Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

Research Progress on Quantification Methods of Drug Concentration of Monoclonal Antibodies

Author(s): Jinlu Zhang, Linlin Hu* and Hua Shao

Volume 18, Issue 7, 2022

Published on: 20 May, 2022

Page: [663 - 676] Pages: 14

DOI: 10.2174/1573412918666220329110712

Price: $65

Abstract

Background: With the development of monoclonal antibodies (mAbs) from the first generation of mice to the fourth generation of human origin, the efficacy and safety in the treatment of many diseases have been continuously improved. MAbs have been widely used in the treatment of cancer, chronic inflammatory diseases, etc. However, the treatment response of mAbs varies greatly among individuals, and drug exposure may be affected by a variety of physiological and pathological factors, such as combined use of drugs and progression of the disease. Therefore, studies tend to recommend therapeutic drug monitoring and individualized treatment strategies.

Objective: In this paper, the commonly used methods of quantification of monoclonal antibodies were reviewed, especially liquid chromatography- mass spectrometry (LC-MS/MS) and enzymelinked immunosorbent assay (ELISA), to provide technical support for therapeutic drug detection and individualize dosing for patients.

Conclusion: For patients achieving mAbs treatment, it is necessary to carry out therapeutic drug monitoring and take it as a routine monitoring index. We recommend that for pharmaceutical laboratories in hospitals, establishing an appropriate assay format, such as ELISA and LC-MS/MS is critical to determine drug concentration and antidrug antibody (ADA) for mAbs.

Keywords: mAbs, ELISA, LC-MS/MS, ADA, drug concentration, therapeutic drug monitoring.

Next »
Graphical Abstract

[1]
Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 2015; 15(6): 361-70.
[http://dx.doi.org/10.1038/nrc3930] [PMID: 25998715]
[2]
Weiner LM, Surana R, Wang S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010; 10(5): 317-27.
[http://dx.doi.org/10.1038/nri2744] [PMID: 20414205]
[3]
Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 2010; 49(8): 493-507.
[http://dx.doi.org/10.2165/11531280-000000000-00000] [PMID: 20608753]
[4]
Paci A, Desnoyer A, Delahousse J, et al. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur J Cancer 2020; 128: 107-18.
[http://dx.doi.org/10.1016/j.ejca.2020.01.005] [PMID: 32037061]
[5]
Todoroki K. Development of HPLC analysis methods for therapeutic monoclonal antibodies. Yakugaku Zasshi 2015; 135(2): 213-8.
[http://dx.doi.org/10.1248/yakushi.14-00213-4] [PMID: 25747215]
[6]
Beum PV, Kennedy AD, Taylor RP. Three new assays for rituximab based on its immunological activity or antigenic properties: Analyses of sera and plasmas of RTX-treated patients with chronic lymphocytic leukemia and other B cell lymphomas. J Immunol Methods 2004; 289(1-2): 97-109.
[http://dx.doi.org/10.1016/j.jim.2004.03.012] [PMID: 15251416]
[7]
Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 2019; 37(1): 9-16.
[http://dx.doi.org/10.1016/j.tibtech.2018.05.014] [PMID: 29945725]
[8]
Reichert JM. Antibodies to watch in 2017. MAbs 2017; 9(2): 167-81.
[http://dx.doi.org/10.1080/19420862.2016.1269580] [PMID: 27960628]
[9]
Rodgers KR, Chou RC. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions. Biotechnol Adv 2016; 34(6): 1149-58.
[http://dx.doi.org/10.1016/j.biotechadv.2016.07.004] [PMID: 27460206]
[10]
Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: Implications for therapeutic antibodies. Int Immunol 2001; 13(12): 1551-9.
[http://dx.doi.org/10.1093/intimm/13.12.1551] [PMID: 11717196]
[11]
Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 1984; 81(21): 6851-5.
[http://dx.doi.org/10.1073/pnas.81.21.6851]
[12]
Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 2006; 58(5-6): 640-56.
[http://dx.doi.org/10.1016/j.addr.2006.01.026] [PMID: 16904789]
[13]
Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321(6069): 522-5.
[http://dx.doi.org/10.1038/321522a0] [PMID: 3713831]
[14]
Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 2005; 23(3): 344-8.
[http://dx.doi.org/10.1038/nbt1067] [PMID: 15723048]
[15]
Green LL, Hardy MC, Maynard-Currie CE, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 1994; 7(1): 13-21.
[http://dx.doi.org/10.1038/ng0594-13] [PMID: 8075633]
[16]
Bardin C, Veal G, Paci A, et al. Therapeutic drug monitoring in cancer--are we missing a trick? Eur J Cancer 2014; 50(12): 2005-9.
[http://dx.doi.org/10.1016/j.ejca.2014.04.013] [PMID: 24878063]
[17]
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, et al. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 2021; 77(4): 441-64.
[http://dx.doi.org/10.1007/s00228-020-03014-8] [PMID: 33165648]
[18]
Imamura CK. Therapeutic drug monitoring of monoclonal antibodies: Applicability based on their pharmacokinetic properties. Drug Metab Pharmacokinet 2019; 34(1): 14-8.
[http://dx.doi.org/10.1016/j.dmpk.2018.11.003] [PMID: 30606646]
[19]
Gao B, Yeap S, Clements A, Balakrishnar B, Wong M, Gurney H. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol 2012; 30(32): 4017-25.
[http://dx.doi.org/10.1200/JCO.2012.43.5362] [PMID: 22927532]
[20]
Tobinai K, Igarashi T, Itoh K, et al. Japanese multicenter phase II and pharmacokinetic study of rituximab in relapsed or refractory patients with aggressive B-cell lymphoma. Ann Oncol 2004; 15(5): 821-30.
[http://dx.doi.org/10.1093/annonc/mdh176] [PMID: 15111353]
[21]
Caulet M, Lecomte T, Bouché O, et al. Bevacizumab pharmacokinetics influence overall and progression-free survival in metastatic colorectal cancer patients. Clin Pharmacokinet 2016; 55(11): 1381-94.
[http://dx.doi.org/10.1007/s40262-016-0406-3] [PMID: 27312193]
[22]
Seow CH, Newman A, Irwin SP, Steinhart AH, Silverberg MS, Greenberg GR. Trough serum infliximab: A predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut 2010; 59(1): 49-54.
[http://dx.doi.org/10.1136/gut.2009.183095] [PMID: 19651627]
[23]
Bejan-Angoulvant T, Ternant D, Daoued F, et al. Brief report: Relationship between serum infliximab concentrations and risk of infections in patients treated for spondyloarthritis. Arthritis Rheumatol 2017; 69(1): 108-13.
[http://dx.doi.org/10.1002/art.39841] [PMID: 27894157]
[24]
Landemaine A, Petitcollin A, Brochard C, et al. Cumulative exposure to infliximab, but not trough concentrations, correlates with rate of infection. Clin Gastroenterol Hepatol 2021; 19(2): 288-295.e4.
[http://dx.doi.org/10.1016/j.cgh.2020.03.018] [PMID: 32200087]
[25]
Shah DK, Balthasar JP. PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice. Int J Pharm 2014; 465(1-2): 228-38.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.038] [PMID: 24508555]
[26]
Lee JW, Kelley M, King LE, et al. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: Technical challenges and PK/PD applications over the course of drug development. AAPS J 2011; 13(1): 99-110.
[http://dx.doi.org/10.1208/s12248-011-9251-3] [PMID: 21240643]
[27]
Todoroki K, Mizuno H, Sugiyama E, Toyo’oka T. Bioanalytical methods for therapeutic monoclonal antibodies and antibody-drug conjugates: A review of recent advances and future perspectives. J Pharm Biomed Anal 2020; 179: 112991.
[http://dx.doi.org/10.1016/j.jpba.2019.112991] [PMID: 31761377]
[28]
Li M, An W, Wang L, et al. Production of monoclonal antibodies for measuring Avastin and its biosimilar by Sandwich ELISA. J Immunol Methods 2019; 469: 42-6.
[http://dx.doi.org/10.1016/j.jim.2019.03.013] [PMID: 30943379]
[29]
Stanker LH, Hnasko RM. A double-sandwich ELISA for identification of monoclonal antibodies suitable for sandwich immunoassays. Methods Mol Biol 2015; 1318: 69-78.
[http://dx.doi.org/10.1007/978-1-4939-2742-5_7] [PMID: 26160565]
[30]
O’Hara DM, Theobald V, Egan AC, et al. Ligand binding assays in the 21st century laboratory: Recommendations for characterization and supply of critical reagents. AAPS J 2012; 14(2): 316-28.
[http://dx.doi.org/10.1208/s12248-012-9334-9] [PMID: 22415613]
[31]
Blasco H, Lalmanach G, Godat E, et al. Evaluation of a peptide ELISA for the detection of rituximab in serum. J Immunol Methods 2007; 325(1-2): 127-39.
[http://dx.doi.org/10.1016/j.jim.2007.06.011] [PMID: 17651747]
[32]
Aoyama M, Hashii N, Tsukimura W, et al. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. MAbs 2019; 11(5): 826-36.
[http://dx.doi.org/10.1080/19420862.2019.1608143] [PMID: 30990348]
[33]
Chavez JD, Bruce JE. Chemical cross-linking with mass spectrometry: A tool for systems structural biology. Curr Opin Chem Biol 2019; 48: 8-18.
[http://dx.doi.org/10.1016/j.cbpa.2018.08.006] [PMID: 30172868]
[34]
de Jong KA, van Breugel SJ, Hillebrand MJ, Rosing H, Huitema AD, Beijnen JH. Bottom-up sample preparation for the LC-MS/MS quantification of anti-cancer monoclonal antibodies in bio matrices. Bioanalysis 2020; 12(19): 1405-25.
[http://dx.doi.org/10.4155/bio-2020-0204] [PMID: 32975434]
[35]
Ciccimaro E, Blair IA. Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2010; 2(2): 311-41.
[http://dx.doi.org/10.4155/bio.09.185] [PMID: 20352077]
[36]
Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev 2015; 44(21): 7829-54.
[http://dx.doi.org/10.1039/C5CS00316D] [PMID: 26204249]
[37]
Kang L, Weng N, Jian W. LC-MS bioanalysis of intact proteins and peptides. BMC 2020; 34(1): e4633.
[http://dx.doi.org/10.1002/bmc.4633] [PMID: 31257628]
[38]
Zhang S, Jian W. Recent advances in absolute quantification of peptides and proteins using LC-MS. Rev Anal Chem 2014; 33(1): 31-47.
[http://dx.doi.org/10.1515/revac-2013-0019]
[39]
Duncan MW, Aebersold R, Caprioli RM. The pros and cons of peptide-centric proteomics. Nat Biotechnol 2010; 28(7): 659-64.
[http://dx.doi.org/10.1038/nbt0710-659] [PMID: 20622832]
[40]
Wang Q, Han J, Sha C, et al. Novel strategy using tryptic peptide immunoaffinity-based LC-MS/MS to quantify denosumab in monkey serum. Bioanalysis 2017; 9(19): 1451-63.
[http://dx.doi.org/10.4155/bio-2017-0106] [PMID: 29056058]
[41]
Peng X, Liu B, Li Y, et al. Development and time-consuming of LC–MS/MS method for the quantitation of infliximab in human serum. Chromatographia 2015; 78(7): 521-31.
[http://dx.doi.org/10.1007/s10337-015-2866-2]
[42]
Kennedy JJ, Abbatiello SE, Kim K, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods 2014; 11(2): 149-55.
[http://dx.doi.org/10.1038/nmeth.2763] [PMID: 24317253]
[43]
Nouri-Nigjeh E, Zhang M, Ji T, et al. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal Chem 2014; 86(7): 3575-84.
[http://dx.doi.org/10.1021/ac5001477] [PMID: 24611550]
[44]
Damen CW, de Groot ER, Heij M, et al. Development and validation of an enzyme-linked immunosorbent assay for the quantification of trastuzumab in human serum and plasma. Anal Biochem 2009; 391(2): 114-20.
[http://dx.doi.org/10.1016/j.ab.2009.05.030] [PMID: 19464994]
[45]
Chiu HH, Liao HW, Shao YY, et al. Development of a general method for quantifying IgG-based therapeutic monoclonal antibodies in human plasma using protein G purification coupled with a two internal standard calibration strategy using LC-MS/MS. Anal Chim Acta 2018; 1019: 93-102.
[http://dx.doi.org/10.1016/j.aca.2018.02.040] [PMID: 29625688]
[46]
Kuzyk MA, Smith D, Yang J, et al. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 2009; 8(8): 1860-77.
[http://dx.doi.org/10.1074/mcp.M800540-MCP200] [PMID: 19411661]
[47]
Liu H, Manuilov AV, Chumsae C, Babineau ML, Tarcsa E. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry. Anal Biochem 2011; 414(1): 147-53.
[http://dx.doi.org/10.1016/j.ab.2011.03.004] [PMID: 21396346]
[48]
Li F, Schmerberg CM, Ji QC. Accelerated tryptic digestion of proteins in plasma for absolute quantitation using a protein internal standard by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2009; 23(5): 729-32.
[http://dx.doi.org/10.1002/rcm.3926] [PMID: 19191257]
[49]
Irie K, Okada A, Yamasaki Y, et al. An LC-MS/MS method for absolute quantification of nivolumab in human plasma: Application to clinical therapeutic drug monitoring. Ther Drug Monit 2018; 40(6): 716-24.
[http://dx.doi.org/10.1097/FTD.0000000000000558] [PMID: 30048380]
[50]
Willeman T, Jourdil JF, Gautier-Veyret E, Bonaz B, Stanke-Labesque F. A multiplex liquid chromatography tandem mass spectrometry method for the quantification of seven therapeutic monoclonal antibodies: Application for adalimumab therapeutic drug monitoring in patients with Crohn’s disease. Anal Chim Acta 2019; 1067: 63-70.
[http://dx.doi.org/10.1016/j.aca.2019.03.033] [PMID: 31047150]
[51]
Arnold DW, Needham SR. Micro-LC-MS/MS: The future of bioanalysis. Bioanalysis 2013; 5(11): 1329-31.
[http://dx.doi.org/10.4155/bio.13.31] [PMID: 23742300]
[52]
Duan X, Dai L, Chen SC, Balthasar JP, Qu J. Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis. J Chromatogr A 2012; 1251: 63-73.
[http://dx.doi.org/10.1016/j.chroma.2012.06.007] [PMID: 22770385]
[53]
Kafle A, Coy SL, Wong BM, Fornace AJ Jr, Glick JJ, Vouros P. Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J Am Soc Mass Spectrom 2014; 25(7): 1098-113.
[http://dx.doi.org/10.1007/s13361-013-0808-5] [PMID: 24452298]
[54]
Liu C, Le Blanc JC, Shields J, et al. Using differential mobility spectrometry to measure ion solvation: An examination of the roles of solvents and ionic structures in separating quinoline-based drugs. Analyst (Lond) 2015; 140(20): 6897-903.
[http://dx.doi.org/10.1039/C5AN00842E] [PMID: 26165786]
[55]
Hanning, K.R.; Minot, M.; Warrender, A.K.; Kelton, W.; Reddy, S.T. Deep mutational scanning for therapeutic antibody engineering. Trends Pharmacol. Sci., 2021, S0165-6147(2), 00227-00233.
[http://dx.doi.org/10.1016/j.tips.2021.11.010]
[56]
Gorovits B, Baltrukonis DJ, Bhattacharya I, et al. Immunoassay methods used in clinical studies for the detection of anti-drug antibodies to adalimumab and infliximab. Clin Exp Immunol 2018; 192(3): 348-65.
[http://dx.doi.org/10.1111/cei.13112] [PMID: 29431871]
[57]
Partridge MA, Purushothama S, Elango C, Lu Y. Emerging technologies and generic assays for the detection of anti-drug antibodies. J Immunol Res 2016; 2016: 6262383.
[http://dx.doi.org/10.1155/2016/6262383] [PMID: 27556048]
[58]
Chen DY, Chen YM, Tsai WC, et al. Significant associations of antidrug antibody levels with serum drug trough levels and therapeutic response of adalimumab and etanercept treatment in rheumatoid arthritis. Ann Rheum Dis 2015; 74(3): e16.
[http://dx.doi.org/10.1136/annrheumdis-2013-203893] [PMID: 24442879]
[59]
Wadhwa M, Knezevic I, Kang HN, Thorpe R. Immunogenicity assessment of biotherapeutic products: An overview of assays and their utility. Biologicals 2015; 43(5): 298-306.
[http://dx.doi.org/10.1016/j.biologicals.2015.06.004] [PMID: 26144595]
[60]
Kim, J.S.; Kim, S.H.; Kwon, B.; Hong, S. Comparison of immunogenicity test methods used in clinical studies of infliximab and its biosimilar (CT-P13). Expert Rev. Clin. Immunol., 2015, 11(sup1)(Suppl. 1), S33-S41.
[http://dx.doi.org/10.1586/1744666X.2015.1090312] [PMID: 26395835]
[61]
Moxness M, Tatarewicz S, Weeraratne D, et al. Immunogenicity testing by electrochemiluminescent detection for antibodies directed against therapeutic human monoclonal antibodies. Clin Chem 2005; 51(10): 1983-5.
[http://dx.doi.org/10.1373/clinchem.2005.053272] [PMID: 16299896]
[62]
Khanna R, Levesque BG, Sandborn WJ, Feagan BG. Therapeutic drug monitoring of TNF antagonists in inflammatory bowel disease. Gastroenterol Hepatol (N Y) 2014; 10(8): 478-89.
[PMID: 28845139]
[63]
Ruwaard J, Marsman AF, Nurmohamed MT, et al. Antidrug antibody detection for adalimumab depends on the type of assay used: An experimental approach to help clinicians interpret diagnostic data. Clin Exp Rheumatol 2019; 37(5): 756-61.
[PMID: 30943139]
[64]
Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: Progress to date and future directions. Clin Pharmacokinet 2014; 53(11): 961-73.
[http://dx.doi.org/10.1007/s40262-014-0177-7] [PMID: 25204403]
[65]
Wagner M, Tonoli D, Varesio E, Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev 2016; 35(3): 361-438.
[http://dx.doi.org/10.1002/mas.21441] [PMID: 25252132]
[66]
Kneepkens EL, Pouw MF, Wolbink GJ, et al. Dried blood spots from finger prick facilitate therapeutic drug monitoring of adalimumab and anti-adalimumab in patients with inflammatory diseases. Br J Clin Pharmacol 2017; 83(11): 2474-84.
[http://dx.doi.org/10.1111/bcp.13371] [PMID: 28791718]
[67]
Detrez I, Schops G, Lefrère J, et al. Golimumab Dried Blood Spot Analysis (GOUDA): A prospective trial showing excellent correlation with venepuncture samples and more detailed pharmacokinetic information. AAPS J 2018; 21(1): 10.
[http://dx.doi.org/10.1208/s12248-018-0282-x] [PMID: 30564993]
[68]
Mingas PD, Zdovc J, Grabnar I, Vovk T. The evolving role of microsampling in therapeutic drug monitoring of monoclonal antibodies in inflammatory diseases. Molecules 2021; 26(6): 1787.
[http://dx.doi.org/10.3390/molecules26061787] [PMID: 33810104]
[69]
Berends SE, Bloem K, de Vries A, et al. Monitoring of adalimumab concentrations at home in patients with inflammatory bowel disease using dried blood samples. Ther Drug Monit 2020; 42(2): 289-94.
[http://dx.doi.org/10.1097/FTD.0000000000000686] [PMID: 31464823]
[70]
Orsini JJ, Yeman J, Caggana M, Bodamer OA, Mühl A. Semi-quantitative method for determination of hematocrit in dried blood spots, using data collected in HPLC hemoglobin variant testing. Clin Chim Acta 2010; 411(11-12): 894-5.
[http://dx.doi.org/10.1016/j.cca.2010.03.010] [PMID: 20230811]
[71]
Berends SE, D’Haens GRAM, Schaap T, et al. Dried blood samples can support monitoring of infliximab concentrations in patients with inflammatory bowel disease: A clinical validation. Br J Clin Pharmacol 2019; 85(7): 1544-51.
[http://dx.doi.org/10.1111/bcp.13939] [PMID: 30927375]
[72]
Gordan LN, Grow WB, Pusateri A, Douglas V, Mendenhall NP, Lynch JW. Phase II trial of individualized rituximab dosing for patients with CD20-positive lymphoproliferative disorders. J Clin Oncol 2005; 23(6): 1096-102.
[http://dx.doi.org/10.1200/JCO.2005.12.171] [PMID: 15657402]
[73]
Steenholdt C, Brynskov J, Thomsen OO, et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: A randomised, controlled trial. Gut 2014; 63(6): 919-27.
[http://dx.doi.org/10.1136/gutjnl-2013-305279] [PMID: 23878167]
[74]
Kleinnijenhuis AJ, Toersche JH, Holthoon F, Bas RC, Dongen W. A generic sample preparation approach for LC–MS/MS bioanalysis of therapeutic monoclonal antibodies in serum applied to Infliximab. J Appl Bioanal 2015; 1(1): 26-34.
[http://dx.doi.org/10.17145/jab.15.005]
[75]
Legeron R, Xuereb F, Chaignepain S, et al. A new reliable, transposable and cost-effective assay for absolute quantification of total plasmatic bevacizumab by LC-MS/MS in human plasma comparing two internal standard calibration approaches. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1070: 43-53.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.042] [PMID: 29111437]
[76]
Mekhssian K, Mess JN, Garofolo F. Application of high-resolution MS in the quantification of a therapeutic monoclonal antibody in human plasma. Bioanalysis 2014; 6(13): 1767-79.
[http://dx.doi.org/10.4155/bio.14.111] [PMID: 25157484]
[77]
Iwamoto N, Takanashi M, Yokoyama K, et al. Multiplexed monitoring of therapeutic antibodies for inflammatory diseases using Fab-selective proteolysis nSMOL coupled with LC-MS. J Immunol Methods 2019; 472: 44-54.
[http://dx.doi.org/10.1016/j.jim.2019.06.014] [PMID: 31201793]
[78]
González-García J, Alonso-Alvarez B, Nazco-Casariego GJ, Batista-López N, Guttiérrez-Nicolás F. Plasma levels of trastuzumab in gastric cancer: Case report. J Oncol Pharm Pract 2017; 23(8): 635-7.
[http://dx.doi.org/10.1177/1078155216670228] [PMID: 27664112]
[79]
Golay J, Semenzato G, Rambaldi A, et al. Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. MAbs 2013; 5(6): 826-37.
[http://dx.doi.org/10.4161/mabs.26008] [PMID: 23933992]
[80]
Mitrev N, Vande Casteele N, Seow CH, et al. Review article: Consensus statements on therapeutic drug monitoring of anti-tumour necrosis factor therapy in inflammatory bowel diseases. Aliment Pharmacol Ther 2017; 46(11-12): 1037-53.
[http://dx.doi.org/10.1111/apt.14368] [PMID: 29027257]
[81]
Restellini S, Afif W. Update on TDM (Therapeutic Drug Monitoring) with Ustekinumab, Vedolizumab and Tofacitinib in inflammatory bowel disease. J Clin Med 2021; 10(6): 1242.
[http://dx.doi.org/10.3390/jcm10061242] [PMID: 33802816]

© 2024 Bentham Science Publishers | Privacy Policy