Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Targeting the HIV-1 Tat and Human Tat Protein Complex through Natural Products: An In Silico Docking and Molecular Dynamics Simulation Approach

Author(s): Vipin Kumar, Ayushi Mishra, Vinay Kumar Singh and Anchal Singh*

Volume 19, Issue 11, 2022

Published on: 25 May, 2022

Page: [982 - 995] Pages: 14

DOI: 10.2174/1570180819666220330122542

Price: $65

Abstract

Background: Tat protein is considered essential for substantial HIV-1 replication, and is also required to break HIV-1 latency, resulting in productive HIV replication. The multifaceted regulatory role of HIV Tat and the fact that it is expressed in the early stages of HIV infection justify its potential as an anti-HIV drug target.

Objective: The present study was undertaken with the aim to target HIV-1 Tat protein with natural compounds which could help in identifying potential inhibitors against HIV-1 Tat.

Methods: In this study, we compared the binding of Tat protein and Human P-TEFb Tat protein complex (TPC) with phyto-steroids and terpenes to evaluate their potential for HIV-1 treatment. The docking ability of plant products with HIV-1 Tat and TPC was studied with respect to dissociation constant, geometric shape complementary score, approximate interface area, and binding energy using Patch dock and YASARA. Molecular dynamics simulation was set up to investigate the interactions of the natural compounds with Tat protein and human tat protein complex (TPC).

Results: The binding energy and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A with Tat and TPC were comparable to antiretroviral drugs, Maraviroc and Emtricitabine. The natural products, Diosgenin, Ginkgolide A and Catharanthine, showed the highest binding energy and were stable with Tat protein and TPC in the entire MD simulation run.

Conclusion: The natural products, Diosgenin, Ginkgolide A and Catharanthine, showed highest binding energy and were stable with Tat protein and TPC in the entire MD simulation run. The binding energy and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A with Tat and TPC were comparable to antiretroviral drugs, Maraviroc and Emtricitabine.

Keywords: HIV- TAT, human P-TEFb Tat protein complex, TAT-TAR, P-TEFb, anti-HIV effects, plant steroids, antiretroviral therapy, HAART.

« Previous
Graphical Abstract

[1]
Langarizadeh, M.A.; Abiri, A.; Ghasemshirazi, S.; Foroutan, N.; Khodadadi, A.; Faghih-Mirzaei, E. Phlorotannins as HIV Vpu inhibitors, an in silico virtual screening study of marine natural products. Biotechnol. Appl. Biochem., 2021, 68(4), 918-926.
[http://dx.doi.org/10.1002/bab.2014] [PMID: 32860447]
[2]
Yaser, H.; Adriano, M.; Sako, M. Structure-based virtual screening efforts against HIV-1 reverse transcriptase to introduce the new potent non-nucleoside reverse transcriptase inhibitor. J. Mol. Struct., 2016, 1125, 592-600.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.040]
[3]
Stefanucci, A.; Iobbi, V.; Della Valle, A.; Scioli, G.; Pieretti, S.; Minosi, P.; Mirzaie, S.; Novellino, E.; Mollica, A. In silico identification of tripeptides as lead compounds for the design of KOR ligands. Molecules, 2021, 26(16), 4767.
[http://dx.doi.org/10.3390/molecules26164767] [PMID: 34443366]
[4]
Schoofs, T.; Klein, F.; Braunschweig, M.; Kreider, E.F.; Feldmann, A.; Nogueira, L.; Oliveira, T.; Lorenzi, J.C.; Parrish, E.H.; Learn, G.H.; West, A.P., Jr; Bjorkman, P.J.; Schlesinger, S.J.; Seaman, M.S.; Czartoski, J.; McElrath, M.J.; Pfeifer, N.; Hahn, B.H.; Caskey, M.; Nussenzweig, M.C. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science, 2016, 352(6288), 997-1001.
[http://dx.doi.org/10.1126/science.aaf0972] [PMID: 27199429]
[5]
Ajasin, D.; Eugenin, E.A. HIV-1 Tat: Role in bystander toxicity. Front. Cell. Infect. Microbiol., 2020, 10, 61.
[http://dx.doi.org/10.3389/fcimb.2020.00061] [PMID: 32158701]
[6]
Ben Haij, N.; Planès, R.; Leghmari, K.; Serrero, M.; Delobel, P.; Izopet, J.; BenMohamed, L.; Bahraoui, E. HIV-1 Tat protein induces production of proinflammatory cytokines by human dendritic cells and monocytes/macrophages through engagement of TLR4-MD2-CD14 complex and activation of NF-κB pathway. PLoS One, 2015, 10(6), e0129425.
[http://dx.doi.org/10.1371/journal.pone.0129425] [PMID: 26090662]
[7]
Ott, M.; Lovett, J.L.; Mueller, L.; Verdin, E. Superinduction of IL-8 in T cells by HIV-1 Tat protein is mediated through NF-kappaB factors. J. Immunol., 1998, 160(6), 2872-2880.
[PMID: 9510190]
[8]
Kamori, D.; Ueno, T. HIV-1 tat and viral latency: What we can learn from naturally occurring sequence variations. Front. Microbiol., 2017, 8, 80.
[http://dx.doi.org/10.3389/fmicb.2017.00080] [PMID: 28194140]
[9]
Lassen, K.G.; Ramyar, K.X.; Bailey, J.R.; Zhou, Y.; Siliciano, R.F. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog., 2006, 2(7), e68.
[http://dx.doi.org/10.1371/journal.ppat.0020068] [PMID: 16839202]
[10]
Johnson, T.P.; Patel, K.; Johnson, K.R.; Maric, D.; Calabresi, P.A.; Hasbun, R.; Nath, A. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc. Natl. Acad. Sci. USA, 2013, 110(33), 13588-13593.
[http://dx.doi.org/10.1073/pnas.1308673110] [PMID: 23898208]
[11]
Singh, A.; Verma, A.S.; Kumar, V. HIV and antiretroviral drugs. Animal Biotechnology: Models in discovery and translation; Verma, A.S.; Singh, A., Eds.; Academic Press: Elsevier: USA, 2020.
[http://dx.doi.org/10.1016/B978-0-12-811710-1.00009-4]
[12]
Tahirov, T.H.; Babayeva, N.D.; Varzavand, K.; Cooper, J.J.; Sedore, S.C.; Price, D.H. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature, 2010, 465(7299), 747-751.
[http://dx.doi.org/10.1038/nature09131] [PMID: 20535204]
[13]
Kim, Y.K.; Bourgeois, C.F.; Isel, C.; Churcher, M.J.; Karn, J. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol. Cell. Biol., 2002, 22(13), 4622-4637.
[http://dx.doi.org/10.1128/MCB.22.13.4622-4637.2002] [PMID: 12052871]
[14]
Clark, E.; Nava, B.; Caputi, M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget, 2017, 8(16), 27569-27581.
[http://dx.doi.org/10.18632/oncotarget.15174] [PMID: 28187438]
[15]
Healthline, 2020. Available from: https://www.healthline.com/health/hiv-aids
[16]
RCSB. Protein Data Bank., 2019. Available from: https://www.rcsb.org/pdb/home/sitemap.do
[17]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-81.
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[18]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[19]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by calpha geometry: PHI,PSI and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[20]
Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res., 2003, 31(13), 3316-3319.
[http://dx.doi.org/10.1093/nar/gkg565] [PMID: 12824316]
[21]
Huang, B. MetaPocket: A meta approach to improve protein ligand binding site prediction. OMICS, 2009, 13(4), 325-330.
[http://dx.doi.org/10.1089/omi.2009.0045] [PMID: 19645590]
[22]
Wang, Y.; Bolton, E.; Dracheva, S.; Karapetyan, K.; Shoemaker, B.A.; Suzek, T.O.; Wang, J.; Xiao, J.; Zhang, J.; Bryant, S.H. An overview of the PubChem BioAssay resource. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D255-D266.
[http://dx.doi.org/10.1093/nar/gkp965] [PMID: 19933261]
[23]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[24]
Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 2012, 13(Suppl. 17), S7.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S7] [PMID: 23282245]
[25]
Dassault Systems. Biovia discovery studio visualizes., Available from: https://www.3dsbiovia.com/.../biovia-discovery-studio/visualization- download.php
[26]
Amir, T.; Athena, O.; Shirin, M.; Zahra, K. Molecular docking analysis of flavonoid compounds with matrix metalloproteinase-8 for the identification of potential effective inhibitors. Lett. Drug Des. Discov., 2021, 18(1), 16-45.
[http://dx.doi.org/10.2174/1570180817999200831094703]
[27]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33(Web Server issue), W363-7.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[28]
Krieger, E.; Vriend, G. YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics, 2014, 30(20), 2981-2982.
[http://dx.doi.org/10.1093/bioinformatics/btu426] [PMID: 24996895]
[29]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[30]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38-27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[31]
Jo, S.; Jiang, W.; Lee, H.S.; Roux, B. Im, W. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application. J. Chem. Inf. Model., 2013, 53(1), 267-277.
[http://dx.doi.org/10.1021/ci300505n] [PMID: 23205773]
[32]
Qingxiu, H. Xin, Chen.; Xi, Yang.; Guangpin, Li.; Haiqiong, Guo.; Han, Chu.; Zhihua, Lin.; Yuanqiang, W. Virtual screening of chinese medicine small molecule compounds targeting SARS-CoV-2 3CL Protease (3CL pro). Lett. Drug Des. Discov., 2021, 18(4), 355-364.
[http://dx.doi.org/10.2174/1570180817999201001161017]
[33]
Vishwakarma, K.; Bhatt, H. Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques. J. Mol. Model., 2021, 27(2), 30.
[http://dx.doi.org/10.1007/s00894-020-04648-2] [PMID: 33415518]
[34]
Lakshmanan, L.; Karthikeyan, M. Investigation of drug interaction potentials and binding modes on direct renin inhibitors: A computational modeling studies. Lett. Drug Des. Discov., 2019, 16(8), 919-938.
[http://dx.doi.org/10.2174/1570180815666180827113622]
[35]
Pankaj, W.; Priti, J.; Hemant, R.J. Design, synthesis and in vitro evaluation of 4-Oxo-6-substituted phenyl- 2-thioxo1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives as HIV integrase strand transfer inhibitors. Lett. Drug Des. Discov., 2021, 18(4), 387-395.
[http://dx.doi.org/10.2174/1570180817999201022193325]
[36]
Puglisi, J.D.; Chen, L.; Blanchard, S.; Frankel, A.D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science, 1995, 270(5239), 1200-1203.
[http://dx.doi.org/10.1126/science.270.5239.1200] [PMID: 7502045]
[37]
Lin, C.; Cai, J.; Yang, X.; Hu, L.; Lin, G. Liquid chromatography mass spectrometry simultaneous determination of vindoline and catharanthine in rat plasma and its application to a pharmacokinetic study. Biomed. Chromatogr., 2015, 29(1), 97-102.
[http://dx.doi.org/10.1002/bmc.3244] [PMID: 24828449]
[38]
Lan, K.; Li, X.J.; Du, G.; Xu, L. Characterizations of the hydrolyzed products of ginkgolide A and ginkgolide B by liquid chromatography coupled with mass spectrometry. J. Pharm. Biomed. Anal., 2016, 118, 113-122.
[http://dx.doi.org/10.1016/j.jpba.2015.10.029] [PMID: 26540626]
[39]
Van, B.T.A. Ginkgolides and bilobalide: Their physical, chromatographic and spectroscopic properties. Bioorg. FMed. Chem, 2005, 13(17), 5001-5012.
[40]
Jesus, M.; Martins, A.P.J.; Gallardo, E.; Silvestre, S. Diosgenin: Recent highlights on pharmacology and analytical methodology. J. Anal. Methods Chem., 2016, 2016, 4156293.
[http://dx.doi.org/10.1155/2016/4156293] [PMID: 28116217]
[41]
Chinula, L.; Moses, A.; Gopal, S. HIV-associated malignancies in sub-Saharan Africa: progress, challenges, and opportunities. Curr. Opin. HIV AIDS, 2017, 12(1), 89-95.
[http://dx.doi.org/10.1097/COH.0000000000000329] [PMID: 27607593]
[42]
He, W.; Hu, X.; Jiang, W.; Liu, R.; Zhang, D.; Zhang, J.; Li, Z.; Luan, Y. Rational design of a new self-codelivery system from redox-sensitive camptothecin-cytarabine conjugate assembly for effectively synergistic anticancer therapy. Adv. Healthc. Mater., 2017, 6(24), 1700829.
[http://dx.doi.org/10.1002/adhm.201700829] [PMID: 29076266]
[43]
Birhanu, G.; Javar, H.A.; Seyedjafari, E.; Zandi-Karimi, A. Nanotechnology for delivery of gemcitabine to treat pancreatic cancer. Biomed. Pharmacother., 2017, 88, 635-643.
[http://dx.doi.org/10.1016/j.biopha.2017.01.071] [PMID: 28142120]
[44]
Young-Hyun, S. Identification of novel compounds against Tatmediated human immunodeficiency virus-1 transcription by high-throughput functional screening assay. Biochem. Biophys. Res. Commun., 2020, 523(2), 368-374.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.029]
[45]
MacCallum, D.E.; Melville, J.; Frame, S.; Watt, K.; Anderson, S.; Gianella-Borradori, A.; Lane, D.P.; Green, S.R. Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res., 2005, 65(12), 5399-5407.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0233] [PMID: 15958589]
[46]
Chandra, A.; Demirhan, I.; Arya, S.K.; Chandra, P. D-penicillamine inhibits transactivation of human immunodeficiency virus type-1 (HIV-1) LTR by transactivator protein. FEBS Lett., 1988, 236(2), 282-286.
[http://dx.doi.org/10.1016/0014-5793(88)80038-3] [PMID: 3410042]
[47]
Litovchick, A.; Evdokimov, A.G.; Lapidot, A. Aminoglycoside-arginine conjugates that bind TAR RNA: Synthesis, characterization, and antiviral activity. Biochemistry, 2000, 39(11), 2838-2852.
[http://dx.doi.org/10.1021/bi9917885] [PMID: 10715103]
[48]
Cabrera, C.; Gutiérrez, A.; Barretina, J.; Blanco, J.; Litovchick, A.; Lapidot, A.; Clotet, B.; Esté, J.A. Anti-HIV activity of a novel aminoglycoside-arginine conjugate. Antiviral Res., 2002, 53(1), 1-8.
[http://dx.doi.org/10.1016/S0166-3542(01)00188-7] [PMID: 11684311]

© 2024 Bentham Science Publishers | Privacy Policy