Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Blood Biomarkers Predict Future Cognitive Decline after Military-Related Traumatic Brain Injury

Author(s): Sara M. Lippa*, Jessica Gill, Tracey A. Brickell, Vivian A. Guedes, Louis M. French and Rael T. Lange

Volume 19, Issue 5, 2022

Published on: 11 August, 2022

Page: [351 - 363] Pages: 13

DOI: 10.2174/1567205019666220330144432

Price: $65

Abstract

Background: Traumatic brain injury (TBI) has been associated with an increased likelihood of late-life dementia; however, the mechanisms driving this relationship are elusive. Bloodbased biomarkers may provide insight into these mechanisms and serve as useful prognostic indicators of cognitive recovery or decline following a TBI.

Objective: The aim of this study was to examine blood biomarkers within one year of TBI and explore their relationship with cognitive decline.

Methods: Service members and veterans (n=224) without injury (n=77), or with a history of bodily injury (n=37), uncomplicated mild TBI (n=55), or more severe TBI (n=55), underwent a blood draw and neuropsychological assessment within one year of their injury as part of a case-control study. A subsample (n=87) completed a follow-up cognitive assessment.

Results: In the more severe TBI group, baseline glial fibrillary acidic protein (p=.008) and ubiquitin C-terminal hydrolase-L1 (p=.026) were associated with processing speed at baseline, and baseline ubiquitin C-terminal hydrolase-L1 predicted change in immediate (R2Δ=.244, p=.005) and delayed memory (R2Δ=.390, p=.003) over time. In the mild TBI group, higher baseline tau predicted greater negative change in perceptual reasoning (R2Δ=.188, p=.033) and executive functioning (R2Δ=.298, p=.007); higher baseline neurofilament light predicted greater negative change in perceptual reasoning (R2Δ=.211, p=.012).

Conclusion: Baseline ubiquitin C-terminal hydrolase-L1 strongly predicted memory decline in the more severe TBI group, while tau and neurofilament light strongly predicted decline in the mild TBI group. A panel including these biomarkers could be particularly helpful in identifying those at risk for future cognitive decline following TBI.

Keywords: Traumatic brain injury, blood biomarkers, cognition, military, dementia, proteomics.

[1]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207-16.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[2]
Qu Y, Ma YH, Huang YY, et al. Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 128: 479-86.
[http://dx.doi.org/10.1016/j.neubiorev.2021.07.007] [PMID: 34245759]
[3]
Chatterjee P, Pedrini S, Ashton NJ, et al. Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer’s disease. Alzheimers Dement 2021. Epub ahead of print
[http://dx.doi.org/10.1002/alz.12447] [PMID: 34494715]
[4]
Oeckl P, Halbgebauer S, Anderl-Straub S, et al. Glial Fibrillary acidic protein in serum is increased in alzheimer’s disease and correlates with cognitive impairment. J Alzheimers Dis 2019; 67(2): 481-8.
[http://dx.doi.org/10.3233/JAD-180325] [PMID: 30594925]
[5]
Verberk IMW, Thijssen E, Koelewijn J, et al. Combination of plasma amyloid beta(1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. Alzheimers Res Ther 2020; 12(1): 118.
[http://dx.doi.org/10.1186/s13195-020-00682-7] [PMID: 32988409]
[6]
Suárez-Calvet M, Karikari TK, Ashton NJ, et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med 2020; 12(12): e12921.
[http://dx.doi.org/10.15252/emmm.202012921] [PMID: 33169916]
[7]
Moscoso A, Grothe MJ, Ashton NJ, et al. Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. Brain 2021; 144(1): 325-39.
[http://dx.doi.org/10.1093/brain/awaa399] [PMID: 33257949]
[8]
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol 2020; 19(5): 422-33.
[http://dx.doi.org/10.1016/S1474-4422(20)30071-5] [PMID: 32333900]
[9]
Moscoso A, Grothe MJ, Ashton NJ, et al. Longitudinal associations of blood phosphorylated tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol 2021; 78(4): 396-406.
[http://dx.doi.org/10.1001/jamaneurol.2020.4986] [PMID: 33427873]
[10]
Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol 2021; 141(5): 709-24.
[http://dx.doi.org/10.1007/s00401-021-02275-6] [PMID: 33585983]
[11]
Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K. Association of mild traumatic brain injury with and without loss of consciousness with dementia in us military veterans. JAMA Neurol 2018; 75(9): 1055-61.
[http://dx.doi.org/10.1001/jamaneurol.2018.0815] [PMID: 29801145]
[12]
Mendez MF, Paholpak P, Lin A, Zhang JY, Teng E. Prevalence of traumatic brain injury in early versus late-onset Alzheimer’s disease. J Alzheimers Dis 2015; 47(4): 985-93.
[http://dx.doi.org/10.3233/JAD-143207] [PMID: 26401777]
[13]
Nordström P, Michaëlsson K, Gustafson Y, Nordström A. Traumatic brain injury and young onset dementia: A nationwide cohort study. Ann Neurol 2014; 75(3): 374-81.
[http://dx.doi.org/10.1002/ana.24101] [PMID: 24812697]
[14]
Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer’s disease: The evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 2003; 74(7): 857-62.
[http://dx.doi.org/10.1136/jnnp.74.7.857] [PMID: 12810767]
[15]
Guo Z, Cupples LA, Kurz A, et al. Head injury and the risk of AD in the MIRAGE study. Neurology 2000; 54(6): 1316-23.
[http://dx.doi.org/10.1212/WNL.54.6.1316] [PMID: 10746604]
[16]
Plassman BL, Havlik RJ, Steffens DC, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 2000; 55(8): 1158-66.
[http://dx.doi.org/10.1212/WNL.55.8.1158] [PMID: 11071494]
[17]
Ikonomovic MD, Uryu K, Abrahamson EE, et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 2004; 190(1): 192-203.
[http://dx.doi.org/10.1016/j.expneurol.2004.06.011] [PMID: 15473992]
[18]
Veitch DP, Friedl KE, Weiner MW. Military risk factors for cognitive decline, dementia and Alzheimer’s disease. Curr Alzheimer Res 2013; 10(9): 907-30.
[http://dx.doi.org/10.2174/15672050113109990142] [PMID: 23906002]
[19]
Turtzo LC, Lescher J, Janes L, Dean DD, Budde MD, Frank JA. Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J Neuroinflammation 2014; 11: 82.
[http://dx.doi.org/10.1186/1742-2094-11-82] [PMID: 24761998]
[20]
Gentleman SM, Leclercq PD, Moyes L, et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 2004; 146(2-3): 97-104.
[http://dx.doi.org/10.1016/j.forsciint.2004.06.027] [PMID: 15542269]
[21]
Djordjevic J, Sabbir MG, Albensi BC. Traumatic brain injury as a risk factor for Alzheimer’s disease: Is inflammatory signaling a key player? Curr Alzheimer Res 2016; 13(7): 730-8.
[http://dx.doi.org/10.2174/1567205013666160222110320] [PMID: 26899581]
[22]
Diaz-Arrastia R, Wang KK, Papa L, et al. Acute biomarkers of traumatic brain injury: Relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma 2014; 31(1): 19-25.
[http://dx.doi.org/10.1089/neu.2013.3040] [PMID: 23865516]
[23]
Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 2012; 78(18): 1428-33.
[http://dx.doi.org/10.1212/WNL.0b013e318253d5c7] [PMID: 22517109]
[24]
Papa L, Lewis LM, Falk JL, et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 2012; 59(6): 471-83.
[http://dx.doi.org/10.1016/j.annemergmed.2011.08.021] [PMID: 22071014]
[25]
Bogoslovsky T, Wilson D, Chen Y, et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 Days after traumatic brain injury. J Neurotrauma 2017; 34(1): 66-73.
[http://dx.doi.org/10.1089/neu.2015.4333] [PMID: 27312416]
[26]
Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology 2017; 88(19): 1788-94.
[http://dx.doi.org/10.1212/WNL.0000000000003912] [PMID: 28404801]
[27]
Shahim P, Gren M, Liman V, et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep 2016; 6: 36791.
[http://dx.doi.org/10.1038/srep36791] [PMID: 27819296]
[28]
Wallace C, Smirl JD, Zetterberg H, et al. Heading in soccer increases serum neurofilament light protein and SCAT3 symptom metrics. BMJ Open Sport Exerc Med 2018; 4(1): e000433.
[http://dx.doi.org/10.1136/bmjsem-2018-000433] [PMID: 30233810]
[29]
Oliver JM, Jones MT, Kirk KM, et al. Serum neurofilament light in american football athletes over the course of a season. J Neurotrauma 2016; 33(19): 1784-9.
[http://dx.doi.org/10.1089/neu.2015.4295] [PMID: 26700106]
[30]
Shahim P, Tegner Y, Marklund N, Blennow K, Zetterberg H. Neurofilament light and tau as blood biomarkers for sports-related concussion. Neurology 2018; 90(20): e1780-8.
[http://dx.doi.org/10.1212/WNL.0000000000005518] [PMID: 29653990]
[31]
Korley FK, Diaz-Arrastia R, Wu AH, et al. Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury. J Neurotrauma 2016; 33(2): 215-25.
[http://dx.doi.org/10.1089/neu.2015.3949] [PMID: 26159676]
[32]
Failla MD, Juengst SB, Arenth PM, Wagner AK. Preliminary associations between brain-derived neurotrophic factor, memory impairment, functional cognition, and depressive symptoms following severe TBI. Neurorehabil Neural Repair 2016; 30(5): 419-30.
[http://dx.doi.org/10.1177/1545968315600525] [PMID: 26276123]
[33]
Nag S, Takahashi JL, Kilty DW. Role of vascular endothelial growth factor in blood-brain barrier breakdown and angiogenesis in brain trauma. J Neuropathol Exp Neurol 1997; 56(8): 912-21.
[http://dx.doi.org/10.1097/00005072-199708000-00009] [PMID: 9258261]
[34]
Sandsmark DK, Bogoslovsky T, Qu BX, et al. Changes in plasma von willebrand factor and cellular fibronectin in MRI-defined traumatic microvascular injury. Front Neurol 2019; 10: 246.
[http://dx.doi.org/10.3389/fneur.2019.00246] [PMID: 30972003]
[35]
FDA Decision Memorandum. Evaluation of automatic class III designation for benyon brain trauma indicator. 2018.
[36]
Gill J, Mustapic M, Diaz-Arrastia R, et al. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj 2018; 32(10): 1277-84.
[http://dx.doi.org/10.1080/02699052.2018.1471738] [PMID: 29913077]
[37]
Winston CN, Romero HK, Ellisman M, et al. Assessing neuronal and astrocyte derived exosomes from individuals with mild traumatic brain injury for markers of neurodegeneration and cytotoxic activity. Front Neurosci 2019; 13: 1005.
[http://dx.doi.org/10.3389/fnins.2019.01005] [PMID: 31680797]
[38]
Kenney K, Qu BX, Lai C, et al. Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury. Brain Inj 2018; 32(10): 1276-84.
[http://dx.doi.org/10.1080/02699052.2018.1483530] [PMID: 29889559]
[39]
Lippa SM, Yeh PH, Gill J, French LM, Brickell TA, Lange RT. Plasma tau and amyloid are not reliably related to injury characteristics, neuropsychological performance, or white matter integrity in service members with a history of traumatic brain injury. J Neurotrauma 2019; 36(14): 2190-9.
[http://dx.doi.org/10.1089/neu.2018.6269] [PMID: 30834814]
[40]
Olivera A, Lejbman N, Jeromin A, et al. Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurol 2015; 72(10): 1109-16.
[http://dx.doi.org/10.1001/jamaneurol.2015.1383] [PMID: 26237304]
[41]
Pattinson CL, Gill JM, Lippa SM, Brickell TA, French LM, Lange RT. Concurrent mild traumatic brain injury and posttraumatic stress disorder is associated with elevated tau concentrations in peripheral blood plasma. J Trauma Stress 2019; 32(4): 546-54.
[http://dx.doi.org/10.1002/jts.22418] [PMID: 31291489]
[42]
Pattinson CL, Shahim P, Taylor P, et al. Elevated tau in military personnel relates to chronic symptoms following traumatic brain injury. J Head Trauma Rehabil 2020; 35(1): 66-73.
[http://dx.doi.org/10.1097/HTR.0000000000000485] [PMID: 31033745]
[43]
Dickstein DL, De Gasperi R, Gama Sosa MA, et al. Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure. Mol Psychiatry 2020; 26(10): 5940-54.
[PMID: 32094584]
[44]
Guedes VA, Kenney K, Shahim P, et al. Exosomal neurofilament light: A prognostic biomarker for remote symptoms after mild traumatic brain injury? Neurology 2020; 94(23): e2412-23.
[http://dx.doi.org/10.1212/WNL.0000000000009577] [PMID: 32461282]
[45]
Devoto C, Arcurio L, Fetta J, et al. Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries. Cell Transplant 2017; 26(7): 1169-77.
[http://dx.doi.org/10.1177/0963689717714098] [PMID: 28933225]
[46]
Kanefsky R, Motamedi V, Mithani S, Mysliwiec V, Gill JM, Pattinson CL. Mild traumatic brain injuries with loss of consciousness are associated with increased inflammation and pain in military personnel. Psychiatry Res 2019; 279: 34-9.
[http://dx.doi.org/10.1016/j.psychres.2019.07.001] [PMID: 31280036]
[47]
Peltz CB, Kenney K, Gill J, Diaz-Arrastia R, Gardner RC, Yaffe K. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology 2020; 95(9): e1126-33.
[http://dx.doi.org/10.1212/WNL.0000000000010087] [PMID: 32571850]
[48]
Stern RA, Tripodis Y, Baugh CM, et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. J Alzheimers Dis 2016; 51(4): 1099-109.
[http://dx.doi.org/10.3233/JAD-151028] [PMID: 26890775]
[49]
Asken BM, Yang Z, Xu H, et al. Acute effects of sport-related concussion on serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, total tau, and neurofilament light measured by a multiplex assay. J Neurotrauma 2020; 37(13): 1537-45.
[http://dx.doi.org/10.1089/neu.2019.6831] [PMID: 32024456]
[50]
Dey S, Gangadharan J, Deepika A, et al. Correlation of ubiquitin C terminal hydrolase and S100β with cognitive deficits in young adults with mild traumatic brain injury. Neurol India 2017; 65(4): 761-6.
[http://dx.doi.org/10.4103/neuroindia.NI_884_15] [PMID: 28681747]
[51]
Lippa SM, Gill J, Brickell TA, French LM, Lange RT. Blood biomarkers relate to cognitive performance years after traumatic brain injury in service members and veterans. J Int Neuropsychol 2020.
[52]
Lange RT, French LM, Lippa SM, Bailie JM, Brickell TA. Posttraumatic stress disorder is a stronger predictor of long-term neurobehavioral outcomes than traumatic brain injury severity. J Trauma Stress 2020; 33(3): 318-29.
[http://dx.doi.org/10.1002/jts.22480] [PMID: 32379932]
[53]
Lange RT, Lippa SM, French LM, et al. Long-term neurobehavioural symptom reporting following mild, moderate, severe, and penetrating traumatic brain injury in U.S. military service members. Neuropsychol Rehabil 2019; 1-24.
[PMID: 31003592]
[54]
Lippa SM, French LM, Bell RS, Brickell TA, Lange RT. United States military service members demonstrate substantial and heterogeneous long-term neuropsychological dysfunction after moderate, severe, and penetrating traumatic brain injury. J Neurotrauma 2020; 37(4): 608-17.
[http://dx.doi.org/10.1089/neu.2019.6696] [PMID: 31559904]
[55]
Wechsler D. Wechsler Adult Intelligence Scale-Fourth Edition: Technical and interpretive manual. San Antonio, TX: Pearson 2008.
[56]
Wechsler D. Wechsler Memory Scale-Fourth Edition: Technical and interpretive manual. San Antonio, TX: Pearson 2009.
[57]
Delis DC, Kramer JH, Kaplan E, Ober BA. California Verbal Learning Test. 2nd ed. San Antonio: Psychological Corporation 2000.
[58]
Delis DC, Kaplan E, Kramer JH. Delis-Kaplan Executive Functioning System (D-KEFS): Examiner’s manual. San Antonio, TX: The Psychological Corporation 2001.
[59]
Heaton RK, Miller SW, Taylor MJ, Grant I. Revised Comprehensive Norms for an Expanded Halstead Reitan Battery: Demographically Adjusted Neuropsychological Nroms for African American and Caucasian Adults. Lutz, FL: Psychological Assessment Resources, Inc 2004.
[60]
Pearson Advanced clinical solutions for use with WAIS-IV and WMS-IV. San Antonio, TX: Pearson Education 2009.
[61]
Green P. Green’s Medical Symptom Validity Test (MSVT) for Microsoft Windows: User’s manual. Edmonton, Canada: Green's Publishing 2004.
[62]
Tombaugh TN. TOMM: Test of Memory Malingering. Tonawanda, NY: Multi-Health Systems 1996.
[63]
Mattsson N, Zetterberg H, Janelidze S, et al. Plasma tau in Alzheimer disease. Neurology 2016; 87(17): 1827-35.
[http://dx.doi.org/10.1212/WNL.0000000000003246] [PMID: 27694257]
[64]
Mielke MM, Hagen CE, Wennberg AMV, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol 2017; 74(9): 1073-80.
[http://dx.doi.org/10.1001/jamaneurol.2017.1359] [PMID: 28692710]
[65]
Shahim P, Politis A, van der Merwe A, et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology 2020; 95(6): e610-22.
[http://dx.doi.org/10.1212/WNL.0000000000009983] [PMID: 32641538]
[66]
Shahim P, Politis A, van der Merwe A, et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology 2020; 95(6): e623-36.
[http://dx.doi.org/10.1212/WNL.0000000000009985] [PMID: 32641529]
[67]
Becker RE, Greig NH, Lahiri DK, et al. (-)-Phenserine and inhibiting pre-programmed cell death: In pursuit of a novel intervention for Alzheimer’s disease. Curr Alzheimer Res 2018; 15(9): 883-91.
[http://dx.doi.org/10.2174/1567205015666180110120026] [PMID: 29318971]
[68]
Lecca D, Bader M, Tweedie D, et al. (-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer’s disease challenged mice. Neurobiol Dis 2019; 130: 104528.
[http://dx.doi.org/10.1016/j.nbd.2019.104528] [PMID: 31295555]
[69]
Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 2018; 18(2): 165-80.
[http://dx.doi.org/10.1080/14737159.2018.1428089] [PMID: 29338452]
[70]
Papa L, Lewis LM, Silvestri S, et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg 2012; 72(5): 1335-44.
[http://dx.doi.org/10.1097/TA.0b013e3182491e3d] [PMID: 22673263]
[71]
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Experimental neurology 2016; 275 Pt 3(03): 305-15.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.020]
[72]
Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015; 32: 121-30.
[http://dx.doi.org/10.1016/j.ceb.2015.02.004] [PMID: 25726916]
[73]
Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol 2015; 127: 45-66.
[http://dx.doi.org/10.1016/B978-0-444-52892-6.00004-0] [PMID: 25702209]
[74]
Witcher KG, Bray CE, Chunchai T, et al. Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia. J Neurosci 2021; 41(7): 1597-616.
[http://dx.doi.org/10.1523/JNEUROSCI.2469-20.2020] [PMID: 33452227]
[75]
Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 2019; 90(8): 870-81.
[http://dx.doi.org/10.1136/jnnp-2018-320106] [PMID: 30967444]
[76]
Weinhofer I, Rommer P, Zierfuss B, et al. Neurofilament light chain as a potential biomarker for monitoring neurodegeneration in X-linked adrenoleukodystrophy. Nat Commun 2021; 12(1): 1816.
[http://dx.doi.org/10.1038/s41467-021-22114-2] [PMID: 33753741]
[77]
Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 2013; 9(4): 201-10.
[http://dx.doi.org/10.1038/nrneurol.2013.9] [PMID: 23399646]
[78]
Reinicke AT, Laban K, Sachs M, et al. Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks. Proc Natl Acad Sci USA 2019; 116(16): 7963-72.
[http://dx.doi.org/10.1073/pnas.1812413116] [PMID: 30923110]
[79]
Kubo A, Misonou H, Matsuyama M, et al. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol 2019; 527(5): 985-98.
[http://dx.doi.org/10.1002/cne.24577] [PMID: 30408165]
[80]
Kovacs GG. Chapter 25 - Tauopathies Handbook of Clinical Neurology. Elsevier 2018; Vol. 145: pp. 355-68.
[81]
Iwata M, Watanabe S, Yamane A, Miyasaka T, Misonou H. Regulatory mechanisms for the axonal localization of tau protein in neurons. Mol Biol Cell 2019; 30(19): 2441-57.
[http://dx.doi.org/10.1091/mbc.E19-03-0183] [PMID: 31364926]
[82]
Ferrer I, López-González I, Carmona M, et al. Glial and neuronal tau pathology in tauopathies: Characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol 2014; 73(1): 81-97.
[http://dx.doi.org/10.1097/NEN.0000000000000030] [PMID: 24335532]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy