Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Design of Multitarget Natural Products Analogs with Potential Anti-Alzheimer’s Activity

Author(s): Franciane Nunes de Souza, Henrique Barros de Lima, Lucilene Rocha de Souza, Gabrieli Santos Oliveira, Carlos Henrique Tomich de Paula da Silva, Arlindo César Matias Pereira and Lorane Izabel da Silva Hage-Melim*

Volume 18, Issue 2, 2022

Published on: 02 June, 2022

Page: [120 - 149] Pages: 30

DOI: 10.2174/1573409918666220328141605

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is a neurodegenerative condition and the most common type of dementia among the elderly. The enzymes acetylcholinesterase (AChE) and nitric oxide synthase (NOS) have a pivotal role in the pathophysiology of this disease.

Objective: This study aimed to select medicinal plant-derived molecules with reported inhibition of AChE and design optimized molecules that could inhibit not only AChE, but also NOS, potentially increasing its efficacy against AD.

Methods: 24 compounds were selected from the literature based on their known AChE inhibitory activity. Then, we performed molecular orbital calculations, maps of electrostatic potential, molecular docking study, identification of the pharmacophoric pattern, evaluation of pharmacokinetic and toxicological properties of these molecules. Next, ten analogs were generated for each molecule to optimize their effect where the best molecules of natural products had failed.

Results: The most relevant correlation was between HOMO and GAP in the correlation matrix of the molecules’ descriptors. The pharmacophoric group’s derivation found the following pharmacophoric features: two hydrogen bond acceptors and one aromatic ring. The studied molecules interacted with the active site of AChE through hydrophobic and hydrogen bonds and with NOS through hydrogen interactions only but in a meaningful manner. In the pharmacokinetic and toxicological prediction, the compounds showed satisfactory results.

Conclusion: The design of natural products analogs demonstrated good affinities with the pharmacological targets AChE and NOS, with satisfactory pharmacokinetics and toxicology profiles. Thus, the results could identify promising molecules for treating Alzheimer’s disease.

Keywords: Alzheimer's disease, acetylcholinesterase, nitric oxide synthase, natural products, correlation matrix, NOS.

Graphical Abstract

[1]
Roehr, S.; Pabst, A.; Luck, T.; Riedel-Heller, S.G. Secular trends in the incidence of dementia in high-income countries: A protocol of a systematic review and a planned meta-analysis. BMJ Open, 2017, 7(4)e013630
[http://dx.doi.org/10.1136/bmjopen-2016-013630] [PMID: 28389488]
[2]
Rezazadeh, M.; Hosseinzadeh, H.; Moradi, M.; Salek Esfahani, B.; Talebian, S.; Parvin, S.; Gharesouran, J. Genetic discoveries and ad-vances in late-onset alzheimer’s disease. J. Cell. Physiol., 2019, 234(10), 16873-16884.
[http://dx.doi.org/10.1002/jcp.28372] [PMID: 30790294]
[3]
Rabbito, A.; Dulewicz, M. Kulczyńska-Przybik, A.; Mroczko, B. Biochemical markers in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(6), 1989.
[http://dx.doi.org/10.3390/ijms21061989] [PMID: 32183332]
[4]
Habtemariam, S. Molecular pharmacology of rosmarinic and salvianolic acids: Potential seeds for Alzheimer’s and vascular dementia drugs. Int. J. Mol. Sci., 2018, 19(2), 458.
[http://dx.doi.org/10.3390/ijms19020458] [PMID: 29401682]
[5]
Hage-Melim. Da, S.I.L.; Ferreira, J.V.; De Oliveira, S.K.N.; Correia, L.C.; Almeida, M.R.S.; Poiani, J.G.C.; Taft, C.A.; de Paula da Silva, C.H.T. The impact of natural compounds on the treatment of neurodegenerative diseases. Curr. Org. Chem., 2019, 23(3), 335-360.
[6]
Moumbock, A.F.A.; Li, J.; Mishra, P.; Gao, M.; Günther, S. Current computational methods for predicting protein interactions of natural products. Comput. Struct. Biotechnol. J., 2019, 17, 1367-1376.
[http://dx.doi.org/10.1016/j.csbj.2019.08.008] [PMID: 31762960]
[7]
Tewari, D.; Stankiewicz, A.M.; Mocan, A.; Sah, A.N.; Tzvetkov, N.T.; Huminiecki, L. Horbańczuk, J. O.; Atanasov, A. G. Ethnophar-macological approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci., 2018, 10, 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003]
[8]
Wang, M.; Li, Y.; Ni, C.; Song, G. Honokiol attenuates oligomeric amyloid &1-42-induced Alzheimer’s disease in mice through attenuat-ing mitochondrial apoptosis and inhibiting the nuclear factor kappa-B signaling pathway. Cell. Physiol. Biochem., 2017, 43(1), 69-81.
[http://dx.doi.org/10.1159/000480320] [PMID: 28848085]
[9]
de Oliveira, N.K.S.; Almeida, M.R.S.; Pontes, F.M.M.; Barcelos, M.P.; Silva, G.M.; de Paula da Silva, C.H.T.; Cruz, R.A.S.; da Silva Hage-Melim, L.I. Molecular docking, physicochemical properties, pharmacokinetics and toxicity of flavonoids present in euterpe oleracea mar-tius. Curr. Computeraided Drug Des., 2021, 17(4), 589-617.
[http://dx.doi.org/10.2174/1573409916666200619122803] [PMID: 32560610]
[10]
Saxena, M.; Dubey, R. Target enzyme in Alzheimer’s disease: Acetylcholinesterase inhibitors. Curr. Top. Med. Chem., 2019, 19(4), 264-275.
[http://dx.doi.org/10.2174/1568026619666190128125912] [PMID: 30706815]
[11]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[12]
Fernandez, A.P.; Pozo-Rodrigalvarez, A.; Serrano, J.; Martinez-Murillo, R. Nitric oxide: Target for therapeutic strategies in Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2837-2850.
[http://dx.doi.org/10.2174/138161210793176590] [PMID: 20698819]
[13]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[14]
Ozela, P.F.; Picanço, L.C. dos S.; de Souza, L.R.; Barbosa, R.C.; Ferreira, J.V. Silva, C.H.T.de.P.da; Rodrigues dos Santos, C.B.; Hage-Melim, L.I.da S. Evaluation of computational method from crystallographic structure of galantamine for molecular modeling of drug can-didates anti-Alzheimer’s disease. J. Comput. Theor. Nanosci., 2019, 16(7), 2673-2686.
[http://dx.doi.org/10.1166/jctn.2019.8221]
[15]
