Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

Functional Ability of Dental Materials After Inclusion of Nanocarriers Containing Functional Substances: A Systematic Review

Author(s): Moan Jéfter Fernandes Costa, Francisca Jennifer Duarte de Oliveira, Renally Bezerra Wanderley e Lima and Boniek Castillo Dutra Borges*

Volume 22, Issue 21, 2022

Published on: 31 May, 2022

Page: [2799 - 2805] Pages: 7

DOI: 10.2174/1389557522666220330145130

Price: $65

Abstract

Background: Nanocarriers are nanoparticles used to transport functional substances.

Objective: This study aimed to perform a systematic review analyzing the functional ability of dental materials after the inclusion of nanocarriers containing functional substances.

Materials and Methods: We searched PubMed, Web of Science, EMBASE, SciELO, and Science Direct from (02/03/21) to (02/06/21) without restriction on the year of publication. We included studies evaluating the incorporation of Chitosan, PEG-PCL (poly(ethylene glycol)-poly(ε-caprolactone), PLGA (poly(lactic-co-glycolic acid), and mesoporous silica into dental materials. We analyzed the risk of bias with CRIS guidelines and consolidated all analyses using Microsoft Office Excel.

Results: In total, we found 656 studies and included 11. The articles investigated materials to eliminate microorganisms, interference with materials’ mechanical properties, elution of remineralizing substances, and reduction of oral anesthetic toxicity. Chitosan and mesoporous silica were the most prevalent nanocarriers. Among all properties, the antibacterial activity was the most analyzed. The functional ability of dental materials provided by all nanocarriers improved.

Conclusion: The use of nanocarriers may be a useful way to produce dental materials with improved functional abilities. We registered this manuscript in the Open Science Framework platform - DOI 10.17605/OSF.IO/RP5XK, available at https://osf.io/qg49x.

Keywords: Dental materials, nanoconjugates, nanoparticle, nanotechnology, oral health, chemistry, pharmaceutical.

« Previous
Graphical Abstract

[1]
Deci, M.B.; Liu, M.; Dinh, Q.T.; Nguyen, J. Precision engineering of targeted nanocarriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(5), e1511.
[http://dx.doi.org/10.1002/wnan.1511]
[2]
Shaw, A.; Lundin, V.; Petrova, E.; Fördős, F.; Benson, E.; Al-Amin, A.; Herland, A.; Blokzijl, A.; Högberg, B.; Teixeira, A.I. Spatial con-trol of membrane receptor function using ligand nanocalipers. Nat. Methods, 2014, 11(8), 841-846.
[http://dx.doi.org/10.1038/nmeth.3025] [PMID: 24997862]
[3]
AlKahtani, R.N. The implications and applications of nanotechnology in dentistry: A review. Saudi Dent. J., 2018, 30(2), 107-116.
[http://dx.doi.org/10.1016/j.sdentj.2018.01.002] [PMID: 29628734]
[4]
Cafferata, E.A.; Alvarez, C.; Diaz, K.T.; Maureira, M.; Monasterio, G.; González, F.E.; Covarrubias, C.; Vernal, R. Multifunctional nanoca-rriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies. Oral Dis., 2019, 25(8), 1866-1878.
[http://dx.doi.org/10.1111/odi.13023] [PMID: 30565778]
[5]
Özkan, S.A.; Dedeoğlu, A.; Karadaş Bakirhan, N.; Özkan, Y. Nanocarriers used most in drug delivery and drug release: Nanohydrogel, chitosan, graphene, and solid lipid. Turk. J. Pharm. Sci., 2019, 16(4), 481-492.
[http://dx.doi.org/10.4274/tjps.galenos.2019.48751] [PMID: 32454753]
[6]
Kim, J.; Jung, H.M.; Kim, J.Y.; Han, J.; Jin, B.H.; Woo, K.M. Fluoride-releasing chitosan nanoparticles for prevention of dental caries. Tissue Eng. Regen. Med., 2011, 38(4), 93-98.
[7]
Silva de Melo, N.F.; Campos, E.V.; Gonçalves, C.M.; de Paula, E.; Pasquoto, T.; de Lima, R.; Rosa, A.H.; Fraceto, L.F. Development of hydrophilic nanocarriers for the charged form of the local anesthetic articaine. Colloids Surf. B Biointerfaces, 2014, 121, 66-73.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.035] [PMID: 24934456]
[8]
Tian, L.; Peng, C.; Shi, Y.; Guo, X.; Zhong, B.; Qi, J.; Wang, G.; Cai, Q.; Cui, F. Effect of mesoporous silica nanoparticles on dentinal tubule occlusion: An in vitro study using SEM and image analysis. Dent. Mater. J., 2014, 33(1), 125-132.
[http://dx.doi.org/10.4012/dmj.2013-215] [PMID: 24492123]
[9]
Zhang, J.F.; Wu, R.; Fan, Y.; Liao, S.; Wang, Y.; Wen, Z.T.; Xu, X. Antibacterial dental composites with chlorhexidine and mesoporous silica. J. Dent. Res., 2014, 93(12), 1283-1289.
[http://dx.doi.org/10.1177/0022034514555143] [PMID: 25319365]
[10]
Haseeb, R.; Lau, M.; Sheah, M.; Montagner, F.; Quiram, G.; Palmer, K.; Stefan, M.C.; Rodrigues, D.C. Synthesis and characterization of new chlorhexidine-containing nanoparticles for root canal disinfection. Materials (Basel), 2016, 9(6), 452.
[http://dx.doi.org/10.3390/ma9060452] [PMID: 28773576]
[11]
Lee, J.H.; El-Fiqi, A.; Jo, J.K.; Kim, D.A.; Kim, S.C.; Jun, S.K.; Kim, H.W.; Lee, H.H. Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent. Mater., 2016, 32(12), 1564-1574.
[http://dx.doi.org/10.1016/j.dental.2016.09.001] [PMID: 27671462]
[12]
Li, X.; Wong, C.H.; Ng, T.W.; Zhang, C.F.; Leung, K.C.; Jin, L. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions. Int. J. Nanomedicine, 2016, 11, 2471-2480.
[http://dx.doi.org/10.2147/IJN.S105681] [PMID: 27330290]
[13]
Makkar, H.; Patri, G. Fabrication and appraisal of poly (lactic-co-glycolic acid) - moxifloxacin nanoparticles using vitamin E-TPGS: A potential intracanal drug delivery agent. J. Clin. Diagn. Res., 2017, 11(6), ZC05-ZC08.
[http://dx.doi.org/10.7860/JCDR/2017/27633.9957] [PMID: 28764283]
[14]
Farhadian, N.; Godiny, M.; Moradi, S.; Hemati Azandaryani, A.; Shahlaei, M. Chitosan/gelatin as a new nano-carrier system for calcium hydroxide delivery in endodontic applications: Development, characterization and process optimization. Mater. Sci. Eng. C, 2018, 92, 540-546.
[http://dx.doi.org/10.1016/j.msec.2018.07.002] [PMID: 30184780]
[15]
Yan, H.; Wang, S.; Han, L.; Peng, W.; Yi, L.; Guo, R.; Liu, S.; Yang, H.; Huang, C. Chlorhexidine-encapsulated mesoporous silica-modified dentin adhesive. J. Dent., 2018, 78, 83-90.
[http://dx.doi.org/10.1016/j.jdent.2018.08.012] [PMID: 30153498]
[16]
Araujo, H.C.; Arias, L.S.; Caldeirão, A.C.M.; Assumpção, L.C.F.; Morceli, M.G.; de Souza Neto, F.N.; de Camargo, E.R.; Oliveira, S.H.P.; Pessan, J.P.; Monteiro, D.R. Novel colloidal nanocarrier of cetylpyridinium chloride: Antifungal activities on candida species and cytoto-xic potential on murine fibroblasts. J. Fungi (Basel), 2020, 6(4), 218.
[http://dx.doi.org/10.3390/jof6040218] [PMID: 33053629]
[17]
Makvandi, P.; Josic, U.; Delfi, M.; Pinelli, F.; Jahed, V.; Kaya, E.; Ashrafizadeh, M.; Zarepour, A.; Rossi, F.; Zarrabi, A.; Agarwal, T.; Zare, E.N.; Ghomi, M.; Kumar Maiti, T.; Breschi, L.; Tay, F.R. Drug delivery (Nano)platforms for oral and dental applications: Tissue re-generation, infection control, and cancer management. Adv. Sci. (Weinh.), 2021, 8(8), 2004014.
[http://dx.doi.org/10.1002/advs.202004014] [PMID: 33898183]
[18]
Stone, P.W. Popping the (PICO) question in research and evidence-based practice. Appl. Nurs. Res., 2002, 15(3), 197-198.
[http://dx.doi.org/10.1053/apnr.2002.34181] [PMID: 12173172]
[19]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med., 2021, 18(3), e1003583.
[http://dx.doi.org/10.1371/journal.pmed.1003583] [PMID: 33780438]
[20]
Krithikadatta, J.; Gopikrishna, V.; Datta, M. CRIS guidelines (Checklist for reporting in-vitro studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J. Conserv. Dent., 2014, 17(4), 301-304.
[http://dx.doi.org/10.4103/0972-0707.136338] [PMID: 25125839]
[21]
Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol., 2020, 105, 17-42.
[http://dx.doi.org/10.1016/j.tifs.2020.08.016] [PMID: 32901176]
[22]
Cheng, H.; Huang, S.; Huang, G. Design and application of oral colon administration system. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1590-1596.
[http://dx.doi.org/10.1080/14756366.2019.1655406] [PMID: 31581863]
[23]
Barry, F.; Chai, F.; Chijcheapaza-Flores, H.; Garcia-Fernandez, M.J.; Blanchemain, N.; Nicot, R. Systematic review of studies on drug-delivery systems for management of temporomandibular-joint osteoarthritis. J. Stomatol. Oral Maxillofac. Surg., 2021, S2468-7855(21), 00163-00164.
[http://dx.doi.org/10.1016/j.jormas.2021.08.003]
[24]
Khademi, F.; Derakhshan, M.; Yousefi-Avarvand, A.; Tafaghodi, M. Potential of polymeric particles as future vaccine delivery sys-tems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review. Iran. J. Basic Med. Sci., 2018, 21(2), 116-123.
[http://dx.doi.org/10.22038/IJBMS.2017.22059.5648] [PMID: 29456807]
[25]
Reshma, V.G.; Syama, S.; Sruthi, S.; Reshma, S.C.; Remya, N.S.; Mohanan, P.V. Engineered nanoparticles with antimicrobial property. Curr. Drug Metab., 2017, 18(11), 1040-1054.
[http://dx.doi.org/10.2174/1389200218666170925122201] [PMID: 28952436]
[26]
Akram, Z.; Aati, S.; Ngo, H.; Fawzy, A. pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. J. Nanobiotechnology, 2021, 19(1), 43.
[http://dx.doi.org/10.1186/s12951-021-00788-6] [PMID: 33563280]
[27]
Arafa, M.G.; Mousa, H.A.; Afifi, N.N. Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug Deliv., 2020, 27(1), 26-39.
[http://dx.doi.org/10.1080/10717544.2019.1701140] [PMID: 31833443]
[28]
Miao, T.; Wang, J.; Zeng, Y.; Liu, G.; Chen, X. Polysaccharide-based controlled release systems for therapeutics delivery and tissue engi-neering: From bench to bedside. Adv. Sci. (Weinh.), 2018, 5(4), 1700513.
[http://dx.doi.org/10.1002/advs.201700513] [PMID: 29721408]
[29]
Toledano, M.; Aguilera, F.S.; Yamauti, M.; Ruiz-Requena, M.E.; Osorio, R. In vitro load-induced dentin collagen-stabilization against MMPs degradation. J. Mech. Behav. Biomed. Mater., 2013, 27, 10-18.
[http://dx.doi.org/10.1016/j.jmbbm.2013.06.002]
[30]
McDonagh, M.; Peterson, K.; Raina, P.; Chang, S.; Shekelle, P. Avoiding Bias in Selecting Studies.Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Rockville (MD); Agency for Healthcare Research and Quality: US, 2013.
[31]
de Araújo, I.D.T.; de Sousa Santos, K. das Neves Peixoto, T.V.O.; Costa, M.J.F.; de Assunção, I.V.; Borges, B.C.D. The combined use of systemic analgesic/anti-inflammatory drugs and a bioactive topical desensitizer for reduced in-office bleaching sensitivity without jeopar-dizing the hydrogen peroxide efficacy: A randomized, triple blinded, split-mouth clinical trial. Clin. Oral Investig., 2021, 25(12), 6623-6632. Epub ahead of print
[http://dx.doi.org/10.1007/s00784-021-03948-y] [PMID: 33884504]
[32]
Braga, R.R.; Fronza, B.M. The use of bioactive particles and biomimetic analogues for increasing the longevity of resin-dentin interfaces: A literature review. Dent. Mater. J., 2020, 39(1), 62-68.
[http://dx.doi.org/10.4012/dmj.2019-293] [PMID: 31723068]
[33]
Souza, P.H.S.; Medeiros, F.D.; Pinto, M.G.O. Antimicrobial potential of chitosan. Afr. J. Microbiol. Res., 2015, 9(3), 147-154.
[http://dx.doi.org/10.5897/AJMR2014.7235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy