/10.1016/j.ctrv.2016.12.001] [PMID: 28073102]
[117]
Roskoski R Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res 2012; 66(2): 105-43.
[http://dx.doi.org/10.1016/j.phrs.2012.04.005] [PMID: 22569528]
[118]
Gross AM, Wolters PL, Dombi E, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 2020; 382(15): 1430-42.
[http://dx.doi.org/10.1056/NEJMoa1912735] [PMID: 32187457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy