Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Elucidations of Molecular Mechanism and Mechanistic Effects of Environmental Toxicants in Neurological Disorders

Author(s): Harsh Goel, Keshav Goyal, Avanish Kumar Pandey, Mercilena Benjamin, Fahad Khan, Pratibha Pandey, Sandeep Mittan, Danish Iqbal, Mohammed Alsaweed, Wael Alturaiki, Yahya Madkhali, Mohammad Amjad Kamal, Pranay Tanwar and Tarun Kumar Upadhyay*

Volume 22, Issue 1, 2023

Published on: 21 April, 2022

Page: [84 - 97] Pages: 14

DOI: 10.2174/1871527321666220329103610

open access plus

Abstract

Due to rising environmental and global public health concerns associated with environmental contamination, human populations are continually being exposed to environmental toxicants, including physical chemical mutagens widespread in our environment causing adverse consequences and inducing a variety of neurological disorders in humans. Physical mutagens comprise ionizing and non-ionizing radiation, such as UV rays, IR rays, X-rays, which produces a broad spectrum of neuronal destruction, including neuroinflammation, genetic instability, enhanced oxidative stress driving mitochondrial damage in the human neuronal antecedent cells, cognitive impairment due to alterations in neuronal function, especially in synaptic plasticity, neurogenesis repression, modifications in mature neuronal networks drives to enhanced neurodegenerative risk. Chemical Mutagens including alkylating agents (EMS, NM, MMS, and NTG), Hydroxylamine, nitrous acid, sodium azide, halouracils are the major toxic mutagen in our environment and have been associated with neurological disorders. These chemical mutagens create dimers of pyrimidine that cause DNA damage that leads to ROS generation producing mutations, chromosomal abnormalities, genotoxicity which leads to increased neurodegenerative risk. The toxicity of four heavy metal including Cd, As, Pb, Hg is mostly responsible for complicated neurological disorders in humans. Cadmium exposure can enhance the permeability of the BBB and penetrate the brain, driving brain intracellular accumulation, cellular dysfunction, and cerebral edema. Arsenic exerts its toxic effect by induction of ROS production in neuronal cells. In this review, we summarize the molecular mechanism and mechanistic effects of mutagens in the environment and their role in multiple neurological disorders.

Keywords: Environmental toxicants, mutagens, neurobiological disorders, mutagenic factors, heavy metals, DNA damage.

« Previous
Graphical Abstract

[1]
Chasseigneaux S, Allinquant B. Functions of Aβ sAPPα and sAPPβ Similarities and differences. J Neurochem 2012; 120(s1) (Suppl. 1): 99-108.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07584.x] [PMID: 22150401]
[2]
Medeiros R, Baglietto-Vargas D, LaFerla FM. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther 2011; 17(5): 514-24.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00177.x] [PMID: 20553310]
[3]
Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: Genetics and pathogenesis. Annu Rev Pathol 2011; 6(1): 193-222.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130242] [PMID: 21034221]
[4]
Shults CW. Lewy bodies. Proc Natl Acad Sci USA 2006; 103(6): 1661-8.
[http://dx.doi.org/10.1073/pnas.0509567103] [PMID: 16449387]
[5]
Toft M. Advances in genetic diagnosis of neurological disorders. Acta Neurol Scand Suppl 2014; 129(198): 20-5.
[http://dx.doi.org/10.1111/ane.12232] [PMID: 24588502]
[6]
Rozgaj R, Kasuba V, Šentija K. Prlić I. Radiation-induced chromosomal aberrations and haematological alterations in hospital workers. Occup Med (Lond) 1999; 49(6): 353-60.
[http://dx.doi.org/10.1093/occmed/49.6.353] [PMID: 10628041]
[7]
Taqi AH, Faraj KA, Zaynal SA, Hameed AM, Mahmood AA. Effects of occupational exposure of x-ray on hematological parameters of diagnostic technicians. Radiat Phys Chem 2018; 147: 45-52.
[http://dx.doi.org/10.1016/j.radphyschem.2018.01.027]
[8]
Sega GA. A review of the genetic effects of ethyl methanesulfonate. Mutat Res 1984; 134(2-3): 113-42.
[http://dx.doi.org/10.1016/0165-1110(84)90007-1] [PMID: 6390190]
[9]
Kutscher LM, Shaham S. Forward and reverse mutagenesis in C. elegans. WormBook 2014; 17: 1-26.
[http://dx.doi.org/10.1895/wormbook.1.167.1] [PMID: 24449699]
[10]
Cole RS. Repair of DNA containing interstrand crosslinks in Escherichia coli: Sequential excision and recombination. Proc Natl Acad Sci USA 1973; 70(4): 1064-8.
[http://dx.doi.org/10.1073/pnas.70.4.1064] [PMID: 4577788]
[11]
Brookes P, Lawley PD. The reaction of mono-and di-functional alkylating agents with nucleic acids. Bioche J 1961; 80; 3: 496-503.
[http://dx.doi.org/10.1042/bj0800496]
[12]
Millard JT, Raucher S, Hopkins PB. Mechlorethamine cross-links deoxyguanosine residues at 5′-GNC sequences in duplex DNA fragments. J Am Chem Soc 1990; 112(6): 2459-60.
[http://dx.doi.org/10.1021/ja00162a079]
[13]
Phillips DH, Arlt VM. Genotoxicity: Damage to DNA and its consequences. EXS 2009; 99: 87-110.
[http://dx.doi.org/10.1007/978-3-7643-8336-7_4] [PMID: 19157059]
[14]
Lu H, Hu Y, Kang C, Meng Q, Lin Z. Cadmium-induced toxicity to amphibian tadpoles might be exacerbated by alkaline not acidic pH level. Ecotoxicol Environ Saf 2021; 218: 112288.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112288] [PMID: 33940440]
[15]
Wu Q, Leung JY, Geng X, et al. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci Total Environ 2015; 506-507: 217-25.
[http://dx.doi.org/10.1016/j.scitotenv.2014.10.121] [PMID: 25460954]
[16]
Mouchet F, Baudrimont M, Gonzalez P, et al. Genotoxic and stress inductive potential of cadmium in Xenopus laevis larvae. Aquat Toxicol 2006; 78(2): 157-66.
[http://dx.doi.org/10.1016/j.aquatox.2006.02.029] [PMID: 16616381]
[17]
Scheen AJ, Giet D. Role of environment in complex diseases: Air pollution and food contaminants. Rev Med Liege 2012; 67(5-6): 226-33.
[PMID: 22891472]
[18]
Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R. Knowns and unknowns on burden of disease due to chemicals: A systematic review. Environ Health 2011; 10(1): 9.
[http://dx.doi.org/10.1186/1476-069X-10-9] [PMID: 21255392]
[19]
Neal AP, Guilarte TR. Mechanisms of lead and manganese neurotoxicity. Toxicol Res (Camb) 2013; 2(2): 99-114.
[http://dx.doi.org/10.1039/c2tx20064c] [PMID: 25722848]
[20]
Carrizales L, Razo I, Téllez-Hernández JI, et al. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environ Res 2006; 101(1): 1-10.
[http://dx.doi.org/10.1016/j.envres.2005.07.010] [PMID: 16171795]
[21]
Gwenzi W. Occurrence, behaviour, and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. Sci Total Environ 2020; 700: 134622.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134622] [PMID: 31693951]
[22]
Akpor OB, Muchie M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int J Phys Sci 2010; 5(12): 1807-17.
[23]
Obiri S, Yeboah PO, Osae S, et al. Human health risk assessment of artisanal miners exposed to toxic chemicals in water and sediments in the PresteaHuni Valley District of Ghana. Int J Environ Res Public Health 2016; 13(1): 139.
[http://dx.doi.org/10.3390/ijerph13010139] [PMID: 26797625]
[24]
Beyersmann D, Hartwig A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch Toxicol 2008; 82(8): 493-512.
[http://dx.doi.org/10.1007/s00204-008-0313-y] [PMID: 18496671]
[25]
Krivokapic M. Study on the evaluation of (heavy) metals in water and sediment of skadar lake (montenegro), with BCF assessment and translocation ability (TA) by trapanatans and a review of SDGs. Water 2021; 13(6): 876.
[http://dx.doi.org/10.3390/w13060876]
[26]
Cobbina SJ, Chen Y, Zhou Z, et al. Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere 2015; 132: 79-86.
[http://dx.doi.org/10.1016/j.chemosphere.2015.03.013] [PMID: 25828250]
[27]
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Experientia Suppl 2012; 101: 133-64.
[PMID: 22945569]
[28]
Lucchini R, Zimmerman N. Lifetime cumulative exposure as a threat for neurodegeneration: Need for prevention strategies on a global scale. Neurotoxicology 2009; 30(6): 1144-8.
[http://dx.doi.org/10.1016/j.neuro.2009.10.003] [PMID: 19835910]
[29]
Pohl HR, Roney N, Abadin HG. Metal ions affecting the neurological system. Met Ions Life Sci 2011; 8: 247-62.
[PMID: 21473383]
[30]
Patrick L. Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 2006; 11(2): 114-27.
[PMID: 16813461]
[31]
Lin CY, Hsiao WC, Huang CJ, Kao CF, Hsu GS. Heme oxygenase-1 induction by the ROS-JNK pathway plays a role in aluminum-induced anemia. J Inorg Biochem 2013; 128: 221-8.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.07.026] [PMID: 23969109]
[32]
Fonseca MF, De Souza Hacon S, Grandjean P, Choi AL, Bastos WR. Iron status as a covariate in methylmercury-associated neurotoxicity risk. Chemosphere 2014; 100: 89-96.
[http://dx.doi.org/10.1016/j.chemosphere.2013.12.053] [PMID: 24411835]
[33]
Andersen O. Oral cadmium exposure in mice: Toxicokinetics and efficiency of chelating agents. Crit Rev Toxicol 1989; 20(2): 83-112.
[http://dx.doi.org/10.3109/10408448909017905] [PMID: 2686697]
[34]
Flora SJ, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health 2010; 7(7): 2745-88.
[http://dx.doi.org/10.3390/ijerph7072745] [PMID: 20717537]
[35]
Rousseaux CG, MacNabb LG. Oral administration of D-penicillamine causes neonatal mortality without morphological defects in CD-1 mice. J Appl Toxicol 1992; 12(1): 35-8.
[http://dx.doi.org/10.1002/jat.2550120108] [PMID: 1564250]
[36]
Aposhian HV. DMSA and DMPS-water soluble antidotes for heavy metal poisoning. Annu Rev Pharmacol Toxicol 1983; 23(1): 193-215.
[http://dx.doi.org/10.1146/annurev.pa.23.040183.001205] [PMID: 6307120]
[37]
Kodym A, Afza R. Physical and chemical mutagenesis. Methods Mol Biol 2003; 236: 189-204.
[PMID: 14501066]
[38]
Yang B, Ren BX, Tang FR. Prenatal irradiation-induced brain neuropathology and cognitive impairment. Brain Dev 2017; 39(1): 10-22.