Frisch, M.J.G.; Trucks, W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T., Jr; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Na-katsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dap-prich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Ba-boul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T. AL-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; M. Wong, W.; Gonzalez, C.; Pople, J.A. Gaussian 03, Revision A.1; Gaussian, Inc.: Pittsburgh PA, 2003.
[16]
Flukiger, P. MOLEKEL 4.2: Swiss Center for Scientific Computing; Mano: Switzerland, 2002.
[17]
CHEMPLUS. Modular Extensions for HyperChem Release 6.02; Molecular Modeling for Windows, HyperClub, Inc.: Gainesville, 2000.
[18]
Marino, B.L.B.; Sousa, K.P.A.; Dos Santos, C.B.R.; Taft, C.A.; Da Silva, C.H.T. de P.; Hage-Melim, L.I. da S. An in-silico study of natural compounds as potential MAO-B inhibitors for the treatment of Parkinson’s disease.Functional Properties of Advanced Engineering Materials and Biomolecules; Springer: Cham, 2021, pp. 591-617.
[http://dx.doi.org/10.1007/978-3-030-62226-8_20]
[19]
STATISTICA. Data analysis software system; StatSoft Inc., 2004.
[20]
Politzer, P.; Murray, J.S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc., 2002, 108(3), 134-142.
[http://dx.doi.org/10.1007/s00214-002-0363-9]
[21]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[22]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[23]
23Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PharmaGist: A webserver for ligand-based pharmacophore detection.Nucleic Acids Res., 2008 36(Web Server issue), W223-8.,
[http://dx.doi.org/10.1093/nar/gkn187] [PMID: 18424800]
[24]
Gupta, S.; Mohan, C.G. Dual binding site and selective acetylcholinesterase inhibitors derived from integrated pharmacophore models and sequential virtual screening. BioMed Res. Int., 2014, 2014291214
[http://dx.doi.org/10.1155/2014/291214] [PMID: 25050335]
[25]
Release, S. 2020-2: QikProp; Schrödinger, LLC: New York, NY, 2020.
[26]
Sanderson, D.M.; Earnshaw, C.G. Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum. Exp. Toxicol., 1991, 10(4), 261-273.
[http://dx.doi.org/10.1177/096032719101000405] [PMID: 1679649]
[27]
Dias, K.S.T.; De Paula, C.T.; Riquiel, M.M.; Lago, S.T.; Costa, K.C.M.; Vaz, S.M.; Machado, R.P.; Lima, L.M.S.; Viegas, C. Junior Aplicações recentes da abordagem de fármacos multialvo para o tratamento da doença de Alzheimer. Rev. Vir. Quím, 2015, 7(2), 609-648.
[28]
Sant’Anna, C.M.R. Glossário de termos usados no planejamento de fármacos (recomendações da IUPAC Para 1997). Quim. Nova, 2002, 25(3), 505-512.
[http://dx.doi.org/10.1590/S0100-40422002000300027]
[29]
Arroio, A.; Honório, K.M.; da Silva, A.B.F. Propriedades químico-quânticas empregadas em estudos das relações estrutura-atividade. Quim. Nova, 2010, 33(3), 694-699.
[http://dx.doi.org/10.1590/S0100-40422010000300037]
[30]
Zhang, G.; Musgrave, C.B. Comparison of DFT methods for molecular orbital eigenvalue calculations. J. Phys. Chem. A, 2007, 111(8), 1554-1561.
[http://dx.doi.org/10.1021/jp061633o] [PMID: 17279730]
[31]
Sivajeyanthi, P.; Edison, B.; Balasubramani, K.; Premkumar, G.; Swu, T. Crystal structure, Hirshfeld surface analysis and HOMO-LUMO analysis of (E)-N′-(3-hy-droxy-4-meth-oxy-benzyl-idene)nicotinohydrazide monohydrate. Acta Crystallogr. E Crystallogr. Commun., 2019, 75(Pt 6), 804-807.
[http://dx.doi.org/10.1107/S2056989019006492] [PMID: 31391970]
[32]
Dörwald, F.Z. Lead Optimization for Medicinal Chemists: Pharmacokinetic Properties of Functional Groups and Organic Compounds, 1st ed; John Wiley & Sons: Germany, 2012.
[http://dx.doi.org/10.1002/9783527645640]
[33]
Godyń J.; Hebda, M.; Więckowska, A.; Więckowski, K.; Malawska, B.; Bajda, M. Lipophilic properties of anti-Alzheimer’s agents de-termined by micellar electrokinetic chromatography and reversed-phase thin-layer chromatography. Electrophoresis, 2017, 38(9-10), 1268-1275.
[http://dx.doi.org/10.1002/elps.201600473] [PMID: 28169440]
[34]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and perme-ability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[35]
Wilkins, D.M.; Grisafi, A.; Yang, Y.; Lao, K.U.; DiStasio, R.A., Jr; Ceriotti, M. Accurate molecular polarizabilities with coupled cluster theory and machine learning. Proc. Natl. Acad. Sci. USA, 2019, 116(9), 3401-3406.
[http://dx.doi.org/10.1073/pnas.1816132116] [PMID: 30733292]
[36]
Chen, C.R.; Makhatadze, G.I. Protein Volume: Calculating molecular van der Waals and void volumes in proteins. BMC Bioinformatics, 2015, 16(1), 1-6.
[http://dx.doi.org/10.1186/1471-2105-16-S15-P1]
[37]
Alam, M.; Park, S. Molecular structure, spectral studies, NBO, HOMO–LUMO profile, MEP and Mulliken analysis of 3β 6β-dichloro-5α-hydroxy-5α-cholestane. J. Mol. Struct., 2018, 1159, 33-45.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.043]
[38]
Ramachandran, K.I.; Deepa, G.; Namboori, K. Computational Chemistry and Molecular Modeling: Principles and Applications, 1st ed; Springer: Berlin, 2008.
[39]
Cunha, E.L.; Santos, C.F.; Braga, F.S.; Costa, J.S.; Silva, R.C.; Favacho, H.A.; Santos, C.B. Computational investigation of antifungal compounds using molecular modeling and prediction of ADME/Tox properties. J. Comput. Theor. Nanosci., 2015, 12(10), 3682-3691.
[http://dx.doi.org/10.1166/jctn.2015.4260]
[40]
Kutlushina, A.; Khakimova, A.; Madzhidov, T.; Polishchuk, P. Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures. Molecules, 2018, 23(12), 3094.
[http://dx.doi.org/10.3390/molecules23123094] [PMID: 30486389]
[41]
41Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(Web Server issue), W409-14.
[http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]
[42]
Pang, X.; Fu, H.; Yang, S.; Wang, L. A-L.L.; Wu, S.; Du, G-H. Evaluation of novel dual acetyl-and butyrylcholinesterase inhibitors as potential anti-Alzheimer’s disease agents using pharmacophore, 3D-QSAR, and molecular docking approaches. Molecules, 2017, 22(8), 1254.
[http://dx.doi.org/10.3390/molecules22081254]
[43]
Xu, Y.; Cheng, S.; Sussman, J.L.; Silman, I.; Jiang, H.C.S. Computational studies on acetylcholinesterases. Molecules, 2017, 6(1), 1324.
[http://dx.doi.org/10.3390/molecules22081324]
[44]
Abdul Manap, A.S.; Tan, W. A.C.; Leong, W.H.; Yin Chia, A.Y.; Vijayabalan, S.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S.; Madhavan, P. Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neu-roprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay. Front. Aging Neurosci., 2019, 11, 206.
[http://dx.doi.org/10.3389/fnagi.2019.00206] [PMID: 31507403]
[45]
Tang, H.; Song, P.; Li, J.; Zhao, D. Effect of Salvia miltiorrhiza on acetylcholinesterase: Enzyme kinetics and interaction mechanism merging with molecular docking analysis. Int. J. Biol. Macromol., 2019, 135, 303-313.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.132] [PMID: 31128195]
[46]
Wong, K.K-K.; Ngo, J.C-K.; Liu, S.; Lin, H-Q.; Hu, C.; Shaw, P-C.; Wan, D.C-C. Interaction study of two diterpenes, cryptotanshinone and dihydrotanshinone, to human acetylcholinesterase and butyrylcholinesterase by molecular docking and kinetic analysis. Chem. Biol. Interact., 2010, 187(1-3), 335-339.
[http://dx.doi.org/10.1016/j.cbi.2010.03.026] [PMID: 20350537]
[47]
Khan, M.T.H.; Orhan, I.; Senol, F.S.; Kartal, M.; Sener, B.; Dvorská, M.; Smejkal, K.; Slapetová, T. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem. Biol. Interact., 2009, 181(3), 383-389.
[http://dx.doi.org/10.1016/j.cbi.2009.06.024] [PMID: 19596285]
[48]
Singh, S.P.; Konwar, B.K. Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. Springerplus, 2012, 1(1), 69.
[http://dx.doi.org/10.1186/2193-1801-1-69] [PMID: 23556141]
[49]
Keldenich, J. Measurement and prediction of oral absorption. Chem. Biodivers., 2009, 6(11), 2000-2013.
[http://dx.doi.org/10.1002/cbdv.200900054] [PMID: 19937837]
[50]
Volpe, D.A. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med. Chem., 2011, 3(16), 2063-2077.
[http://dx.doi.org/10.4155/fmc.11.149] [PMID: 22098353]
[51]
Keemink, J.; Bergström, C.A.S. Caco-2 cell conditions enabling studies of drug absorption from digestible lipid-based formulations. Pharm. Res., 2018, 35(4), 74.
[http://dx.doi.org/10.1007/s11095-017-2327-8] [PMID: 29484506]
[52]
Hou, T.J.; Xu, X.J. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci., 2003, 43(6), 2137-2152.
[http://dx.doi.org/10.1021/ci034134i] [PMID: 14632466]
[53]
Ponzoni, I.; Sebastián-Pérez, V.; Martínez, J.M.; Roca, C.; Pérez, C. Modelos de classificação QSAR para predição da atividade de inibi-dores da beta-secretase (BACE1) associada à doença de Alzheimer. Sci. Rep., 2019, 9(1), 9102.
[http://dx.doi.org/10.1038/s41598-019-45522-3] [PMID: 31235739]
[54]
Vallianatou, T.; Lambrinidis, G.; Tsantili-Kakoulidou, A. In silico prediction of human serum albumin binding for drug leads. Expert Opin. Drug Discov., 2013, 8(5), 583-595.
[http://dx.doi.org/10.1517/17460441.2013.777424] [PMID: 23461733]
[55]
Banerjee, P.; Siramshetty, V.B.; Drwal, M.N.; Preissner, R. Computational methods for prediction of in vitro effects of new chemical structures. J. Cheminform., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13321-016-0162-2] [PMID: 28316649]
[56]
Hausen, B.M. Centella asiatica (Indian pennywort), an effective therapeutic but a weak sensitizer. Contact Dermat., 1993, 29(4), 175-179.
[http://dx.doi.org/10.1111/j.1600-0536.1993.tb03532.x] [PMID: 8281778]
[57]
Lin, M.; Zhai, X.; Wang, G.; Tian, X.; Gao, D.; Shi, L.; Wu, H.; Fan, Q.; Peng, J.; Liu, K.; Yao, J. Salvianolic acid B protects against acet-aminophen hepatotoxicity by inducing Nrf2 and phase II detoxification gene expression via activation of the PI3K and PKC signaling pathways. J. Pharmacol. Sci., 2015, 127(2), 203-210.
[http://dx.doi.org/10.1016/j.jphs.2014.12.010] [PMID: 25727958]
[58]
Kang, S.S.; Cuendet, M.; Endringer, D.C.; Croy, V.L.; Pezzuto, J.M.; Lipton, M.A. Synthesis and biological evaluation of a library of resveratrol analogues as inhibitors of COX-1, COX-2 and NF-kappaB. Bioorg. Med. Chem., 2009, 17(3), 1044-1054.
[http://dx.doi.org/10.1016/j.bmc.2008.04.031] [PMID: 18487053]
[59]
Mughal, E.U.; Sadiq, A.; Ashraf, J.; Zafar, M.N.; Sumrra, S.H.; Tariq, R.; Mumtaz, A.; Javid, A.; Khan, B.A.; Ali, A.; Javed, C.O. Flavo-nols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies. Bioorg. Chem., 2019, 91103124
[http://dx.doi.org/10.1016/j.bioorg.2019.103124] [PMID: 31319297]
[60]
Li, H.; Raman, C.S.; Glaser, C.B.; Blasko, E.; Young, T.A.; Parkinson, J.F.; Whitlow, M.; Poulos, T.L. Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. J. Biol. Chem., 1999, 274(30), 21276-21284.
[http://dx.doi.org/10.1074/jbc.274.30.21276] [PMID: 10409685]
[61]
Kiametis, A.S.; Silva, M.A.; Romeiro, L.A.S.; Martins, J.B.L.; Gargano, R. Potential acetylcholinesterase inhibitors: Molecular docking, molecular dynamics, and in silico prediction. J. Mol. Model., 2017, 23(2), 67.
[http://dx.doi.org/10.1007/s00894-017-3228-9] [PMID: 28185116]
[62]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcho-linesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[63]
63Tanveer, F.; Anwar, M.F.; Siraj, B.; Zarina, S. Evaluation of anti- EGFR potential of quinazoline derivatives using molecular docking: An in silico approach. Biotechnol. Appl. Biochem., 2021, bab.2199.
[http://dx.doi.org/10.1002/bab.2199] [PMID: 34028091]
[64]
Hallinan, E.A.; Tsymbalov, S.; Finnegan, P.M.; Moore, W.M.; Jerome, G.M.; Currie, M.G.; Pitzele, B.S. Acetamidine lysine derivative, N-(5(S)-amino-6,7-dihydroxyheptyl)ethanimidamide dihydrochloride: A highly selective inhibitor of human inducible nitric oxide syn-thase. J. Med. Chem., 1998, 41(6), 775-777.
[http://dx.doi.org/10.1021/jm9706675] [PMID: 9526553]
[65]
Schultz, T.W.; Yarbrough, J.W.; Hunter, R.S.; Aptula, A.O. Verification of the structural alerts for Michael acceptors. Chem. Res. Toxicol., 2007, 20(9), 1359-1363.
[http://dx.doi.org/10.1021/tx700212u] [PMID: 17672510]
[66]
Fotouhi, L.; Heravi, M.M.; Zadsirjan, V.; Atoi, P.A. Electrochemically induced michael addition reaction: An overview. Chem. Rec., 2018, 18(11), 1633-1657.
[http://dx.doi.org/10.1002/tcr.201800022] [PMID: 29920924]
[67]
Roberts, D.W.; Williams, D.L.; Bethell, D. Electrophilic reactions of skin-sensitizing sultones. Chem. Res. Toxicol., 2007, 20(1), 61-71.
[http://dx.doi.org/10.1021/tx600330u] [PMID: 17226927]
[68]
Melles, D.; Vielhaber, T.; Baumann, A.; Zazzeroni, R.; Karst, U. In chemico evaluation of skin metabolism: Investigation of eugenol and isoeugenol by electrochemistry coupled to liquid chromatography and mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 913-914, 106-112.
[http://dx.doi.org/10.1016/j.jchromb.2012.12.004] [PMID: 23286982]
[69]
Mohammadi Nejad, S. zgüne& H.; Ba&aran, N. Pharmacological and toxicological properties of eugenol. J. Pharm. Sci., 2017, 14(2), 201-206.
[http://dx.doi.org/10.4274/tjps.62207] [PMID: 32454614]
[70]
Thompson, D.C.; Perera, K.; London, R. Quinone methide formation from para isomers of methylphenol (cresol), ethylphenol, and iso-propylphenol: Relationship to toxicity. Chem. Res. Toxicol., 1995, 8(1), 55-60.
[http://dx.doi.org/10.1021/tx00043a007] [PMID: 7703367]
[71]
Zhang, R.; Li, J.; Cui, X. Tissue distribution, excretion, and metabolism of 2,6-di-tert-butyl-hydroxytoluene in mice. Sci. Total Environ., 2020, 739139862
[http://dx.doi.org/10.1016/j.scitotenv.2020.139862] [PMID: 32544679]
[72]
Aiso, S.; Takeuchi, T.; Arito, H.; Nagano, K.; Yamamoto, S.; Matsushima, T. Carcinogenicity and chronic toxicity in mice and rats ex-posed by inhalation to para-dichlorobenzene for two years. J. Vet. Med. Sci., 2005, 67(10), 1019-1029.
[http://dx.doi.org/10.1292/jvms.67.1019] [PMID: 16276058]
[73]
Helliwell, M.V.; Zhang, Y.; El Harchi, A.; Du, C.; Hancox, J.C.; Dempsey, C.E. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker. J. Biol. Chem., 2018, 293(18), 7040-7057.
[http://dx.doi.org/10.1074/jbc.RA117.000363] [PMID: 29545312]
[74]
Yuan, C.; Luo, Z.; Zhou, Y.; Lei, S.; Xu, C.; Peng, C.; Li, S.; Li, X.; Zhu, X.; Gao, T. Removal of hERG potassium channel affinity through introduction of an oxygen atom: Molecular insights from structure-activity relationships of strychnine and its analogs. Toxicol. Appl. Pharmacol., 2018, 360, 109-119.
[http://dx.doi.org/10.1016/j.taap.2018.09.042] [PMID: 30282042]
[75]
Nash, K.M.; Schiefer, I.T.; Shah, Z.A. Development of a reactive oxygen species-sensitive nitric oxide synthase inhibitor for the treat-ment of ischemic stroke. Free Radic. Biol. Med., 2018, 115, 395-404.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.027] [PMID: 29275014]
[76]
Ishitsuka, Y.; Kondo, Y.; Kadowaki, D. Toxicological property of acetaminophen: The dark side of a safe antipyretic/analgesic drug? Biol. Pharm. Bull., 2020, 43(2), 195-206.
[http://dx.doi.org/10.1248/bpb.b19-00722] [PMID: 32009106]
[77]
Wang, S.; Hanna, D.; Sugamori, K.S.; Grant, D.M. Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen. Pharmacol. Ther., 2019, 200, 179-189.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.004] [PMID: 31075357]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy