Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Current Trends in Computational Chemistry for Breast Cancer

Author(s): Utsav Gupta and Deepika Paliwal*

Volume 20, Issue 1, 2023

Published on: 09 June, 2022

Page: [2 - 15] Pages: 14

DOI: 10.2174/1570180819666220330161006

Price: $65

Abstract

Cancer is a condition in which body cells grow uncontrollably and spread to other parts of the body or grow at a particular location. Depending on their location, cancer is named or categorized. Breast cancer is the second most constantly determined and one of the prime reasons for cancer death among females. Many external factors like carcinogenic agents and internal factors like genetic factors are responsible for causing breast cancer in females. Additionally, the threat of breast cancer occurrences increases with age and non-success in treatment. The current methods and treatments utilized in treating, diagnosing and predicating breast cancer in the present world are not very advanced. Therefore, over time, the desire to analyze the factors facilitating the succession of breast cancer, prediction, and reduction in the time taken for diagnostics, treatment, and drug discovery for breast cancer has increased. However, traditional methods make it hard to study prediction, diagnostics, treatment, and drug discovery for breasts. Therefore, computational approaches like artificial intelligence, bioinformatics, quantitative structure-activity relationship (QSAR) studies, and molecular docking are used to analyze those things. This article discusses current trends in computational chemistry in different fields

Keywords: Breast cancer, computational chemistry, artificial intelligence, bioinformatics, QSAR, molecular docking.

Graphical Abstract

[1]
GLOBOCAN 2020: New Global Cancer Data. 2020. Available from: https://www.uicc.org/news/globocan-2020-new-global-cancer-data
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast cancer statistics, 2013. CA Cancer J. Clin., 2014, 64(1), 52-62.
[http://dx.doi.org/10.3322/caac.21203] [PMID: 24114568]
[4]
Xu, X.; Qiao, W.; Linke, S.P.; Cao, L.; Li, W.M.; Furth, P.A.; Harris, C.C.; Deng, C.X. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet., 2001, 28(3), 266-271.
[http://dx.doi.org/10.1038/90108] [PMID: 11431698]
[5]
Osborne, C.; Wilson, P.; Tripathy, D. Oncogenes and tumor suppressor genes in breast cancer: Potential diagnostic and therapeutic applications. Oncologist, 2004, 9(4), 361-377.
[http://dx.doi.org/10.1634/theoncologist.9-4-361] [PMID: 15266090]
[6]
Burke, W.; Petersen, G.; Lynch, P.; Botkin, J.; Daly, M.; Garber, J.; Kahn, M.J.E.; McTiernan, A.; Offit, K.; Thomson, E.; Varricchio, C. Cancer Genetics Studies Consortium. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. I. Hereditary nonpolyposis colon cancer. JAMA, 1997, 277(11), 915-919.
[http://dx.doi.org/10.1001/jama.1997.03540350065035] [PMID: 9062331]
[7]
Kerangueven, F.; Essioux, L.; Dib, A.; Noguchi, T.; Allione, F.; Geneix, J.; Longy, M.; Lidereau, R.; Eisinger, F.; Pébusque, M.J.; Jacquemeir, J.; Bonaiti-Pellie, C.; Sobol, H. Loss of heterozygosity and linkage analysis in breast carcinoma: Indication for a putative third susceptibility gene on the short arm of chromosome 8. Oncogene, 1995, 10(5), 1023-1026.
[PMID: 7898921]
[8]
Singh, A.V.; Maharjan, R-S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[9]
Obi, N.; Waldmann, A.; Schäfer, F.; Schreer, I.; Katalinic, A. Impact of the quality assured mamma diagnostic (QuaMaDi) programme on survival of breast cancer patients. Cancer Epidemiol., 2011, 35(3), 286-292.
[http://dx.doi.org/10.1016/j.canep.2010.09.001] [PMID: 20920901]
[10]
Bird, R.E.; Wallace, T.W.; Yankaskas, B.C. Analysis of cancers missed at screening mammography. Radiology, 1992, 184(3), 613-617.
[http://dx.doi.org/10.1148/radiology.184.3.1509041] [PMID: 1509041]
[11]
Mienkina, M.P.; Friedrich, C.S.; Gerhardt, N.C.; Wilkening, W.G.; Hofmann, M.R.; Schmitz, G. Multispectral photoacoustic coded excitation imaging using unipolar orthogonal golay codes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2010, 57(7), 1583-1593.
[http://dx.doi.org/10.1109/TUFFC.2010.1588] [PMID: 20639152]
[12]
Athanasiou, A.; Tardivon, A.; Tanter, M.; Sigal-Zafrani, B.; Bercoff, J.; Deffieux, T.; Gennisson, J.L.; Fink, M.; Neuenschwander, S. Breast lesions: Quantitative elastography with supersonic shear imaging-preliminary results. Radiology, 2010, 256(1), 297-303.
[http://dx.doi.org/10.1148/radiol.10090385] [PMID: 20505064]
[13]
Wendie, A.; Berg MD, P.; David O. Cosgrove, M.; Caroline J Doré, Bs.; Fritz, K. W.; Schäfer, M.; William E. Svensson, M.; Regina J. Hooley, M.; Ralf Ohlinger, M.; Ellen B. Mendelson, M.; Catherine Balu-Maestro, M.; Martina Locatelli, M.; Christophe Tourasse, M.; Barbara C. Cavanaugh, M.; Valérie Juhan, M.; A. Thomas Stavros, M.; Anne Tardivon, M.; Joel Gay, B.; Jean-Pierre Henry, M.; Claude Cohen-Bacrie, P. Investigators, F. the B Shear-wave elastography improves the specifi city of breast US: The BE1 multinational study of 939 masses. Radiology, 2012, 262(2), 435-449.
[http://dx.doi.org/10.1148/radiol] [PMID: 22282182]
[14]
Rosenberg, K. Ten-year risk of false positive screening mammograms and clinical breast examinations. J. Nurse Midwifery, 1998, 43(5), 394-395.
[http://dx.doi.org/10.1056/NEJM199804163381601] [PMID: 9841258]
[15]
Takei, J.; Tsunoda-Shimizu, H.; Kikuchi, M.; Kawasaki, T.; Yagata, H.; Tsugawa, K.; Suzuki, K.; Nakamura, S.; Saida, Y. Clinical implications of architectural distortion visualized by breast ultrasonography. Breast Cancer, 2009, 16(2), 132-135.
[http://dx.doi.org/10.1007/s12282-008-0085-5] [PMID: 19048193]
[16]
Le-Petross, H.T.; Shetty, M.K. Magnetic resonance imaging and breast ultrasonography as an adjunct to mammographic screening in high-risk patients. Semin. Ultrasound CT MR, 2011, 32(4), 266-272.
[http://dx.doi.org/10.1053/j.sult.2011.03.005] [PMID: 21782116]
[17]
Avril, N.; Adler, L.P. F-18 fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol. Clin. North Am., 2007, 45(4), 645-657. vi.
[http://dx.doi.org/10.1016/j.rcl.2007.05.004] [PMID: 17706529]
[18]
Paci, E. Mammography and beyond: Developing technologies for early detection of breast cancer. Breast Cancer Res., 2002, 4(3), 3-5.
[http://dx.doi.org/10.1186/bcr429]
[19]
Abreu, M.C.; Almeida, P.; Balau, F.; Ferreira, N.C.; Fetal, S.; Fraga, F.; Martins, M.; Matela, N.; Moura, R.; Ortigão, C.; Peralta, L.; Rato, P.; Ribeiro, R.; Rodrigues, P.; Santos, A.I.; Trindade, A.; Varela, J. Clear-PEM: A dedicated PET camera for improved breast cancer detection. Radiat. Prot. Dosimetry, 2005, 116(1-4 Pt 2), 208-210.
[http://dx.doi.org/10.1093/rpd/nci039] [PMID: 16604628]
[20]
Tromberg, B.J.; Pogue, B.W.; Paulsen, K.D.; Yodh, A.G.; Boas, D.A.; Cerussi, A.E. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med. Phys., 2008, 35(6), 2443-2451.
[http://dx.doi.org/10.1118/1.2919078] [PMID: 18649477]
[21]
Schulz, R.B.; Peter, J.; Semmler, W.; Andrea, C.D.; Valentini, G.; Cubeddu, R. Comparison of noncontact and fiber-based fluorescence-mediated tomography. Fluorescence-Mediated Tomography., 2006, 31(6), 769-771.
[22]
Adamietz, B.R.; Meier-Meitinger, M.; Fasching, P.; Beckmann, M.; Hartmann, A.; Uder, M.; Häberle, L.; Schulz-Wendtland, R.; Schwab, S.A. New diagnostic criteria in real-time elastography for the assessment of breast lesions. Ultraschall Med., 2011, 32(1), 67-73.
[http://dx.doi.org/10.1055/s-0029-1245821] [PMID: 21165816]
[23]
DENK, W.; STRICKLER, JAMES H.; Wat, W. W. Two-photon laser scanning fluorescence microscopy. 1990, (April), 73-76.
[24]
Ramaz, F.; Forget, B.; Atlan, M.; Boccara, A.C.; Gross, M.; Delaye, P.; Roosen, G. Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues. Opt. Express, 2004, 12(22), 5469-5474.
[http://dx.doi.org/10.1364/OPEX.12.005469] [PMID: 19484107]
[25]
Massoud, T.F.; Gambhir, S.S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev., 2003, 17(5), 545-580.
[http://dx.doi.org/10.1101/gad.1047403] [PMID: 12629038]
[26]
Naumann, D. FT-infrared and FT-raman spectroscopy in biomedical research. Appl. Spectrosc. Rev., 2001, 36(2–3), 239-298.
[http://dx.doi.org/10.1081/ASR-100106157]
[27]
Morrison, C.D.; Prayson, R.A. Immunohistochemistry in the diagnosis of neoplasms of the central nervous system. Semin. Diagn. Pathol., 2000, 17(3), 204-215.
[PMID: 10968706]
[28]
Kortagere, S.; Lill, M.; Kerrigan, J. Role of computational methods in pharmaceutical sciences. Methods Mol. Biol., 2012, 929, 21-48.
[http://dx.doi.org/10.1007/978-1-62703-050-2_3] [PMID: 23007425]
[29]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J. Pharmacol., 2007, 152(1), 9-20.
[http://dx.doi.org/10.1038/sj.bjp.0707305] [PMID: 17549047]
[30]
Glikson, E.; Woolley, A.W. Human trust in artificial intelligence: Review of empirical research. Acad. Management Ann., 2020, 14(2), 627-660.
[http://dx.doi.org/10.5465/annals.2018.0057]
[31]
Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng., 2018, 2(10), 719-731.
[http://dx.doi.org/10.1038/s41551-018-0305-z] [PMID: 31015651]
[32]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[33]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[34]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[35]
Forbes, S.A.; Tang, G.; Bindal, N.; Bamford, S.; Dawson, E.; Cole, C.; Kok, C.Y.; Jia, M.; Ewing, R.; Menzies, A.; Teague, J.W.; Stratton, M.R.; Futreal, P.A. COSMIC (the Catalogue of Somatic Mutations in Cancer): A resource to investigate acquired mutations in human cancer. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D652-D657.
[http://dx.doi.org/10.1093/nar/gkp995] [PMID: 19906727]
[36]
Abecasis, G.R.; Altshuler, D.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Gibbs, R.A.; Hurles, M.E.; McVean, G.A.; Donnelly, P.; Egholm, M.; Flicek, P.; Gabriel, S.B.; Gibbs, R.A.; Knoppers, B.M.; Lander, E.S.; Lehrach, H.; Mardis, E.R.; McVean, G.A.; Nickerson, D.A.; Peltonen, L.; Schafer, A.J.; Sherry, S.T.; Wang, J.; Wilson, R.K.; Deiros, D.; Metzker, M.; Muzny, D.; Reid, J.; Wheeler, D.; Wang, S.J.; Li, J.; Jian, M.; Li, G.; Li, R.; Liang, H.; Tian, G.; Wang, B.; Wang, J.; Wang, W.; Yang, H.; Zhang, X.; Zheng, H.; Ambrogio, L.; Bloom, T.; Cibulskis, K.; Fennell, T.J.; Jaffe, D.B.; Shefler, E.; Sougnez, C.L.; Bentley, I.D.R.; Gormley, N.; Humphray, S.; Kingsbury, Z.; Koko-Gonzales, P.; Stone, J.; Mc Kernan, K.J.; Costa, G.L.; Ichikawa, J.K.; Lee, C.C.; Sudbrak, R.; Borodina, T.A.; Dahl, A.; Davydov, A.N.; Marquardt, P.; Mertes, F.; Nietfeld, W.; Rosenstiel, P.; Schreiber, S.; Soldatov, A.V.; Timmermann, B.; Tolzmann, M.; Affourtit, J.; Ashworth, D.; Attiya, S.; Bachorski, M.; Buglione, E.; Burke, A.; Caprio, A.; Celone, C.; Clark, S.; Conners, D.; Desany, B.; Gu, L.; Guccione, L.; Kao, K.; Kebbel, A.; Knowlton, J.; Labrecque, M.; McDade, L.; Mealmaker, C.; Minderman, M.; Nawrocki, A.; Niazi, F.; Pareja, K.; Ramenani, R.; Riches, D.; Song, W.; Turcotte, C.; Wang, S.; Dooling, D.; Fulton, L.; Fulton, R.; Weinstock, G.; Burton, J.; Carter, D.M.; Churcher, C.; Coffey, A.; Cox, A.; Palotie, A.; Quail, M.; Skelly, T.; Stalker, J.; Swerdlow, H.P.; Turner, D.; De Witte, A.; Giles, S.; Bainbridge, M.; Challis, D.; Sabo, A.; Yu, F.; Yu, J.; Fang, X.; Guo, X.; Li, Y.; Luo, R.; Tai, S.; Wu, H.; Zheng, H.; Zheng, X.; Zhou, Y.; Marth, G.T.; Garrison, E.P.; Huang, W.; Indap, A.; Kural, D.; Lee, W.P.; Leong, W.F.; Quinlan, A.R.; Stewart, C.; Stromberg, M.P.; Ward, A.N.; Wu, J.; Lee, C.; Mills, R.E.; Shi, X.; Daly, M.J.; DePristo, M.A.; Ball, A.D.; Banks, E.; Browning, B.L.; Garimella, K.V.; Grossman, S.R.; Handsaker, R.E.; Hanna, M.; Hartl, C.; Kernytsky, A.M.; Korn, J.M.; Li, H.; Maguire, J.R.; McKenna, A.; Nemesh, J.C.; Philippakis, A.A.; Poplin, R.E.; Price, A.; Rivas, M.A.; Sabeti, P.C.; Schaffner, S.F.; Shlyakhter, I.A.; Cooper, D.N.; Ball, E.V.; Mort, M.; Phillips, A.D.; Stenson, P.D.; Sebat, J.; Makarov, V.; Ye, K.; Yoon, S.C.; Bustamante, C.D.; Boyko, A.; Degenhardt, J.; Gravel, S.; Gutenkunst, R.N.; Kaganovich, M.; Keinan, A.; Lacroute, P.; Ma, X.; Reynolds, A.; Clarke, L.; Cunningham, F.; Herrero, J.; Keenen, S.; Kulesha, E.; Leinonen, R.; McLaren, W.M.; Radhakrishnan, R.; Smith, R.E.; Zalunin, V.; Korbel, J.O.; Stütz, A.M.; Humphray, I.S.; Bauer, M.; Cheetham, R.K.; Cox, T.; Eberle, M.; James, T.; Kahn, S.; Murray, L.; Ye, K.; Fu, Y.; Hyland, F.C.L.; Manning, J.M.; Stephen, F.M.; Peckham, H.E.; Sakarya, O.; Sun, Y.A.; Tsung, E.F.; Mark, A.B.; Konkel, M.K.; Walker, J.A.; Albrecht, M.W.; Amstislavskiy, V.S.; Herwig, R.; Parkhomchuk, D.V.; Agarwala, R.; Khouri, H.M.; Morgulis, A.O.; Paschall, J.E.; Phan, L.D.; Rotmistrovsky, K.E.; Sanders, R.D.; Shumway, M.F.; Xiao, C.; Gil, A.M.; Auton, A.; Iqbal, Z.; Lunter, G.; Marchini, J.L.; Moutsianas, L.; Myers, S.; Tumian, A.; Knight, J.; Winer, R.; Craig, D.W.; Beckstrom-Sternberg, S.M.; Christoforides, A.; Kurdoglu, A.A.; Pearson, J.V.; Sinari, S.A.; Tembe, W.D.; Haussler, D.; Hinrichs, A.S.; Katzman, S.J.; Kern, A.; Kuhn, R.M.; Przeworski, M.; Hernandez, R.D.; Howie, B.; Kelley, J.L.; Melton, S.C.; Li, Y.; Anderson, P.; Blackwell, T.; Chen, W.; Cookson, W.O.; Ding, J.; Kang, H.M.; Lathrop, M.; Liang, L.; Moffatt, M.F.; Scheet, P.; Sidore, C.; Snyder, M.; Zhan, X.; Zöllner, S.; Awadalla, P.; Casals, F.; Idaghdour, Y.; Keebler, J.; Stone, E.A.; Zilversmit, M.; Jorde, L.; Xing, J.; Eichler, E.E.; Aksay, G.; Alkan, C.; Hajirasouliha, I.; Hormozdiari, F.; Kidd, J.M. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature, 2010, 467(7319), 1061-1073.
[http://dx.doi.org/10.1038/nature09534] [PMID: 20981092]
[37]
Gonzalez-Perez, Abel; Perez-Llamas; Deu-Pons, Jordi; Tamborero, David; Schroeder, Michael P; Jene-Sanz, Alba; S, A.; B, N. L. IntoGen-mutations identifies cancer drivers across tumor types. Nat. Genet., 2013, 10(10), 1081-1082.
[http://dx.doi.org/10.1038/ng.2764]
[38]
Torkamani, A.; Schork, N.J. Identification of rare cancer driver mutations by network reconstruction. Genome Res., 2009, 19(9), 1570-1578.
[http://dx.doi.org/10.1101/gr.092833.109] [PMID: 19574499]
[39]
Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; Kiezun, A.; Hammerman, P.S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A.H.; Pugh, T.J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortés, M.L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D.I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A.M.; Lohr, J.; Landau, D.A.; Wu, C.J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S.A.; Mora, J.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S.B.; Roberts, C.W.M.; Biegel, J.A.; Stegmaier, K.; Bass, A.J.; Garraway, L.A.; Meyerson, M.; Golub, T.R.; Gordenin, D.A.; Sunyaev, S.; Lander, E.S.; Getz, G.; Getz, G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499(7457), 214-218.
[http://dx.doi.org/10.1038/nature12213] [PMID: 23770567]
[40]
Hou, J.P.; Ma, J. DawnRank: Discovering personalized driver genes in cancer. Genome Med., 2014, 6(7), 56.
[http://dx.doi.org/10.1186/s13073-014-0056-8] [PMID: 25177370]
[41]
Jia, P.; Wang, Q.; Chen, Q.; Hutchinson, K.E.; Pao, W.; Zhao, Z. MSEA: Detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol., 2014, 15(10), 489.
[http://dx.doi.org/10.1186/s13059-014-0489-9] [PMID: 25348067]
[42]
Ryslik, G.A.; Cheng, Y.; Cheung, K.H.; Modis, Y.; Zhao, H. A graph theoretic approach to utilizing protein structure to identify non-random somatic mutations. BMC Bioinformatics, 2014, 15(1), 86.
[http://dx.doi.org/10.1186/1471-2105-15-86] [PMID: 24669769]
[43]
Zhang, J.; Wu, L.Y.; Zhang, X.S.; Zhang, S. Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics, 2014, 15(1), 271.
[http://dx.doi.org/10.1186/1471-2105-15-271] [PMID: 25106096]
[44]
Benito-Martin, A.; Peinado, H. FunRich proteomics software analysis, let the fun begin! Proteomics, 2015, 15(15), 2555-2556.
[http://dx.doi.org/10.1002/pmic.201500260] [PMID: 26149235]
[45]
Carter, H.; Chen, S.; Isik, L.; Tyekucheva, S.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Karchin, R. Cancer-specific high-throughput annotation of somatic mutations: Computational prediction of driver missense mutations. Cancer Res., 2009, 69(16), 6660-6667.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1133] [PMID: 19654296]
[46]
Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc., 2016, 11(1), 1-9.
[http://dx.doi.org/10.1038/nprot.2015.123] [PMID: 26633127]
[47]
Pon, J.R.; Marra, M.A. Driver and passenger mutations in cancer. Annu. Rev. Pathol., 2015, 10(1), 25-50.
[http://dx.doi.org/10.1146/annurev-pathol-012414-040312] [PMID: 25340638]
[48]
Rajendran, B.K.; Deng, C.X. Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget, 2017, 8(30), 50252-50272.
[http://dx.doi.org/10.18632/oncotarget.17225] [PMID: 28477017]
[49]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B-W. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[50]
Barghash, R.F.; Fawzy, I.M.; Chandrasekar, V.; Singh, A.V.; Katha, U.; Mandour, A.A. In silico modeling as a perspective in developing potential vaccine candidates and therapeutics for COVID-19. Coatings, 2021, 11(11), 1273.
[http://dx.doi.org/10.3390/coatings11111273]
[51]
Brouwer, A.; De Laere, B.; Peeters, D.; Peeters, M.; Salgado, R.; Dirix, L.; Van Laere, S. Evaluation and consequences of heterogeneity in the circulating tumor cell compartment. Oncotarget, 2016, 7(30), 48625-48643.
[http://dx.doi.org/10.18632/oncotarget.8015] [PMID: 26980749]
[52]
Gerlinger, M.; Gore, M. P. T. Royal marsden hospital de-partment of medicine. Barts Cancer Inst. N. Engl. J. Med., 2012, 366(10), 883-892.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[53]
Navin, N.; Kendall, J.; Troge, J.; Andrews, P.; Rodgers, L.; McIndoo, J.; Cook, K.; Stepansky, A.; Levy, D.; Esposito, D.; Muthuswamy, L.; Krasnitz, A.; McCombie, W.R.; Hicks, J.; Wigler, M. Tumour evolution inferred by single-cell sequencing. Nature, 2011, 472(7341), 90-94.
[http://dx.doi.org/10.1038/nature09807] [PMID: 21399628]
[54]
Kim, K.T.; Lee, H.W.; Lee, H.O.; Song, H.J.; Jeong, E.; Shin, S.; Kim, H.; Shin, Y.; Nam, D.H.; Jeong, B.C.; Kirsch, D.G.; Joo, K.M.; Park, W.Y. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol., 2016, 17(1), 80.
[http://dx.doi.org/10.1186/s13059-016-0945-9] [PMID: 27139883]
[55]
van Ginneken, B.; Schaefer-Prokop, C.M.; Prokop, M. Computer-aided diagnosis: How to move from the laboratory to the clinic. Radiology, 2011, 261(3), 719-732.
[http://dx.doi.org/10.1148/radiol.11091710] [PMID: 22095995]
[56]
Tarique, M.; ElZahra, F.; Hateem, A.; Mohammad, M. Fourier transform based early detection of breast cancer by mammogram image processing. J. Biomed. Eng. Med. Imaging, 2015, 2(4)
[http://dx.doi.org/10.14738/jbemi.24.1308]
[57]
American Cancer Society [webpage on the Internet]. How is Breast Cancer Diagnosed? 2014. Available from: http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-diagnosis (Accessed September 20, 2017).
[58]
Jalalian, A.; Mashohor, S.B.T.; Mahmud, H.R.; Saripan, M.I.B.; Ramli, A.R.B.; Karasfi, B. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: A review. Clin. Imaging, 2013, 37(3), 420-426.
[http://dx.doi.org/10.1016/j.clinimag.2012.09.024] [PMID: 23153689]
[59]
Sadoughi, F.; Kazemy, Z.; Hamedan, F.; Owji, L.; Rahmanikatigari, M.; Azadboni, T.T. Artificial intelligence methods for the diagnosis of breast cancer by image processing: A review. Breast Cancer (Dove Med. Press), 2018, 10, 219-230.
[http://dx.doi.org/10.2147/BCTT.S175311] [PMID: 30555254]
[60]
Kumari, M.; Singh, V. Breast cancer prediction system. Procedia Comput. Sci., 2018, 132, 371-376.
[http://dx.doi.org/10.1016/j.procs.2018.05.197]
[61]
ABREU, P.H; SANTOS, M.S Departmentof informatics engineering, faculty of sciences and technology of coimbra university, portugal miguel henriques abreu, portuguese institute of oncology of porto, portugal bruno andrade,cisuc, p. predicting breast cancer recurrence using machine learning techniques: A systematic review. ACM Comput. Surv., 2016, 49(3), 1-52.
[62]
AhmedMedjahed, S.; Ait Saadi, T.; Benyettou, A. Breast cancer diagnosis by using K-Nearest neighbor with different distances and classification rules. Int. J. Comput. Appl., 2013, 62(1), 1-5.
[http://dx.doi.org/10.5120/10041-4635]
[63]
Russell, W.M.S. The Principles of Humane Experimental Technique; , 1959, pp. 1-221.
[64]
Dheeba, J.; Selvi, S.T. A CAD System for Breast Cancer Diagnosis Using Modified Genetic Algorithm Optimized Artificial Neural Network.Lect. Notes Comput. Sci; , 2011, 7076 LNCS, pp. (PART 1)349-357.
[http://dx.doi.org/10.1007/978-3-642-27172-4_43]
[65]
Karabatak, M. A new classifier for breast cancer detection based on naïve bayesian. Measurement, 2015, 72, 32-36.
[http://dx.doi.org/10.1016/j.measurement.2015.04.028]
[66]
Szegedy, C.; Liu, W.; Jia, Y.; Pierre Sermanet, S. R.; Anguelov, Dragomir; Erhan, D.; Vincent Vanhoucke, A. R. University of North Carolina, Chapel Hill University of Michigan, A. A. M. L. I. Going Deeper with Convolutions Christian. 2015 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)., New YorkIEEE2015 91(8), pp. 1-9.
[http://dx.doi.org/10.1002/jctb.4820]
[67]
Abdel-Zaher, A.M.; Eldeib, A.M. Breast cancer classification using deep belief networks. Expert Syst. Appl., 2016, 46(November), 139-144.
[http://dx.doi.org/10.1016/j.eswa.2015.10.015]
[68]
Hatada, I. An Omics Perspective on Cancer Research, 2010, 8
[http://dx.doi.org/10.1586/epr.11.3]
[69]
Cui, J.; Yin, Y.; Ma, Q.; Wang, G.; Olman, V.; Zhang, Y.; Chou, W.C.; Hong, C.S.; Zhang, C.; Cao, S.; Mao, X.; Li, Y.; Qin, S.; Zhao, S.; Jiang, J.; Hastings, P.; Li, F.; Xu, Y. Comprehensive characterization of the genomic alterations in human gastric cancer. Int. J. Cancer, 2015, 137(1), 86-95.
[http://dx.doi.org/10.1002/ijc.29352] [PMID: 25422082]
[70]
Nones, K.; Waddell, N.; Song, S.; Patch, A.M.; Miller, D.; Johns, A.; Wu, J.; Kassahn, K.S.; Wood, D.; Bailey, P.; Fink, L.; Manning, S.; Christ, A.N.; Nourse, C.; Kazakoff, S.; Taylor, D.; Leonard, C.; Chang, D.K.; Jones, M.D.; Thomas, M.; Watson, C.; Pinese, M.; Cowley, M.; Rooman, I.; Pajic, M.; Butturini, G.; Malpaga, A.; Corbo, V.; Crippa, S.; Falconi, M.; Zamboni, G.; Castelli, P.; Lawlor, R.T.; Gill, A.J.; Scarpa, A.; Pearson, J.V.; Biankin, A.V.; Grimmond, S.M. APGI. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int. J. Cancer, 2014, 135(5), 1110-1118.
[http://dx.doi.org/10.1002/ijc.28765] [PMID: 24500968]
[71]
Wang, G.; Luo, X.; Wang, J.; Wan, J.; Xia, S.; Zhu, H.; Qian, J.; Wang, Y. MeDReaders: A database for transcription factors that bind to methylated DNA. Nucleic Acids Res., 2018, 46(D1), D146-D151.
[http://dx.doi.org/10.1093/nar/gkx1096] [PMID: 29145608]
[72]
Chiam, K.; Ricciardelli, C.; Bianco-Miotto, T. Epigenetic biomarkers in prostate cancer: Current and future uses. Cancer Lett., 2014, 342(2), 248-256.
[http://dx.doi.org/10.1016/j.canlet.2012.02.011] [PMID: 22391123]
[73]
Vitale, A. M.; Matigian, N. A.; Cristino, A. S.; Nones, K.; Ravishankar, S.; Bellette, B.; Fan, Y.; Wood, S. A.; Wolvetang, E.; Mackay-Sim, A. DNA Methylation in schizophrenia in different patient-derived cell types. npj Schizophr, 2017, 3(1), 1-7.
[http://dx.doi.org/10.1038/s41537-016-0006-0]
[74]
Wang, C.; Zhao, N.; Yuan, L.; Liu, X. Computational detection of breast cancer invasiveness with DNA methylation biomarkers. Cells, 2020, 9(2), 1-14.
[http://dx.doi.org/10.3390/cells9020326] [PMID: 32019269]
[75]
Reyngold, M.; Turcan, S.; Giri, D.; Kannan, K.; Walsh, L.A.; Viale, A.; Drobnjak, M.; Vahdat, L.T.; Lee, W.; Chan, T.A. Remodeling of the methylation landscape in breast cancer metastasis. PLoS One, 2014, 9(8), e103896.
[http://dx.doi.org/10.1371/journal.pone.0103896] [PMID: 25083786]
[76]
Bliss, S.A.; Paul, S.; Pobiarzyn, P.W.; Ayer, S.; Sinha, G.; Pant, S.; Hilton, H.; Sharma, N.; Cunha, M.F.; Engelberth, D.J.; Greco, S.J.; Bryan, M.; Kucia, M.J.; Kakar, S.S.; Ratajczak, M.Z.; Rameshwar, P. Evaluation of a developmental hierarchy for breast cancer cells to assess risk-based patient selection for targeted treatment. Sci. Rep., 2018, 8(1), 367.
[http://dx.doi.org/10.1038/s41598-017-18834-5] [PMID: 29321622]
[77]
Burns, M. A.; Johnson, B. N.; Brahmasandra, S. N.; Handique, K.; Webster, J. R.; Krishnan, M.; Sammarco, T. S.; Man, P. M.; Jones, D.; Heldsinger, D.; Mastrangelo, C. H.; Burke, D. T. An integrated nanoliter DNA analysis device. Science (80-.), 1998, 282(5388), 484-487.
[http://dx.doi.org/10.1126/science.282.5388.484]
[78]
Hao, S.; Ha, L.; Cheng, G.; Wan, Y.; Xia, Y.; Sosnoski, D.M.; Mastro, A.M.; Zheng, S.Y. A Spontaneous 3D Bone-On-a-Chip for Bone Metastasis Study of Breast Cancer Cells. Small, 2018, 14(12), e1702787.
[http://dx.doi.org/10.1002/smll.201702787] [PMID: 29399951]
[79]
Li, C.; Ding, X.; Liu, Z.; Zhu, J. Rapid identification of Candida spp. frequently involved in invasive mycoses by using flow-through hybridization and Gene Chip (FHGC) technology. J. Microbiol. Methods, 2017, 132, 160-165.
[http://dx.doi.org/10.1016/j.mimet.2016.11.019] [PMID: 27913132]
[80]
Kim, M.H.; Kim, E.H.; Jung, H.S.; Yang, D.; Park, E.Y.; Jun, H.S. EX4 stabilizes and activates Nrf2 via PKCδ contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicol. Appl. Pharmacol., 2017, 315, 60-69.
[http://dx.doi.org/10.1016/j.taap.2016.12.005] [PMID: 27939242]
[81]
He, Z.; Chen, Z.; Tan, M.; Elingarami, S.; Liu, Y.; Li, T.; Deng, Y.; He, N.; Li, S.; Fu, J.; Li, W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif., 2020, 53(7), e12822.
[http://dx.doi.org/10.1111/cpr.12822] [PMID: 32530560]
[82]
Metzker, M.L. Sequencing technologies - the next generation. Nat. Rev. Genet., 2010, 11(1), 31-46.
[http://dx.doi.org/10.1038/nrg2626] [PMID: 19997069]
[83]
Bae, J.W.; Choi, K.H.; Kim, H.G.; Park, S.H. The detection of circulating breast cancer cells in peripheral blood by reverse transcriptase-polymerase chain reaction. J. Korean Med. Sci., 2000, 15(2), 194-198.
[http://dx.doi.org/10.3346/jkms.2000.15.2.194] [PMID: 10803697]
[84]
Maloy, S.; Hughes, K.E. Brenner’s Encyclopedia of Genetics; Acad; Press, 2013.
[85]
Lester, Robin D.; Jo, Minji; Campana, W. Marie; Gonias, Steven L. Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/Mitogen-activated protein kinase-dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. J. Biol. Chem., 2005, 39273-39277.
[86]
Saini, K.S.; Loi, S.; de Azambuja, E.; Metzger-Filho, O.; Saini, M.L.; Ignatiadis, M.; Dancey, J.E.; Piccart-Gebhart, M.J. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat. Rev., 2013, 39(8), 935-946.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.009] [PMID: 23643661]
[87]
Serra, V.; Scaltriti, M.; Prudkin, L.; Eichhorn, P.J.A.; Ibrahim, Y.H.; Chandarlapaty, S.; Markman, B.; Rodriguez, O.; Guzman, M.; Rodriguez, S.; Gili, M.; Russillo, M.; Parra, J.L.; Singh, S.; Arribas, J.; Rosen, N.; Baselga, J. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene, 2011, 30(22), 2547-2557.
[http://dx.doi.org/10.1038/onc.2010.626] [PMID: 21278786]
[88]
Ahronian, L.G.; Sennott, E.M.; Van Allen, E.M.; Wagle, N.; Kwak, E.L.; Faris, J.E.; Godfrey, J.T.; Nishimura, K.; Lynch, K.D.; Mermel, C.H.; Lockerman, E.L.; Kalsy, A.; Gurski, J.M., Jr; Bahl, S.; Anderka, K.; Green, L.M.; Lennon, N.J.; Huynh, T.G.; Mino-Kenudson, M.; Getz, G.; Dias-Santagata, D.; Iafrate, A.J.; Engelman, J.A.; Garraway, L.A.; Corcoran, R.B. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov., 2015, 5(4), 358-367.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1518] [PMID: 25673644]
[89]
Endo, M.; Yamamoto, H.; Setsu, N.; Kohashi, K.; Takahashi, Y.; Ishii, T.; Iida, K.; Matsumoto, Y.; Hakozaki, M.; Aoki, M.; Iwasaki, H.; Dobashi, Y.; Nishiyama, K.; Iwamoto, Y.; Oda, Y. Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors. Clin. Cancer Res., 2013, 19(2), 450-461.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1067] [PMID: 23209032]
[90]
Ingeson-Carlsson, C.; Martinez-Monleon, A.; Nilsson, M. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture. Exp. Cell Res., 2015, 338(2), 127-135.
[http://dx.doi.org/10.1016/j.yexcr.2015.08.003] [PMID: 26384551]
[91]
Izrailit, J.; Berman, H.K.; Datti, A.; Wrana, J.L.; Reedijk, M. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFβ pathways as fundamental Notch regulators in breast cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(5), 1714-1719.
[http://dx.doi.org/10.1073/pnas.1214014110] [PMID: 23319603]
[92]
Kirouac, D.C.; Du, J.Y.; Lahdenranta, J.; Overland, R.; Yarar, D.; Paragas, V.; Pace, E.; McDonagh, C.F.; Nielsen, U.B.; Onsum, M.D. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci. Signal., 2013, 6(288), ra68.
[http://dx.doi.org/10.1126/scisignal.2004008] [PMID: 23943608]
[93]
Zhao, H.; Cui, K.; Nie, F.; Wang, L.; Brandl, M.B.; Jin, G.; Li, F.; Mao, Y.; Xue, Z.; Rodriguez, A.; Chang, J.; Wong, S.T.C. The effect of mTOR inhibition alone or combined with MEK inhibitors on brain metastasis: An in vivo analysis in triple-negative breast cancer models. Breast Cancer Res. Treat., 2012, 131(2), 425-436.
[http://dx.doi.org/10.1007/s10549-011-1420-7] [PMID: 21394501]
[94]
Zanzoni, A.; Montecchi-Palazzi, L.; Quondam, M.; Ausiello, G.; Helmer-Citterich, M.; Cesareni, G. MINT: A molecular interaction database. FEBS Lett., 2002, 513(1), 135-140.
[http://dx.doi.org/10.1016/S0014-5793(01)03293-8] [PMID: 11911893]
[95]
Hermjakob, H.; Montecchi-Palazzi, L.; Bader, G.; Wojcik, J.; Salwinski, L.; Ceol, A.; Moore, S.; Orchard, S.; Sarkans, U.; von Mering, C.; Roechert, B.; Poux, S.; Jung, E.; Mersch, H.; Kersey, P.; Lappe, M.; Li, Y.; Zeng, R.; Rana, D.; Nikolski, M.; Husi, H.; Brun, C.; Shanker, K.; Grant, S.G.N.; Sander, C.; Bork, P.; Zhu, W.; Pandey, A.; Brazma, A.; Jacq, B.; Vidal, M.; Sherman, D.; Legrain, P.; Cesareni, G.; Xenarios, I.; Eisenberg, D.; Steipe, B.; Hogue, C.; Apweiler, R. The HUPO PSI’s molecular interaction format--a community standard for the representation of protein interaction data. Nat. Biotechnol., 2004, 22(2), 177-183.
[http://dx.doi.org/10.1038/nbt926] [PMID: 14755292]
[96]
Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res., 2006, 34(Database issue), D535-D539.
[http://dx.doi.org/10.1093/nar/gkj109] [PMID: 16381927]
[97]
Lu, X.; Jain, V.V.; Finn, P.W.; Perkins, D.L. Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Mol. Syst. Biol., 2007, 3(98), 98.
[http://dx.doi.org/10.1038/msb4100138] [PMID: 17437023]
[98]
Chen, Y.; Zheng, Y.; Jiang, Q.; Qin, F.; Zhang, Y.; Fu, L.; He, G. Integrated bioinformatics, computational and experimental methods to discover novel Raf/extracellular-signal regulated kinase (ERK) dual inhibitors against breast cancer cells. Eur. J. Med. Chem., 2017, 127, 997-1011.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.009] [PMID: 27839788]
[99]
Adams, C.P.; Van Brantner, V. Market watch: Estimating the cost of new drug development: Is it really $802 million? Health Aff. (Millwood), 2006, 25(2), 420-428.
[http://dx.doi.org/10.1377/hlthaff.25.2.420] [PMID: 16522582]
[100]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[101]
Wang, Y.; Zhang, X.S.; Chen, L. Modelling biological systems from molecules to dynamical networks. BMC Syst. Biol., 2012, 6(Suppl. 1), S1.
[http://dx.doi.org/10.1186/1752-0509-6-S1-S1] [PMID: 23046669]
[102]
Barabási, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet., 2004, 5(2), 101-113.
[http://dx.doi.org/10.1038/nrg1272] [PMID: 14735121]
[103]
Yu, L.; Zhao, J.; Gao, L. Drug repositioning based on triangularly balanced structure for tissue-specific diseases in incomplete interactome. Artif. Intell. Med., 2017, 77, 53-63.
[http://dx.doi.org/10.1016/j.artmed.2017.03.009] [PMID: 28545612]
[104]
Yu, L.; Ma, X.; Zhang, L.; Zhang, J.; Gao, L. Prediction of new drug indications based on clinical data and network modularity. Sci. Rep., 2016, 6(August), 32530.
[http://dx.doi.org/10.1038/srep32530] [PMID: 27678071]
[105]
Yu, L.; Su, R.; Wang, B.; Zhang, L.; Zou, Y.; Zhang, J.; Gao, L. Prediction of novel drugs for hepatocellular carcinoma based on multi-source random walk. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(4), 966-977.
[http://dx.doi.org/10.1109/TCBB.2016.2550453] [PMID: 27076463]
[106]
Yu, L.; Wang, B.; Ma, X.; Gao, L. The extraction of drug-disease correlations based on module distance in incomplete human interactome. BMC Syst. Biol., 2016, 10(S4)(Suppl. 4), 111.
[http://dx.doi.org/10.1186/s12918-016-0364-2] [PMID: 28155709]
[107]
Yu, L.; Huang, J.; Ma, Z.; Zhang, J.; Zou, Y.; Gao, L. Inferring drug-disease associations based on known protein complexes. BMC Med. Genomics, 2015, 8(2)(Suppl. 2), S2.
[http://dx.doi.org/10.1186/1755-8794-8-S2-S2] [PMID: 26044949]
[108]
Bose, D.; Jayaraj, G.; Suryawanshi, H.; Agarwala, P.; Pore, S.K.; Banerjee, R.; Maiti, S. The tuberculosis drug streptomycin as a potential cancer therapeutic: Inhibition of miR-21 function by directly targeting its precursor. Angew. Chem. Int. Ed. Engl., 2012, 51(4), 1019-1023.
[http://dx.doi.org/10.1002/anie.201106455] [PMID: 22173871]
[109]
Xu, S. MiRNAs as novel therapeutic targets and diagnostic biomarkers for parkinsons disease. U.S. Patent No. 9,540,692,
[110]
Liu, Z.; Sall, A.; Yang, D. MicroRNA: An emerging therapeutic target and intervention tool. Int. J. Mol. Sci., 2008, 9(6), 978-999.
[http://dx.doi.org/10.3390/ijms9060978] [PMID: 19325841]
[111]
Srinivasan, S.; Selvan, S.T.; Archunan, G.; Gulyas, B.; Padmanabhan, P. MicroRNAs -the next generation therapeutic targets in human diseases. Theranostics, 2013, 3(12), 930-942.
[http://dx.doi.org/10.7150/thno.7026] [PMID: 24396504]
[112]
Yu, L.; Zhao, J.; Gao, L. Predicting potential drugs for breast cancer based on miRNA and tissue specificity. Int. J. Biol. Sci., 2018, 14(8), 971-982.
[http://dx.doi.org/10.7150/ijbs.23350] [PMID: 29989066]
[113]
Roy, Kunal; Kar, Supratik; R. N., D. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment 2015.
[114]
Liu, B.; Fu, L.; Zhang, C.; Zhang, L.; Zhang, Y.; Ouyang, L.; He, G.; Huang, J. Computational design, chemical synthesis, and biological evaluation of a novel ERK inhibitor (BL-EI001) with apoptosis-inducing mechanisms in breast cancer. Oncotarget, 2015, 6(9), 6762-6775.
[http://dx.doi.org/10.18632/oncotarget.3105] [PMID: 25742792]
[115]
Dandawate, P.; Khan, E.; Padhye, S.; Gaba, H.; Sinha, S.; Deshpande, J.; Venkateswara Swamy, K.; Khetmalas, M.; Ahmad, A.; Sarkar, F.H. Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3104-3108.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.060] [PMID: 22483392]
[116]
Wang, F.; Li, J.; Li, R.; Pan, G.; Bai, M.; Huang, Q. Angelicin inhibits liver cancer growth in vitro and in vivo. Mol. Med. Rep., 2017, 16(4), 5441-5449.
[http://dx.doi.org/10.3892/mmr.2017.7219] [PMID: 28849216]
[117]
Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci. Rep., 2019, 9(1), 15743.
[http://dx.doi.org/10.1038/s41598-019-52162-0] [PMID: 31673107]
[118]
Amin, K.M.; Syam, Y.M.; Anwar, M.M.; Ali, H.I.; Abdel-Ghani, T.M.; Serry, A.M. Synthesis and molecular docking study of new benzofuran and furo[3,2-g]chromone-based cytotoxic agents against breast cancer and p38α MAP kinase inhibitors. Bioorg. Chem., 2018, 76(January), 487-500.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.029] [PMID: 29310080]
[119]
Peter, S.C. Quantitative Structure-Activity Relationship (QSAR); Modeling Approaches to Biological Applications, 2019, pp. 661-676.
[120]
Vilar, S.; González-Díaz, H.; Santana, L.; Uriarte, E. QSAR model for alignment-free prediction of human breast cancer biomarkers based on electrostatic potentials of protein pseudofolding HP-lattice networks. J. Comput. Chem., 2008, 29(16), 2613-2622.
[http://dx.doi.org/10.1002/jcc.21016] [PMID: 18478581]
[121]
Zekri, A.; Harkati, D.; Kenouche, S.; Saleh, B.A. QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. J. Mol. Struct., 2020, 1217, 128442.
[http://dx.doi.org/10.1016/j.molstruc.2020.128442]
[122]
Adhikari, N.; Halder, A.K.; Saha, A.; Das Saha, K.; Jha, T. Structural findings of phenylindoles as cytotoxic antimitotic agents in human breast cancer cell lines through multiple validated QSAR studies. Toxicol. In Vitro, 2015, 29(7), 1392-1404.
[http://dx.doi.org/10.1016/j.tiv.2015.05.017]

© 2024 Bentham Science Publishers | Privacy Policy