[http://dx.doi.org/10.1016/j.braindev.2016.07.008] [PMID: 27527732]
[39]
Peng XC, Huang JR, Wang SW, et al. Traditional Chinese medicine in neuroprotection after brain insults with special reference to radioprotection. Evid Based Complement Alternat Med 2018; 2018: 2767208.
[http://dx.doi.org/10.1155/2018/2767208] [PMID: 30598683]
[40]
Marazziti D, Baroni S, Catena-Dell’Osso M, et al. Cognitive, psychological and psychiatric effects of ionizing radiation exposure. Curr Med Chem 2012; 19(12): 1864-9.
[http://dx.doi.org/10.2174/092986712800099776] [PMID: 22376039]
[41]
Betlazar C, Middleton RJ, Banati RB, Liu GJ. The impact of high and low dose ionising radiation on the central nervous system. Redox Biol 2016; 9: 144-56.
[http://dx.doi.org/10.1016/j.redox.2016.08.002] [PMID: 27544883]
[42]
Wang SW, Ren BX, Qian F, et al. Radioprotective effect of epimedium on neurogenesis and cognition after acute radiation exposure. Neurosci Res 2019; 145: 46-53.
[http://dx.doi.org/10.1016/j.neures.2018.08.011] [PMID: 30145270]
[43]
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: From research evidence to potential treatments. Acta Neuropathol 2019; 137(5): 731-55.
[http://dx.doi.org/10.1007/s00401-018-1944-6] [PMID: 30535946]
[44]
Boice JD Jr. Studies of atomic bomb survivors. Understanding radiation effects. JAMA 1990; 264(5): 622-3.
[http://dx.doi.org/10.1001/jama.1990.03450050080033] [PMID: 2366304]
[45]
Tofilon PJ, Fike JR. The radioresponse of the central nervous system: A dynamic process. Radiat Res 2000; 153(4): 357-70.
[http://dx.doi.org/10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2] [PMID: 10798963]
[46]
Begum N, Wang B, Mori M, Vares G. Does ionizing radiation influence Alzheimer’s disease risk? J Radiat Res (Tokyo) 2012; 53(6): 815-22.
[http://dx.doi.org/10.1093/jrr/rrs036] [PMID: 22872779]
[47]
Loganovsky KN, Volovik SV, Manton KG, Bazyka DA, Flor-Henry P. Whether ionizing radiation is a risk factor for schizophrenia spectrum disorders? World J Biol Psychiatry 2005; 6(4): 212-30.
[http://dx.doi.org/10.1080/15622970510029876] [PMID: 16272077]
[48]
Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol 2010; 49(9): 978-86.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04474.x] [PMID: 20883261]
[49]
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci 2013; 14(6): 12222-48.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[50]
Sinha RP, Häder DP. UV-induced DNA damage and repair: A review. Photochem Photobiol Sci 2002; 1(4): 225-36.
[http://dx.doi.org/10.1039/b201230h] [PMID: 12661961]
[51]
Cleaver JE, Crowley E. UV damage, DNA repair and skin carcinogenesis. Front Biosci 2002; 7: d1024-43.
[PMID: 11897551]
[52]
Douki T, Reynaud-Angelin A, Cadet J, Sage E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 2003; 42(30): 9221-6.
[http://dx.doi.org/10.1021/bi034593c] [PMID: 12885257]
[53]
Rochette PJ, Therrien JP, Drouin R, et al. UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Res 2003; 31(11): 2786-94.
[http://dx.doi.org/10.1093/nar/gkg402] [PMID: 12771205]
[54]
Wang S, Shi X. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 2001; 222(1-2): 3-9.
[http://dx.doi.org/10.1023/A:1017918013293] [PMID: 11678608]
[55]
Yang M, Kim H, Kim J, et al. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice. J Vet Sci 2012; 13(1): 1-6.
[http://dx.doi.org/10.4142/jvs.2012.13.1.1] [PMID: 22437529]
[56]
Madsen TM, Kristjansen PE, Bolwig TG, Wörtwein G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 2003; 119(3): 635-42.
[http://dx.doi.org/10.1016/S0306-4522(03)00199-4] [PMID: 12809684]
[57]
Raber J, Rola R, LeFevour A, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 2004; 162(1): 39-47.
[http://dx.doi.org/10.1667/RR3206] [PMID: 15222778]
[58]
Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 2001; 85(6): 2423-31.
[http://dx.doi.org/10.1152/jn.2001.85.6.2423] [PMID: 11387388]
[59]
Kim JS, Lee HJ, Kim JC, et al. Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis. J Radiat Res 2008; 49(5): 517-26.
[http://dx.doi.org/10.1269/jrr.08020] [PMID: 18574327]
[60]
Rola R, Raber J, Rizk A, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 2004; 188(2): 316-30.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.005] [PMID: 15246832]
[61]
Machida M, Lonart G, Britten RA. Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes. Radiat Res 2010; 174(5): 618-23.
[http://dx.doi.org/10.1667/RR1988.1] [PMID: 20726706]
[62]
Shi L, Adams MM, Long A, et al. Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiat Res 2006; 166(6): 892-9.
[http://dx.doi.org/10.1667/RR0588.1] [PMID: 17149974]
[63]
Kempf SJ, Casciati A, Buratovic S, et al. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol Neurodegener 2014; 9(1): 57.
[http://dx.doi.org/10.1186/1750-1326-9-57] [PMID: 25515237]
[64]
Rosi S, Andres-Mach M, Fishman KM, Levy W, Ferguson RA, Fike JR. Cranial irradiation alters the behaviorally induced immediate-early gene arc (activity-regulated cytoskeleton-associated protein). Cancer Res 2008; 68(23): 9763-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1861] [PMID: 19047155]
[65]
Wu PH, Coultrap S, Pinnix C, et al. Radiation induces acute alterations in neuronal function. PLoS One 2012; 7(5): e37677.
[http://dx.doi.org/10.1371/journal.pone.0037677] [PMID: 22662188]
[66]
Bellinzona M, Gobbel GT, Shinohara C, Fike JR. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation. Neurosci Lett 1996; 208(3): 163-6.
[http://dx.doi.org/10.1016/0304-3940(96)12572-6] [PMID: 8733295]
[67]
Monje ML, Vogel H, Masek M, Ligon KL, Fisher PG, Palmer TD. Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol 2007; 62(5): 515-20.
[http://dx.doi.org/10.1002/ana.21214] [PMID: 17786983]
[68]
Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 2003; 63(14): 4021-7.
[PMID: 12874001]
[69]
Cai J, Weiss ML, Rao MS. In search of “stemness”. Exp Hematol 2004; 32(7): 585-98.
[http://dx.doi.org/10.1016/j.exphem.2004.03.013] [PMID: 15246154]
[70]
Tada E, Parent JM, Lowenstein DH, Fike JR. X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 2000; 99(1): 33-41.
[http://dx.doi.org/10.1016/S0306-4522(00)00151-2] [PMID: 10924950]
[71]
Silasi G, Diaz-Heijtz R, Besplug J, et al. Selective brain responses to acute and chronic low-dose X-ray irradiation in males and females. Biochem Biophys Res Commun 2004; 325(4): 1223-35.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.166] [PMID: 15555557]
[72]
Dent P, Yacoub A, Contessa J, et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 2003; 159(3): 283-300.
[http://dx.doi.org/10.1667/0033-7587(2003)159[0283:SARIAO]2.0.CO;2] [PMID: 12600231]
[73]
Lee YW, Cho HJ, Lee WH, Sonntag WE. Whole brain radiation-induced cognitive impairment: Pathophysiological mechanisms and therapeutic targets. Biomol Ther (Seoul) 2012; 20(4): 357-70.
[http://dx.doi.org/10.4062/biomolther.2012.20.4.357] [PMID: 24009822]
[74]
Lee WH, Cho HJ, Sonntag WE, Lee YW. Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat Res 2011; 176(6): 753-60.
[http://dx.doi.org/10.1667/RR2647.1] [PMID: 21962003]
[75]
Hladik D, Tapio S. Effects of ionizing radiation on the mammalian brain. Mutat Res Rev Mutat Res 2016; 770(Pt B): 219-30.
[http://dx.doi.org/10.1016/j.mrrev.2016.08.003] [PMID: 27919332]
[76]
Allen BD, Syage AR, Maroso M, et al. Mitigation of helium irradiation-induced brain injury by microglia depletion. J Neuroinflammation 2020; 17(1): 159.
[http://dx.doi.org/10.1186/s12974-020-01790-9] [PMID: 32429943]
[77]
Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997; 23(1): 134-47.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[78]
Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson’s disease: A mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 2008; 1147(1): 93-104.
[http://dx.doi.org/10.1196/annals.1427.023] [PMID: 19076434]
[79]
Fike JR, Rosi S, Limoli CL. Neural precursor cells and central nervous system radiation sensitivity. Semin Radiat Oncol 2009; 19(2): 122-32.
[http://dx.doi.org/10.1016/j.semradonc.2008.12.003] [PMID: 19249650]
[80]
Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR. Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat Environ Biophys 2007; 46(2): 167-72.
[http://dx.doi.org/10.1007/s00411-006-0077-9] [PMID: 17103219]
[81]
Chiang CS, McBride WH, Withers HR. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol 1993; 29(1): 60-8.
[http://dx.doi.org/10.1016/0167-8140(93)90174-7] [PMID: 8295989]
[82]
Hwang SY, Jung JS, Kim TH, et al. Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis 2006; 21(3): 457-67.
[http://dx.doi.org/10.1016/j.nbd.2005.08.006] [PMID: 16202616]
[83]
Kyrkanides S, Olschowka JA, Williams JP, Hansen JT, O’Banion MK. TNF α and IL-1β mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. J Neuroimmunol 1999; 95(1-2): 95-106.
[http://dx.doi.org/10.1016/S0165-5728(98)00270-7] [PMID: 10229119]
[84]
Ramanan S, Kooshki M, Zhao W, Hsu FC, Robbins ME. PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 2008; 45(12): 1695-704.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.09.002] [PMID: 18852043]
[85]
Blomstrand M, Kalm M, Grandér R, Björk-Eriksson T, Blomgren K. Different reactions to irradiation in the juvenile and adult hippocampus. Int J Radiat Biol 2014; 90(9): 807-15.
[http://dx.doi.org/10.3109/09553002.2014.942015] [PMID: 25004947]
[86]
Prise KM, Saran A. Concise review: Stem cell effects in radiation risk. Stem Cells 2011; 29(9): 1315-21.
[http://dx.doi.org/10.1002/stem.690] [PMID: 21755574]
[87]
Jenrow KA, Brown SL, Lapanowski K, Naei H, Kolozsvary A, Kim JH. Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat Res 2013; 179(5): 549-56.
[http://dx.doi.org/10.1667/RR3026.1] [PMID: 23560629]
[88]
Stein Y, Udasin IG. Electromagnetic hypersensitivity (EHS, microwave syndrome) - Review of mechanisms. Environ Res 2020; 186: 109445.
[http://dx.doi.org/10.1016/j.envres.2020.109445] [PMID: 32289567]
[89]
Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res 2012; 7(5): 376-85.
[PMID: 25774178]
[90]
Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44(5): 479-96.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[91]
Tulard A, Hoffschir F, de Boisferon FH, Luccioni C, Bravard A. Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity. Free Radic Biol Med 2003; 35(1): 68-77.
[http://dx.doi.org/10.1016/S0891-5849(03)00243-0] [PMID: 12826257]
[92]
Kim W, Youn H, Kang C, Youn B. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis 2015; 20(9): 1242-52.
[http://dx.doi.org/10.1007/s10495-015-1141-1] [PMID: 26033480]
[93]
Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001; 61(10): 3894-901.
[PMID: 11358802]
[94]
Yahyapour R, Amini P, Rezapour S, et al. Radiation-induced inflammation and autoimmune diseases. Mil Med Res 2018; 5(1): 9.
[http://dx.doi.org/10.1186/s40779-018-0156-7] [PMID: 29554942]
[95]
Schuster H. The method of reaction of desoxyribonucleic acid with nitrous acid. Z Naturforsch B 1960; 15B: 298-304.
[http://dx.doi.org/10.1515/znb-1960-0507] [PMID: 13854713]
[96]
Georgieva D, Liu Q, Wang K, Egli D. Detection of base analogs incorporated during DNA replication by nanopore sequencing. Nucleic Acids Res 2020; 48(15): e88.
[http://dx.doi.org/10.1093/nar/gkaa517] [PMID: 32710620]
[97]
Hoffmann GR, Fuchs RP. Mechanisms of frameshift mutations: Insight from aromatic amines. Chem Res Toxicol 1997; 10(4): 347-59.
[http://dx.doi.org/10.1021/tx960128n] [PMID: 9114969]
[98]
Cieśla Z, Mardarowicz K, Klopotowski T. Inhibition of DNA synthesis and cell division in Salmonella typhimurium by azide. Mol Gen Genet 1974; 135(4): 339-48.
[http://dx.doi.org/10.1007/BF00271148] [PMID: 4618888]
[99]
Freese EB. Transitions and transversions induced by depurinating agents. Proc Natl Acad Sci USA 1961; 47(4): 540-5.
[http://dx.doi.org/10.1073/pnas.47.4.540] [PMID: 13701660]
[100]
Liu X, Ma T, Qu B, Ji Y, Liu Z. Pesticide-induced gene mutations and Parkinson disease risk: A meta-analysis. Genet Test Mol Biomarkers 2013; 17(11): 826-32.
[http://dx.doi.org/10.1089/gtmb.2013.0313] [PMID: 23987116]
[101]
Galindo-Murillo R, Cheatham TE III. Ethidium bromide interactions with DNA: An exploration of a classic DNA-ligand complex with unbiased molecular dynamics simulations. Nucleic Acids Res 2021; 49(7): 3735-47.
[http://dx.doi.org/10.1093/nar/gkab143] [PMID: 33764383]
[102]
Denny WA. Acridine derivatives as chemotherapeutic agents. Curr Med Chem 2002; 9(18): 1655-65.
[http://dx.doi.org/10.2174/0929867023369277] [PMID: 12171548]
[103]
Gatasheh MK, Kannan S, Hemalatha K, Imrana N. Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala Int J Mod Sci 2017; 3(4): 272-8.
[http://dx.doi.org/10.1016/j.kijoms.2017.07.003]
[104]
Lundin C, North M, Erixon K, et al. Methyl Methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 2005; 33(12): 3799-811.
[http://dx.doi.org/10.1093/nar/gki681] [PMID: 16009812]
[105]
Dusre L, Covey JM, Collins C, Sinha BK. DNA damage, cytotoxicity and free radical formation by mitomycin C in human cells. Chem Biol Interact 1989; 71(1): 63-78.
[http://dx.doi.org/10.1016/0009-2797(89)90090-2] [PMID: 2550152]
[106]
Hoffmann GR. Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds. Mutat Res 1980; 75(1): 63-129.
[http://dx.doi.org/10.1016/0165-1110(80)90028-7] [PMID: 6767183]
[107]
Reed J, Hutchinson F. Effect of the direction of DNA replication on mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in adapted cells of Escherichia coli. Mol Gen Genet 1987; 208(3): 446-9.
[http://dx.doi.org/10.1007/BF00328137] [PMID: 3312948]
[108]
Liao VH, Freedman JH. Cadmium-regulated genes from the nematode Caenorhabditis elegans. Identification and cloning of new cadmium-responsive genes by differential display. J Biol Chem 1998; 273(48): 31962-70.
[http://dx.doi.org/10.1074/jbc.273.48.31962] [PMID: 9822667]
[109]
Baudrimont M, Andres S, Durrieu G, Boudou A. The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn. Aquat Toxicol 2003; 63(2): 89-102.
[http://dx.doi.org/10.1016/S0166-445X(02)00134-0] [PMID: 12657485]
[110]
Chen L, Liu L, Huang S. Cadmium activates the Mitogen-Activated Protein Kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 2008; 45(7): 1035-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.011] [PMID: 18703135]
[111]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[112]
Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med 2003; 9(4): 169-76.
[http://dx.doi.org/10.1016/S1471-4914(03)00031-5] [PMID: 12727143]
[113]
Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J 2003; 17(10): 1195-214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[114]
Liu J, Klaassen CD. Absorption and distribution of cadmium in metallothionein-I transgenic mice. Fundam Appl Toxicol 1996; 29(2): 294-300.
[http://dx.doi.org/10.1006/faat.1996.0034] [PMID: 8742328]
[115]
Wester RC, Maibach HI, Sedik L, Melendres J, DiZio S, Wade M. In vitro percutaneous absorption of cadmium from water and soil into human skin. Fundam Appl Toxicol 1992; 19(1): 1-5.
[http://dx.doi.org/10.1016/0272-0590(92)90021-9] [PMID: 1397789]
[116]
Shukla GS, Hussain T, Chandra SV. Possible role of regional superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity: In vivo and in vitro studies in growing rats. Life Sci 1987; 41(19): 2215-21.
[http://dx.doi.org/10.1016/0024-3205(87)90518-2] [PMID: 3669920]
[117]
Méndez-Armenta M, Ríos C. Cadmium neurotoxicity. Environ Toxicol Pharmacol 2007; 23(3): 350-8.
[http://dx.doi.org/10.1016/j.etap.2006.11.009] [PMID: 21783780]
[118]
Dési I, Nagymajtényi L, Schulz H. Behavioural and neurotoxicological changes caused by cadmium treatment of rats during development. J Appl Toxicol 1998; 18(1): 63-70.
[http://dx.doi.org/10.1002/(SICI)1099-1263(199801/02)18:1<63:AID-JAT475>3.0.CO;2-Z] [PMID: 9526836]
[119]
Chen S, Xu Y, Xu B, et al. CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J Neurochem 2011; 119(5): 1108-18.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07493.x] [PMID: 21933187]
[120]
Yuan Y, Jiang CY, Xu H, et al. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS One 2013; 8(5): e64330.
[http://dx.doi.org/10.1371/journal.pone.0064330] [PMID: 23741317]
[121]
Xu B, Chen S, Luo Y, et al. Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 2011; 6(4): e19052.
[http://dx.doi.org/10.1371/journal.pone.0019052] [PMID: 21544200]
[122]
Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics 2011; 10(5): 006924.
[http://dx.doi.org/10.1074/mcp.M110.006924] [PMID: 21543789]
[123]
Choong G, Liu Y, Templeton DM. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 2014; 211: 54-65.
[http://dx.doi.org/10.1016/j.cbi.2014.01.007] [PMID: 24463198]
[124]
El-Habit OH, Abdel Moneim AE. Testing the genotoxicity, cytotoxicity, and oxidative stress of cadmium and nickel and their additive effect in male mice. Biol Trace Elem Res 2014; 159(1-3): 364-72.
[http://dx.doi.org/10.1007/s12011-014-0016-6] [PMID: 24859853]
[125]
Shukla A, Shukla GS, Srimal RC. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 1996; 15(5): 400-5.
[http://dx.doi.org/10.1177/096032719601500507] [PMID: 8735464]
[126]
Mitra RS. Protein synthesis in Escherichia coli during recovery from exposure to low levels of Cd2+. Appl Environ Microbiol 1984; 47(5): 1012-6.
[http://dx.doi.org/10.1128/aem.47.5.1012-1016.1984] [PMID: 6204593]
[127]
López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 2006; 40(6): 940-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.10.062] [PMID: 16540389]
[128]
Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J 2003; 79(933): 391-6.
[http://dx.doi.org/10.1136/pmj.79.933.391] [PMID: 12897217]
[129]
Mandal BK, Suzuki KT. Arsenic round the world: A review. Talanta 2002; 58(1): 201-35.
[http://dx.doi.org/10.1016/S0039-9140(02)00268-0] [PMID: 18968746]
[130]
Tunçtan B, Uludag O, Altug S, Abacioglu N. Effects of nitric oxide synthase inhibition in lipopolysaccharide-induced sepsis in mice. Pharmacol Res 1998; 38(5): 405-11.
[http://dx.doi.org/10.1006/phrs.1998.0381] [PMID: 9806822]
[131]
Hutton M, Symon C. The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities. Sci Total Environ 1986; 57: 129-50.
[http://dx.doi.org/10.1016/0048-9697(86)90018-5] [PMID: 3810138]
[132]
Tchounwou PB, Yedjou CG, Dorsey WC. Arsenic trioxide-induced transcriptional activation of stress genes and expression of related proteins in human liver carcinoma cells (HepG2). Cell Mol Biol 2003; 49(7): 1071-9.
[PMID: 14682389]
[133]
Berg RM, Møller K, Bailey DM. Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow Metab 2011; 31(7): 1532-44.
[http://dx.doi.org/10.1038/jcbfm.2011.48] [PMID: 21487413]
[134]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[135]
Moradi A, Honarjoo N, Etemadifar M, Fallahzade J. Bio-accumulation of some heavy metals in blood serum of residents in Isfahan and Shiraz, Iran. Environ Monit Assess 2016; 188(5): 269.
[http://dx.doi.org/10.1007/s10661-016-5217-3] [PMID: 27052346]
[136]
De Vizcaya-Ruiz A, Barbier O, Ruiz-Ramos R, Cebrian ME. Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutat Res 2009; 674(1-2): 85-92.
[http://dx.doi.org/10.1016/j.mrgentox.2008.09.020] [PMID: 18984063]
[137]
Yousefi B, Ahmadi Y, Ghorbanihaghjo A, Faghfoori Z, Irannejad VS. Serum arsenic and lipid peroxidation levels in patients with multiple sclerosis. Biol Trace Elem Res 2014; 158(3): 276-9.
[http://dx.doi.org/10.1007/s12011-014-9956-0] [PMID: 24715660]
[138]
Sun Y, Wang C, Wang L, Dai Z, Yang K. Arsenic trioxide induces apoptosis and the formation of reactive oxygen species in rat glioma cells. Cell Mol Biol Lett 2018; 23(1): 13.
[http://dx.doi.org/10.1186/s11658-018-0074-4] [PMID: 29610575]
[139]
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2019; 218: 165-84.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[140]
Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC. A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 1999; 29(3): 281-313.
[http://dx.doi.org/10.1080/10643389991259227]
[141]
Li JH, Rossman TG. Inhibition of DNA ligase activity by arsenite: A possible mechanism of its comutagenesis. Mol Toxicol 1989; 2(1): 1-9.
[PMID: 2615768]
[142]
Jha AN, Noditi M, Nilsson R, Natarajan AT. Genotoxic effects of sodium arsenite on human cells. Mutat Res 1992; 284(2): 215-21.
[http://dx.doi.org/10.1016/0027-5107(92)90005-M] [PMID: 1281272]
[143]
Hartmann A, Speit G. Comparative investigations of the genotoxic effects of metals in the Single Cells Gel (SCG) assay and the Sister Chromatid Exchange (SCE) test. Environ Mol Mutagen 1994; 23(4): 299-305.
[http://dx.doi.org/10.1002/em.2850230407] [PMID: 8013477]
[144]
Prabu SM, Muthumani M. Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep 2012; 39(12): 11201-16.
[http://dx.doi.org/10.1007/s11033-012-2029-6] [PMID: 23070905]
[145]
Sharma B, Sharma PM. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors. Toxicol Appl Pharmacol 2013; 273(1): 180-8.
[http://dx.doi.org/10.1016/j.taap.2013.07.017] [PMID: 23921152]
[146]
Vahidnia A, van der Voet GB, de Wolff FA. Arsenic neurotoxicity--a review. Hum Exp Toxicol 2007; 26(10): 823-32.
[http://dx.doi.org/10.1177/0960327107084539] [PMID: 18025055]
[147]
Al-Chalabi A, Miller CC. Neurofilaments and neurological disease. BioEssays 2003; 25(4): 346-55.
[http://dx.doi.org/10.1002/bies.10251] [PMID: 12655642]
[148]
Schneider A, Araújo GW, Trajkovic K, et al. Hyperphosphorylation and aggregation of tau in experimental autoimmune encephalomyelitis. J Biol Chem 2004; 279(53): 55833-9.
[http://dx.doi.org/10.1074/jbc.M409954200] [PMID: 15494405]
[149]
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33(1): 95-130.
[http://dx.doi.org/10.1016/S0165-0173(00)00019-9] [PMID: 10967355]
[150]
Csavina J, Field J, Taylor MP, et al. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 2012; 433: 58-73.
[http://dx.doi.org/10.1016/j.scitotenv.2012.06.013] [PMID: 22766428]
[151]
Oteiza PI, Mackenzie GG, Verstraeten SV. Metals in neurodegeneration: Involvement of oxidants and oxidant-sensitive transcription factors. Mol Aspects Med 2004; 25(1-2): 103-15.
[http://dx.doi.org/10.1016/j.mam.2004.02.012] [PMID: 15051320]
[152]
Needleman H. Lead poisoning. Annu Rev Med 2004; 55(1): 209-22.
[http://dx.doi.org/10.1146/annurev.med.55.091902.103653] [PMID: 14746518]
[153]
Kwong WT, Friello P, Semba RD. Interactions between iron deficiency and lead poisoning: Epidemiology and pathogenesis. Sci Total Environ 2004; 330(1-3): 21-37.
[http://dx.doi.org/10.1016/j.scitotenv.2004.03.017] [PMID: 15325155]
[154]
Patrick L. Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern Med Rev 2006; 11(1): 2-22.
[PMID: 16597190]
[155]
Neal AP, Guilarte TR. Molecular neurobiology of lead (Pb(2+)): Effects on synaptic function. Mol Neurobiol 2010; 42(3): 151-60.
[http://dx.doi.org/10.1007/s12035-010-8146-0] [PMID: 21042954]
[156]
Nava-Ruiz C, Méndez-Armenta M, Ríos C. Lead neurotoxicity: Effects on brain nitric oxide synthase. J Mol Histol 2012; 43(5): 553-63.
[http://dx.doi.org/10.1007/s10735-012-9414-2] [PMID: 22526509]
[157]
Silbergeld EK, Wolinsky JS, Goldstein GW. Electron probe microanalysis of isolated brain capillaries poisoned with lead. Brain Res 1980; 189(2): 369-76.
[http://dx.doi.org/10.1016/0006-8993(80)90097-9] [PMID: 7370783]
[158]
Goldstein GW. Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology 1993; 14(2-3): 97-101.
[PMID: 8247416]
[159]
Simons TJ. Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 1993; 14(2-3): 77-85.
[PMID: 8247414]
[160]
Vijverberg HP, Oortgiesen M, Leinders T, van Kleef RG. Metal interactions with voltage- and receptor-activated ion channels. Environ Health Perspect 1994; 102 (Suppl. 3): 153-8.
[PMID: 7531139]
[161]
Schanne FA, Long GJ, Rosen JF. Lead induced rise in intracellular free calcium is mediated through activation of protein kinase C in osteoblastic bone cells. Biochim Biophys Acta 1997; 1360(3): 247-54.
[http://dx.doi.org/10.1016/S0925-4439(97)00006-9] [PMID: 9197467]
[162]
White LD, Cory-Slechta DA, Gilbert ME, et al. New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 2007; 225(1): 1-27.
[http://dx.doi.org/10.1016/j.taap.2007.08.001] [PMID: 17904601]
[163]
Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 2010; 188(2): 301-8.
[http://dx.doi.org/10.1016/j.cbi.2010.04.007] [PMID: 20399200]
[164]
Parks JM, Johs A, Podar M, et al. The genetic basis for bacterial mercury methylation. Science 2013; 339(6125): 1332-5.
[http://dx.doi.org/10.1126/science.1230667] [PMID: 23393089]
[165]
Bhan A, Sarkar NN. Mercury in the environment: Effect on health and reproduction. Rev Environ Health 2005; 20(1): 39-56.
[http://dx.doi.org/10.1515/REVEH.2005.20.1.39] [PMID: 15835497]
[166]
Clarkson TW, Magos L, Myers GJ. The toxicology of mercury--current exposures and clinical manifestations. N Engl J Med 2003; 349(18): 1731-7.
[http://dx.doi.org/10.1056/NEJMra022471] [PMID: 14585942]
[167]
Zahir F, Rizwi SJ, Haq SK, Khan RH. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 2005; 20(2): 351-60.
[http://dx.doi.org/10.1016/j.etap.2005.03.007] [PMID: 21783611]
[168]
Compeau GC, Bartha R. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 1985; 50(2): 498-502.
[http://dx.doi.org/10.1128/aem.50.2.498-502.1985] [PMID: 16346866]
[169]
Morel FM, Kraepiel AM, Amyot M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 1998; 29(1): 543-66.
[http://dx.doi.org/10.1146/annurev.ecolsys.29.1.543]
[170]
Carocci A, Rovito N, Sinicropi MS, Genchi G. Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol 2014; 229: 1-18.
[PMID: 24515807]
[171]
Pirrone N, Cinnirella S, Feng X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 2010; 10(13): 5951-64.
[http://dx.doi.org/10.5194/acp-10-5951-2010]
[172]
Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW. Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 2007; 36(1): 12-8.
[http://dx.doi.org/10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2] [PMID: 17408187]
[173]
Tan SW, Meiller JC, Mahaffey KR. The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 2009; 39(3): 228-69.
[http://dx.doi.org/10.1080/10408440802233259] [PMID: 19280433]
[174]
Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: A systematic review. Bull World Health Organ 2014; 92(4): 254-269F.
[http://dx.doi.org/10.2471/BLT.12.116152] [PMID: 24700993]
[175]
Mutter J. Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. J Occup Med Toxicol 2011; 6(1): 2.
[http://dx.doi.org/10.1186/1745-6673-6-2] [PMID: 21232090]
[176]
Kim S, Dayani L, Rosenberg PA, Li J. RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int J Physiol Pathophysiol Pharmacol 2010; 2(2): 137-47.
[PMID: 20706550]
[177]
Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T. Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci 2007; 262(1-2): 131-44.
[http://dx.doi.org/10.1016/j.jns.2007.06.036] [PMID: 17681548]
[178]
Goyal K, Goel H, Baranwal P, et al. Unravelling the molecular mechanism of mutagenic factors impacting human health. Environ Sci Pollut Res Int 2021.
[http://dx.doi.org/10.1007/s11356-021-15442-9] [PMID: 34410595]
[179]
Grandjean P, Herz KT. Methylmercury and brain development: Imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med 2011; 78(1): 107-18.
[http://dx.doi.org/10.1002/msj.20228] [PMID: 21259267]
[180]
Rastogi RP. Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010: 592980.
[http://dx.doi.org/10.4061/2010/592980] [PMID: 21209706]
[181]
Rodgers CC. Low-dose X-ray imaging may increase the risk of neurodegenerative diseases. Med Hypotheses 2020; 142: 109726.
[http://dx.doi.org/10.1016/j.mehy.2020.109726] [PMID: 32361669]
[182]
Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362(6415): 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[183]
Croy RG, Essigmann JM, Reinhold VN, Wogan GN. Identification of the principal aflatoxin B1-DNA adduct formed in vivo in rat liver. Proc Natl Acad Sci USA 1978; 75(4): 1745-9.
[http://dx.doi.org/10.1073/pnas.75.4.1745] [PMID: 273905]
[184]
Garabadu D, Singh D. Ocimum basilicum attenuates ethidium bromide-induced cognitive deficits and pre-frontal cortical neuroinflammation, astrogliosis and mitochondrial dysfunction in rats. Metab Brain Dis 2020; 35(3): 483-95.
[http://dx.doi.org/10.1007/s11011-020-00536-z] [PMID: 31997265]
[185]
Newton HB. Neurological complications of chemotherapy to the central nervous system. Handb Clin Neurol 2012; 105: 903-16.
[http://dx.doi.org/10.1016/B978-0-444-53502-3.00031-8] [PMID: 22230541]
[186]
Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013; 2013: 898034.
[http://dx.doi.org/10.1155/2013/898034] [PMID: 23997854]
[187]
Tyler CR, Allan AM. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Curr Environ Health Rep 2014; 1(2): 132-47.
[http://dx.doi.org/10.1007/s40572-014-0012-1] [PMID: 24860722]
[188]
Zhang H, Wei K, Zhang M, Liu R, Chen Y. Assessing the mechanism of DNA damage induced by lead through direct and indirect interactions. J Photochem Photobiol B 2014; 136: 46-53.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.04.020] [PMID: 24844619]
[189]
Wyatt LH, Luz AL, Cao X, et al. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair (Amst) 2017; 52: 31-48.
[http://dx.doi.org/10.1016/j.dnarep.2017.02.005] [PMID: 28242054]

© 2024 Bentham Science Publishers | Privacy Policy