Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Class A and C GPCR Dimers in Neurodegenerative Diseases

Author(s): Ana B. Caniceiro, Beatriz Bueschbell, Anke C. Schiedel and Irina S. Moreira*

Volume 20, Issue 11, 2022

Published on: 03 September, 2022

Page: [2081 - 2141] Pages: 61

DOI: 10.2174/1570159X20666220327221830

Price: $65

Abstract

Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.

Keywords: G protein-coupled receptors, dimers, class A, class C, neurodegenerative diseases, brain.

Graphical Abstract

[1]
Azam, S.; Haque, M.E.; Jakaria, M.; Jo, S.H.; Kim, I.S.; Choi, D.K. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells, 2020, 9(2), 506.
[http://dx.doi.org/10.3390/cells9020506] [PMID: 32102186]
[2]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Neurodegeneration: what is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[3]
Jakaria, M.; Azam, S.; Cho, D.Y.; Haque, M.E.; Kim, I.S.; Choi, D.K. The methanol extract of Allium cepa L. Protects inflammatory markers in LPS-induced BV-2 microglial cells and upregulates the antiapoptotic gene and antioxidant enzymes in N27-A cells. Antioxidants, 2019, 8(9), 348.
[http://dx.doi.org/10.3390/antiox8090348] [PMID: 31480531]
[4]
Jakaria, M.; Azam, S.; Jo, S.H.; Kim, I.S.; Dash, R.; Choi, D.K. Potential therapeutic targets of quercetin and its derivatives: its role in the therapy of cognitive impairment. J. Clin. Med., 2019, 8(11), 1789.
[http://dx.doi.org/10.3390/jcm8111789] [PMID: 31717708]
[5]
Huang, Y.; Todd, N.; Thathiah, A. The role of GPCRs in neurodegenerative diseases: Avenues for therapeutic intervention. Curr. Opin. Pharmacol., 2017, 32, 96-110.
[http://dx.doi.org/10.1016/j.coph.2017.02.001] [PMID: 28288370]
[6]
Arlt, S. Non-Alzheimer’s disease-related memory impairment and dementia. Dialogues Clin. Neurosci., 2013, 15(4), 465-473.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/sarlt] [PMID: 24459413]
[7]
Bertram, L.; Tanzi, R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest., 2005, 115(6), 1449-1457.
[http://dx.doi.org/10.1172/JCI24761] [PMID: 15931380]
[8]
Lemos, A.; Melo, R.; Preto, A.J.; Almeida, J.G.; Moreira, I.S.; Dias Soeiro Cordeiro, M.N. In silico studies targeting G-protein coupled receptors for drug research against Parkinson’s disease. Curr. Neuropharmacol., 2018, 16(6), 786-848.
[http://dx.doi.org/10.2174/1570159X16666180308161642] [PMID: 29521236]
[9]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[10]
Lopez, OL The growing burden of Alzheimer’s disease. Am J Manag Care., 2011, 17(Suppl 1)
[11]
Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; Sperling, R.A.; Atri, A.; Growdon, J.H.; Hyman, B.T.; Morris, J.C.; Fischl, B.; Buckner, R.L. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex, 2009, 19(3), 497-510.
[http://dx.doi.org/10.1093/cercor/bhn113] [PMID: 18632739]
[12]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[13]
Yassi, N.; Desmond, P.M.; Masters, C.L. Magnetic resonance imaging of vascular contributions to cognitive impairment and dementia. J. Mol. Neurosci., 2016, 60(3), 349-353.
[http://dx.doi.org/10.1007/s12031-016-0799-3] [PMID: 27437942]
[14]
Kalaria, R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol., 2016, 131(5), 659-685.
[http://dx.doi.org/10.1007/s00401-016-1571-z] [PMID: 27062261]
[15]
Warren, J.D.; Rohrer, J.D. Rossor, MN Frontotemporal dementia. BMJ, 2013, 347(123), f4827.
[http://dx.doi.org/10.1136/bmj.f4827]
[16]
Jicha, G.A.; Nelson, P.T. Management of frontotemporal dementia: targeting symptom management in such a heterogeneous disease requires a wide range of therapeutic options. Neurodegener. Dis. Manag., 2011, 1(2), 141-156.
[http://dx.doi.org/10.2217/nmt.11.9] [PMID: 21927623]
[17]
Ross, C.A.; Aylward, E.H.; Wild, E.J.; Langbehn, D.R.; Long, J.D.; Warner, J.H.; Scahill, R.I.; Leavitt, B.R.; Stout, J.C.; Paulsen, J.S.; Reilmann, R.; Unschuld, P.G.; Wexler, A.; Margolis, R.L.; Tabrizi, S.J. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol., 2014, 10(4), 204-216.
[http://dx.doi.org/10.1038/nrneurol.2014.24] [PMID: 24614516]
[18]
Andrew, S.E.; Goldberg, Y.P.; Kremer, B.; Telenius, H.; Theilmann, J.; Adam, S.; Starr, E.; Squitieri, F.; Lin, B.; Kalchman, M.A. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat. Genet., 1993, 4(4), 398-403.
[http://dx.doi.org/10.1038/ng0893-398] [PMID: 8401589]
[19]
Gutekunst, C.A.; Li, S.H.; Yi, H.; Mulroy, J.S.; Kuemmerle, S.; Jones, R.; Rye, D.; Ferrante, R.J.; Hersch, S.M.; Li, X.J. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J. Neurosci., 1999, 19(7), 2522-2534.
[http://dx.doi.org/10.1523/JNEUROSCI.19-07-02522.1999] [PMID: 10087066]
[20]
Hinz, F.I.; Geschwind, D.H. Molecular genetics of neurodegenerative dementias. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a023705.
[http://dx.doi.org/10.1101/cshperspect.a023705] [PMID: 27940516]
[21]
Dickson, D.W.; Ahmed, Z.; Algom, A.A.; Tsuboi, Y.; Josephs, K.A. Neuropathology of variants of progressive supranuclear palsy. Curr. Opin. Neurol., 2010, 23(4), 394-400.
[http://dx.doi.org/10.1097/WCO.0b013e32833be924] [PMID: 20610990]
[22]
Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol., 2011, 70(11), 960-969.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[23]
Dugger, B.N.; Hentz, J.G.; Adler, C.H.; Sabbagh, M.N.; Shill, H.A.; Jacobson, S.; Caviness, J.N.; Belden, C.; Driver-Dunckley, E.; Davis, K.J.; Sue, L.I.; Beach, T.G. Clinicopathological outcomes of prospectively followed normal elderly brain bank volunteers. J. Neuropathol. Exp. Neurol., 2014, 73(3), 244-252.
[http://dx.doi.org/10.1097/NEN.0000000000000046] [PMID: 24487796]
[24]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[25]
Jabeen, A.; Ranganathan, S. Applications of machine learning in GPCR bioactive ligand discovery. Curr. Opin. Struct. Biol., 2019, 55, 66-76.
[http://dx.doi.org/10.1016/j.sbi.2019.03.022] [PMID: 31005679]
[26]
Saikia, S.; Bordoloi, M.; Sarmah, R. Established and in-trial GPCR families in clinical trials: A review for target selection. Curr. Drug Targets, 2019, 20(5), 522-539.
[http://dx.doi.org/10.2174/1389450120666181105152439] [PMID: 30394207]
[27]
Sensoy, O.; Almeida, J.G.; Shabbir, J.; Moreira, I.S.; Morra, G. Computational studies of G protein-coupled receptor complexes: Structure and dynamics. In:Methods in Cell Biology; Academic Press, 2017, pp. 205-245.
[28]
Guerram, M.; Zhang, L.Y.; Jiang, Z.Z. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem. Int., 2016, 101, 1-14.
[http://dx.doi.org/10.1016/j.neuint.2016.09.005] [PMID: 27620813]
[29]
Heng, B.C.; Aubel, D.; Fussenegger, M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol. Adv., 2013, 31(8), 1676-1694.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.017] [PMID: 23999358]
[30]
Rosenbaum, D.M.; Rasmussen, S.G.F.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 2009, 459(7245), 356-363.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]
[31]
Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol., 2003, 63(6), 1256-1272.
[http://dx.doi.org/10.1124/mol.63.6.1256] [PMID: 12761335]
[32]
Jabeen, A.; Vijayram, R.; Ranganathan, S. BIO-GATS: A tool for automated GPCR template selection through a biophysical approach for homology modeling. Front. Mol. Biosci., 2021, 8, 617176.
[http://dx.doi.org/10.3389/fmolb.2021.617176] [PMID: 33898512]
[33]
Miyagi, H.; Asada, H.; Suzuki, M.; Takahashi, Y.; Yasunaga, M.; Suno, C.; Iwata, S.; Saito, J.I. The discovery of a new antibody for BRIL-fused GPCR structure determination. Sci. Rep., 2020, 10(1), 11669.
[http://dx.doi.org/10.1038/s41598-020-68355-x] [PMID: 32669569]
[34]
Zhang, Y.; DeVries, M.E.; Skolnick, J. Correction: Structure modeling of all identified G protein-coupled receptors in the human genome. PLOS Comput. Biol., 2006, 2(3), e29.
[http://dx.doi.org/10.1371/journal.pcbi.0020029]
[35]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[36]
Huang, Y.; Thathiah, A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett., 2015, 589(14), 1607-1619.
[http://dx.doi.org/10.1016/j.febslet.2015.05.007] [PMID: 25980603]
[37]
Betke, K.M.; Wells, C.A.; Hamm, H.E. GPCR mediated regulation of synaptic transmission. Prog. Neurobiol., 2012, 96(3), 304-321.
[http://dx.doi.org/10.1016/j.pneurobio.2012.01.009] [PMID: 22307060]
[38]
Snyder, S.H.; Innis, R.B. Peptide neurotransmitters. Annu. Rev. Biochem., 1979, 48, 755-782.
[http://dx.doi.org/10.1146/annurev.bi.48.070179.003543] [PMID: 38738]
[39]
Lodish, H.; Berk, A.; Zipursky, S.L.E.A. Neurotransmitters, synapses, and impulse transmission. In: Mol Cell Biol, 4th Ed; Neurotransmitters, Synapses, and Imp, 2000.
[40]
Hall, R.A. β-adrenergic receptors and their interacting proteins. Semin. Cell Dev. Biol., 2004, 15(3), 281-288.
[http://dx.doi.org/10.1016/j.semcdb.2003.12.017] [PMID: 15125891]
[41]
Pytliak, M.; Vargová, V.; Mechírová, V.; Felšöci, M. Serotonin receptors - from molecular biology to clinical applications. Physiol. Res., 2011, 60(1), 15-25.
[http://dx.doi.org/10.33549/physiolres.931903] [PMID: 20945968]
[42]
Hoyer, D.; Bartfai, T. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: A tribute to Prof. Dieter Seebach. Chem. Biodivers., 2012, 9(11), 2367-2387.
[http://dx.doi.org/10.1002/cbdv.201200288] [PMID: 23161624]
[43]
Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat. Rev. Drug Discov., 2014, 13(7), 549-560.
[http://dx.doi.org/10.1038/nrd4295] [PMID: 24903776]
[44]
Vaidya, A.; Jain, S.; Jain, A.K.; Agrawal, A.; Kashaw, S.K.; Jain, S.K.; Agrawal, R.K. Metabotropic glutamate receptors: A review on prospectives and therapeutic aspects. Mini Rev. Med. Chem., 2013, 13(13), 1967-1981.
[http://dx.doi.org/10.2174/1389557511313130010] [PMID: 22530579]
[45]
Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev., 2011, 63(1), 182-217.
[http://dx.doi.org/10.1124/pr.110.002642] [PMID: 21303898]
[46]
Emerson, G.M. Emerson studies on growth hormone effects in the Norway rat. Ala. J. Med. Sci., 1973, 10(4), 410-416.
[PMID: 4791010]
[47]
Marston, O.J.; Garfield, A.S.; Heisler, L.K. Role of central serotonin and melanocortin systems in the control of energy balance. Eur. J. Pharmacol., 2011, 660(1), 70-79.
[http://dx.doi.org/10.1016/j.ejphar.2010.12.024] [PMID: 21216242]
[48]
Ikemoto, S. Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neurosci. Biobehav. Rev., 2010, 35(2), 129-150.
[http://dx.doi.org/10.1016/j.neubiorev.2010.02.001] [PMID: 20149820]
[49]
Rinaman, L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(2), R222-R235.
[http://dx.doi.org/10.1152/ajpregu.00556.2010] [PMID: 20962208]
[50]
Iwańczuk, W.; Guźniczak, P. Neurophysiological foundations of sleep, arousal, awareness and consciousness phenomena. Part 1. Anaesthesiol. Intensive Ther., 2015, 47(2), 162-167.
[PMID: 25940332]
[51]
Trofimova, I.; Robbins, T.W. Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry. Neurosci. Biobehav. Rev., 2016, 64, 382-402.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.008] [PMID: 26969100]
[52]
Bittigau, P.; Ikonomidou, C. Glutamate in neurologic diseases. J. Child Neurol., 1997, 12(8), 471-485.
[http://dx.doi.org/10.1177/088307389701200802] [PMID: 9430311]
[53]
Werner, F.M.; Coveñas, R. Classical neurotransmitters and neuropeptides involved in major depression: A review. Int. J. Neurosci., 2010, 120(7), 455-470.
[http://dx.doi.org/10.3109/00207454.2010.483651] [PMID: 20583898]
[54]
Mehta, T.R.; Monegro, A.; Nene, Y.; Fayyaz, M.; Bollu, P.C. Neurobiology of ADHD: A Review. In:Current Developmental Disorders Reports; Springer, 2019, p. 6.
[55]
Khalifeh, S.; Pour, M.S.; Ghermezian, A.; Behvarmanesh, A.; Moghtadaei, M.; Ashabi, G. Introduction to neurocircuitry and neurobiology of anxiety. Arch Adv Biosci., 2021, 12(1), 45-51.
[56]
Meister, B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol. Behav., 2007, 92(1-2), 263-271.
[http://dx.doi.org/10.1016/j.physbeh.2007.05.021] [PMID: 17586536]
[57]
Li, Y.; Wang, X. Ge, S.N.; Wang, X.L. Alterations in neurotransmitters targeted metabolomics from the key nuclei of brain reward circuits in cocaine-induced behavioral sensitization for selfadministering rats. ; Res Sq, 2021.
[58]
Palkovits, M. The brain and the pain: neurotransmitters and neuronal pathways of pain perception and response. Orv. Hetil., 2000, 141(41), 2231-2239.
[PMID: 11184247]
[59]
Shetty, D.N.; Pathak, S.S. Correlation between plasma neurotransmitters and memory loss in pregnancy. J. Reprod. Med., 2002, 47(6), 494-496.
[PMID: 12092020]
[60]
Dobryakova, E.; Genova, H.M.; DeLuca, J.; Wylie, G.R. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front. Neurol., 2015, 6(MAR), 52.
[http://dx.doi.org/10.3389/fneur.2015.00052] [PMID: 25814977]
[61]
Fernández, M.V.; Kim, J.H.; Budde, J.P.; Black, K.; Medvedeva, A.; Saef, B.; Deming, Y.; Del-Aguila, J.; Ibañez, L.; Dube, U.; Harari, O.; Norton, J.; Chasse, R.; Morris, J.C.; Goate, A.; Cruchaga, C. Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease. PLoS Genet., 2017, 13(11), e1007045.
[http://dx.doi.org/10.1371/journal.pgen.1007045] [PMID: 29091718]
[62]
Schiöth, H.B.; Fredriksson, R. The GRAFS classification system of G-protein coupled receptors in comparative perspective.In: General and Comparative Endocrinology; Gen Comp Endocrinol, 2005, pp. 94-101.
[http://dx.doi.org/10.1016/j.ygcen.2004.12.018]
[63]
Alexander SPH G protein-coupled receptors; IUPHAR/BPS Guide to Pharmacology, 2019.
[64]
Alexander, S.P.H.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; Southan, C.; Davies, J.A. The concise guide to pharmacology 2019/20: g protein-coupled receptors. Br. J. Pharmacol., 2019, 176(S1)(Suppl. 1), S21-S141.
[http://dx.doi.org/10.1111/bph.14748] [PMID: 31710717]
[65]
Hu, G.M.; Mai, T.L.; Chen, C.M. Visualizing the GPCR network: classification and evolution. Sci. Rep., 2017, 7(1), 15495.
[http://dx.doi.org/10.1038/s41598-017-15707-9] [PMID: 29138525]
[66]
Attwood, T.K.; Findlay, J.B.C. Fingerprinting G-protein-coupled receptors. Protein Eng., 1994, 7(2), 195-203.
[http://dx.doi.org/10.1093/protein/7.2.195] [PMID: 8170923]
[67]
Kolakowski, L.F., Jr GCRDb: A G-protein-coupled receptor database. Receptors Channels, 1994, 2(1), 1-7.
[PMID: 8081729]
[68]
Lee, Y.; Basith, S.; Choi, S. Recent advances in structure-based drug design targeting class A G protein-coupled receptors utilizing crystal structures and computational simulations. J. Med. Chem., 2018, 61(1), 1-46.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01453] [PMID: 28657745]
[69]
Basith, S.; Cui, M.; Macalino, S.J.Y.; Park, J.; Clavio, N.A.B.; Kang, S.; Choi, S. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: Impact on rational drug design. Front. Pharmacol., 2018, 9, 128.
[http://dx.doi.org/10.3389/fphar.2018.00128] [PMID: 29593527]
[70]
Zöllner, C.; Stein, C. Opioids. Handb. Exp. Pharmacol., 2007, 177(177), 31-63.
[PMID: 17087119]
[71]
Moreira, I.S. Structural features of the G-protein/GPCR interactions. Biochim. Biophys. Acta, 2014, 1840(1), 16-33.
[http://dx.doi.org/10.1016/j.bbagen.2013.08.027] [PMID: 24016604]
[72]
Somvanshi, R.K.; Kumar, U. Pathophysiology of GPCR homo- and heterodimerization: special emphasis on somatostatin receptors. Pharmaceuticals (Basel), 2012, 5(5), 417-446.
[http://dx.doi.org/10.3390/ph5050417] [PMID: 24281555]
[73]
Ferré, S.; Casadó, V.; Devi, L.A.; Filizola, M.; Jockers, R.; Lohse, M.J.; Milligan, G.; Pin, J.P.; Guitart, X. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev., 2014, 66(2), 413-434.
[http://dx.doi.org/10.1124/pr.113.008052] [PMID: 24515647]
[74]
Mondal, S.; Khelashvili, G.; Johner, N.; Weinstein, H. How the dynamic properties and functional mechanisms of GPCRs are modulated by their coupling to the membrane environment., 2014, 55-74.
[http://dx.doi.org/10.1007/978-94-007-7423-0_4]
[75]
Filizola, M.; Weinstein, H. The study of G-protein coupled receptor oligomerization with computational modeling and bioinformatics. FEBS J., 2005, 272(12), 2926-2938.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04730.x] [PMID: 15955053]
[76]
Borroto-Escuela, D.O.; Fuxe, K. Oligomeric receptor complexes and their allosteric receptor-receptor interactions in the plasma membrane represent a new biological principle for integration of signals in the CNS. Front. Mol. Neurosci., 2019, 12, 230.
[http://dx.doi.org/10.3389/fnmol.2019.00230] [PMID: 31607863]
[77]
Borroto-Escuela, D.O.; Rodriguez, D.; Romero-Fernandez, W.; Kapla, J.; Jaiteh, M.; Ranganathan, A.; Lazarova, T.; Fuxe, K.; Carlsson, J. Mapping the interface of a GPCR Dimer: A structural model of the A2A Adenosine and D2 dopamine receptor heteromer. Front. Pharmacol., 2018, 9, 829.
[http://dx.doi.org/10.3389/fphar.2018.00829] [PMID: 30214407]
[78]
Wouters, E.; Marín, A.R.; Dalton, J.A.R.; Giraldo, J.; Stove, C. Distinct dopamine D2 receptor antagonists differentially impact D2 receptor oligomerization. Int. J. Mol. Sci., 2019, 20(7), 1686.
[http://dx.doi.org/10.3390/ijms20071686] [PMID: 30987329]
[79]
Farran, B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol. Res., 2017, 117, 303-327.
[http://dx.doi.org/10.1016/j.phrs.2017.01.008] [PMID: 28087443]
[80]
Schiedel, A.C.; Köse, M.; Barreto, C.; Bueschbell, B.; Morra, G.; Sensoy, O.; Moreira, I.S. Prediction and targeting of interaction interfaces in g-protein coupled receptor oligomers. Curr. Top. Med. Chem., 2018, 18(8), 714-746.
[http://dx.doi.org/10.2174/1568026618666180604082610] [PMID: 29866008]
[81]
Guo, H.; An, S.; Ward, R.; Yang, Y.; Liu, Y.; Guo, X-X.; Hao, Q.; Xu, T.R. Methods used to study the oligomeric structure of G-protein-coupled receptors. Biosci. Rep., 2017, 37(2), BSR20160547.
[http://dx.doi.org/10.1042/BSR20160547] [PMID: 28062602]
[82]
Fuxe, K.; Borroto-Escuela, D.O.; Marcellino, D.; Romero-Fernandez, W.; Frankowska, M.; Guidolin, D.; Filip, M.; Ferraro, L.; Woods, A.S.; Tarakanov, A.; Ciruela, F.; Agnati, L.F.; Tanganelli, S. GPCR heteromers and their allosteric receptor-receptor interactions. Curr. Med. Chem., 2012, 19(3), 356-363.
[http://dx.doi.org/10.2174/092986712803414259] [PMID: 22335512]
[83]
Yang, J.; Gong, Z.; Lu, Y.B.; Xu, C.J.; Wei, T.F.; Yang, M.S.; Zhan, T.W.; Yang, Y.H.; Lin, L.; Liu, J.; Tang, C.; Zhang, W.P. FLIM-FRET-based structural characterization of a class-A GPCR dimer in the cell membrane. J. Mol. Biol., 2020, 432(16), 4596-4611.
[http://dx.doi.org/10.1016/j.jmb.2020.06.009] [PMID: 32553728]
[84]
Townsend-Nicholson, A.; Altwaijry, N.; Potterton, A.; Morao, I.; Heifetz, A. Computational prediction of GPCR oligomerization. Curr. Opin. Struct. Biol., 2019, 55, 178-184.
[http://dx.doi.org/10.1016/j.sbi.2019.04.005] [PMID: 31170578]
[85]
Pin, J-P.; Bettler, B. Organization and functions of mGlu and GABAB receptor complexes. Nature, 2016, 540(7631), 60-68.
[http://dx.doi.org/10.1038/nature20566] [PMID: 27905440]
[86]
Møller, T.C.; Moreno-Delgado, D.; Pin, J-P.; Kniazeff, J. Class C G protein-coupled receptors: reviving old couples with new partners. Biophys. Rep., 2017, 3(4), 57-63.
[http://dx.doi.org/10.1007/s41048-017-0036-9] [PMID: 29238742]
[87]
Möller, J.; Isbilir, A.; Sungkaworn, T.; Osberg, B.; Karathanasis, C.; Sunkara, V.; Grushevskyi, E.O.; Bock, A.; Annibale, P.; Heilemann, M.; Schütte, C.; Lohse, M.J. Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nat. Chem. Biol., 2020, 16(9), 946-954.
[http://dx.doi.org/10.1038/s41589-020-0566-1] [PMID: 32541966]
[88]
Kasai, R.S.; Ito, S.V.; Awane, R.M.; Fujiwara, T.K.; Kusumi, A. The class-A GPCR dopamine D2 receptor forms transient dimers stabilized by agonists: Detection by single-molecule tracking. Cell Biochem. Biophys., 2018, 76(1-2), 29-37.
[http://dx.doi.org/10.1007/s12013-017-0829-y] [PMID: 29116599]
[89]
Lazim, R.; Suh, D.; Lee, J.W.; Vu, T.N.L.; Yoon, S.; Choi, S. Structural characterization of receptor-receptor interactions in the allosteric modulation of G protein-coupled receptor (Gpcr) dimers. Int. J. Mol. Sci., 2021, 22(6), 1-20.
[http://dx.doi.org/10.3390/ijms22063241] [PMID: 33810175]
[90]
Zoli, M.; Agnati, L.F.; Hedlund, P.B.; Li, X.M.; Ferré, S.; Fuxe, K. Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol. Neurobiol., 1993, 7(3-4), 293-334.
[http://dx.doi.org/10.1007/BF02769180] [PMID: 7514001]
[91]
Ferré, S.; Baler, R.; Bouvier, M.; Caron, M.G.; Devi, L.A.; Durroux, T.; Fuxe, K.; George, S.R.; Javitch, J.A.; Lohse, M.J.; Mackie, K.; Milligan, G.; Pfleger, K.D.; Pin, J.P.; Volkow, N.D.; Waldhoer, M.; Woods, A.S.; Franco, R. Building a new conceptual framework for receptor heteromers. Nat. Chem. Biol., 2009, 5(3), 131-134.
[http://dx.doi.org/10.1038/nchembio0309-131] [PMID: 19219011]
[92]
Tuteja, N. Signaling through G protein coupled receptors. Plant Signal. Behav., 2009, 4(10), 942-947.
[http://dx.doi.org/10.4161/psb.4.10.9530] [PMID: 19826234]
[93]
Moreira, I.S.; Shi, L.; Freyberg, Z.; Ericksen, S.S.; Weinstein, H.; Javitch, J.A. Structural basis of dopamine receptor activation.In: The Dopamine Receptors; Humana Press: Totowa, NJ, 2010, pp. 47-73.
[http://dx.doi.org/10.1007/978-1-60327-333-6_3]
[94]
Vauquelin, G.; Van Liefde, I. G protein-coupled receptors: A count of 1001 conformations. In: Fundamental and Clinical Pharmacology; John Wiley & Sons, Ltd, 2005; 19, pp. 45-56.
[95]
Latek, D.; Pasznik, P.; Carlomagno, T.; Filipek, S. Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS One, 2013, 8(2), e56742.
[http://dx.doi.org/10.1371/journal.pone.0056742] [PMID: 23468878]
[96]
Isberg, V.; de Graaf, C.; Bortolato, A.; Cherezov, V.; Katritch, V.; Marshall, F.H.; Mordalski, S.; Pin, J.P.; Stevens, R.C.; Vriend, G.; Gloriam, D.E. Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol. Sci., 2015, 36(1), 22-31.
[http://dx.doi.org/10.1016/j.tips.2014.11.001] [PMID: 25541108]
[97]
Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci., 1995, 25(C), 366-428.
[http://dx.doi.org/10.1016/S1043-9471(05)80049-7]
[98]
Zhou, Q.; Yang, D.; Wu, M.; Guo, Y.; Guo, W.; Zhong, L.; Cai, X.; Dai, A.; Jang, W.; Shakhnovich, E.I.; Liu, Z.J.; Stevens, R.C.; Lambert, N.A.; Babu, M.M.; Wang, M.W.; Zhao, S. Common activation mechanism of class A GPCRs. eLife, 2019, 8, 8.
[PMID: 31855179]
[99]
Ballesteros, J.; Kitanovic, S.; Guarnieri, F.; Davies, P.; Fromme, B.J.; Konvicka, K.; Chi, L.; Millar, R.P.; Davidson, J.S.; Weinstein, H.; Sealfon, S.C. Functional microdomains in G-protein-coupled receptors. The conserved arginine-cage motif in the gonadotropin-releasing hormone receptor. J. Biol. Chem., 1998, 273(17), 10445-10453.
[http://dx.doi.org/10.1074/jbc.273.17.10445] [PMID: 9553103]
[100]
Schneider, E.H.; Schnell, D.; Strasser, A.; Dove, S.; Seifert, R. Impact of the DRY motif and the missing “ionic lock” on constitutive activity and G-protein coupling of the human histamine H4 receptor. J. Pharmacol. Exp. Ther., 2010, 333(2), 382-392.
[http://dx.doi.org/10.1124/jpet.109.163220] [PMID: 20106995]
[101]
Ballesteros, J.A.; Jensen, A.D.; Liapakis, G.; Rasmussen, S.G.F.; Shi, L.; Gether, U.; Javitch, J.A. Activation of the β 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem., 2001, 276(31), 29171-29177.
[http://dx.doi.org/10.1074/jbc.M103747200] [PMID: 11375997]
[102]
Schönegge, A.M.; Gallion, J.; Picard, L.P.; Wilkins, A.D.; Le Gouill, C.; Audet, M.; Stallaert, W.; Lohse, M.J.; Kimmel, M.; Lichtarge, O.; Bouvier, M. Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nat. Commun., 2017, 8(1), 2169.
[http://dx.doi.org/10.1038/s41467-017-02257-x] [PMID: 29255305]
[103]
Alhadeff, R.; Vorobyov, I.; Yoon, H.W.; Warshel, A. Exploring the free-energy landscape of GPCR activation. Proc. Natl. Acad. Sci. USA, 2018, 115(41), 10327-10332.
[http://dx.doi.org/10.1073/pnas.1810316115] [PMID: 30257944]
[104]
Jacobson, K.A.; Costanzi, S.; Paoletta, S. Computational studies to predict or explain G protein coupled receptor polypharmacology. Trends Pharmacol. Sci., 2014, 35(12), 658-663.
[http://dx.doi.org/10.1016/j.tips.2014.10.009] [PMID: 25458540]
[105]
Feng, X.; Ambia, J.; Chen, K.M.; Young, M.; Barth, P. Computational design of ligand-binding membrane receptors with high selectivity. Nat. Chem. Biol., 2017, 13(7), 715-723.
[http://dx.doi.org/10.1038/nchembio.2371] [PMID: 28459439]
[106]
Roth, B.L.; Irwin, J.J.; Shoichet, B.K. Discovery of new GPCR ligands to illuminate new biology. Nat. Chem. Biol., 2017, 13(11), 1143-1151.
[http://dx.doi.org/10.1038/nchembio.2490] [PMID: 29045379]
[107]
Shihoya, W.; Nishizawa, T.; Yamashita, K.; Inoue, A.; Hirata, K.; Kadji, F.M.N.; Okuta, A.; Tani, K.; Aoki, J.; Fujiyoshi, Y.; Doi, T.; Nureki, O. X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat. Struct. Mol. Biol., 2017, 24(9), 758-764.
[http://dx.doi.org/10.1038/nsmb.3450] [PMID: 28805809]
[108]
Yuan, S.; Filipek, S.; Palczewski, K.; Vogel, H. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nat. Commun., 2014, 5, 4733.
[http://dx.doi.org/10.1038/ncomms5733] [PMID: 25203160]
[109]
Filizola, M.; Weinstein, H. Structural models for dimerization of G-protein coupled receptors: The opioid receptor homodimers. In: Biopolymers - Peptide Science Section; Biopolymers, 2002, pp. 317-325.
[110]
Weinstein, H. Hallucinogen actions on 5-HT receptors reveal distinct mechanisms of activation and signaling by G protein-coupled receptors. AAPS J., 2006, 7(4), E871-E884.
[http://dx.doi.org/10.1208/aapsj070485] [PMID: 16594640]
[111]
Visiers, I.; Ballesteros, J.A.; Weinstein, H. Three-dimensional representations of G protein-coupled receptor structures and mechanisms. Methods Enzymol., 2002, 343, 329-371.
[http://dx.doi.org/10.1016/S0076-6879(02)43145-X] [PMID: 11665578]
[112]
Fritze, O.; Filipek, S.; Kuksa, V.; Palczewski, K.; Hofmann, K.P.; Ernst, O.P. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc. Natl. Acad. Sci. USA, 2003, 100(5), 2290-2295.
[http://dx.doi.org/10.1073/pnas.0435715100] [PMID: 12601165]
[113]
Trzaskowski, B.; Latek, D.; Yuan, S.; Ghoshdastider, U.; Debinski, A.; Filipek, S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr. Med. Chem., 2012, 19(8), 1090-1109.
[http://dx.doi.org/10.2174/092986712799320556] [PMID: 22300046]
[114]
Chen, S.; Lu, M.; Liu, D.; Yang, L.; Yi, C.; Ma, L.; Zhang, H.; Liu, Q.; Frimurer, T.M.; Wang, M.W.; Schwartz, T.W.; Stevens, R.C.; Wu, B.; Wüthrich, K.; Zhao, Q. Human substance P receptor binding mode of the antagonist drug aprepitant by NMR and crystallography. Nat. Commun., 2019, 10(1), 638.
[http://dx.doi.org/10.1038/s41467-019-08568-5] [PMID: 30733446]
[115]
Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Heydenreich, F.M.; Flock, T.; Miljus, T.; Balaji, S.; Bouvier, M.; Veprintsev, D.B.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature, 2016, 536(7617), 484-487.
[http://dx.doi.org/10.1038/nature19107] [PMID: 27525504]
[116]
Angel, T.E.; Chance, M.R.; Palczewski, K. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8555-8560.
[http://dx.doi.org/10.1073/pnas.0903545106] [PMID: 19433801]
[117]
Prioleau, C.; Visiers, I.; Ebersole, B.J.; Weinstein, H.; Sealfon, S.C. Conserved helix 7 tyrosine acts as a multistate conformational switch in the 5HT2C receptor. Identification of a novel “locked-on” phenotype and double revertant mutations. J. Biol. Chem., 2002, 277(39), 36577-36584.
[http://dx.doi.org/10.1074/jbc.M206223200] [PMID: 12145300]
[118]
Angel, T.E.; Gupta, S.; Jastrzebska, B.; Palczewski, K.; Chance, M.R. Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14367-14372.
[http://dx.doi.org/10.1073/pnas.0901074106] [PMID: 19706523]
[119]
Rasmussen, S.G.F.; DeVree, B.T.; Zou, Y.; Kruse, A.C.; Chung, K.Y.; Kobilka, T.S.; Thian, F.S.; Chae, P.S.; Pardon, E.; Calinski, D.; Mathiesen, J.M.; Shah, S.T.; Lyons, J.A.; Caffrey, M.; Gellman, S.H.; Steyaert, J.; Skiniotis, G.; Weis, W.I.; Sunahara, R.K.; Kobilka, B.K. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 2011, 477(7366), 549-555.
[http://dx.doi.org/10.1038/nature10361] [PMID: 21772288]
[120]
Filipek, S. Molecular switches in GPCRs. Curr. Opin. Struct. Biol., 2019, 55, 114-120.
[http://dx.doi.org/10.1016/j.sbi.2019.03.017] [PMID: 31082695]
[121]
Wescott, M.P.; Kufareva, I.; Paes, C.; Goodman, J.R.; Thaker, Y.; Puffer, B.A.; Berdougo, E.; Rucker, J.B.; Handel, T.M.; Doranz, B.J. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc. Natl. Acad. Sci. USA, 2016, 113(35), 9928-9933.
[http://dx.doi.org/10.1073/pnas.1601278113] [PMID: 27543332]
[122]
Nygaard, R.; Frimurer, T.M.; Holst, B.; Rosenkilde, M.M.; Schwartz, T.W. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci., 2009, 30(5), 249-259.
[http://dx.doi.org/10.1016/j.tips.2009.02.006] [PMID: 19375807]
[123]
Hofmann, K.P.; Scheerer, P.; Hildebrand, P.W.; Choe, H.W.; Park, J.H.; Heck, M.; Ernst, O.P.A. G protein-coupled receptor at work: the rhodopsin model. Trends Biochem. Sci., 2009, 34(11), 540-552.
[http://dx.doi.org/10.1016/j.tibs.2009.07.005] [PMID: 19836958]
[124]
Kaiser, A.; Hempel, C.; Wanka, L.; Schubert, M.; Hamm, H.E.; Beck-Sickinger, A.G. G protein preassembly rescues efficacy of W 6.48 toggle mutations in neuropeptide Y 2 receptor. Mol. Pharmacol., 2018, 93(4), 387-401.
[http://dx.doi.org/10.1124/mol.117.110544] [PMID: 29436493]
[125]
Holst, B.; Nygaard, R.; Valentin-Hansen, L.; Bach, A.; Engelstoft, M.S.; Petersen, P.S.; Frimurer, T.M.; Schwartz, T.W. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J. Biol. Chem., 2010, 285(6), 3973-3985.
[http://dx.doi.org/10.1074/jbc.M109.064725] [PMID: 19920139]
[126]
Zhang, X.C.; Zhou, Y.; Cao, C. Proton transfer during class-A GPCR activation: do the CWxP motif and the membrane potential act in concert? Biophys. Rep., 2018, 4(3), 115-122.
[http://dx.doi.org/10.1007/s41048-018-0056-0]
[127]
Tehan, B.G.; Bortolato, A.; Blaney, F.E.; Weir, M.P.; Mason, J.S. Unifying family A GPCR theories of activation. Pharmacol. Ther., 2014, 143(1), 51-60.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.004] [PMID: 24561131]
[128]
Eddy, M.T.; Lee, M.Y.; Gao, Z.G.; White, K.L.; Didenko, T.; Horst, R.; Audet, M.; Stanczak, P.; McClary, K.M.; Han, G.W.; Jacobson, K.A.; Stevens, R.C.; Wüthrich, K. Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor. Cell, 2018, 172(1-2), 68-80.e12.
[http://dx.doi.org/10.1016/j.cell.2017.12.004] [PMID: 29290469]
[129]
Ishchenko, A.; Wacker, D.; Kapoor, M.; Zhang, A.; Han, G.W.; Basu, S.; Patel, N.; Messerschmidt, M.; Weierstall, U.; Liu, W.; Katritch, V.; Roth, B.L.; Stevens, R.C.; Cherezov, V. Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proc. Natl. Acad. Sci. USA, 2017, 114(31), 8223-8228.
[http://dx.doi.org/10.1073/pnas.1700891114] [PMID: 28716900]
[130]
Kato, H.E.; Zhang, Y.; Hu, H.; Suomivuori, C.M.; Kadji, F.M.N.; Aoki, J.; Krishna Kumar, K.; Fonseca, R.; Hilger, D.; Huang, W.; Latorraca, N.R.; Inoue, A.; Dror, R.O.; Kobilka, B.K.; Skiniotis, G. Conformational transitions of a neurotensin receptor 1-Gi1 complex. Nature, 2019, 572(7767), 80-85.
[http://dx.doi.org/10.1038/s41586-019-1337-6] [PMID: 31243364]
[131]
Liu, W.; Chun, E.; Thompson, A.A.; Chubukov, P.; Xu, F.; Katritch, V. Structural basis for allosteric regulation of GPCRS by sodium ions. Science (80), 2012, 337((6091)), 232-236.
[http://dx.doi.org/10.1126/science.1219218]
[132]
Yuan, S.; Vogel, H.; Filipek, S. The role of water and sodium ions in the activation of the μ-opioid receptor. Angew. Chem. Int. Ed. Engl., 2013, 52(38), 10112-10115.
[http://dx.doi.org/10.1002/anie.201302244] [PMID: 23904331]
[133]
Fenalti, G.; Giguere, P.M.; Katritch, V.; Huang, X.P.; Thompson, A.A.; Cherezov, V.; Roth, B.L.; Stevens, R.C. Molecular control of δ-opioid receptor signalling. Nature, 2014, 506(7487), 191-196.
[http://dx.doi.org/10.1038/nature12944] [PMID: 24413399]
[134]
Vickery, O.N.; Carvalheda, C.A.; Zaidi, S.A.; Pisliakov, A.V.; Katritch, V.; Zachariae, U. Intracellular transfer of Na+ in an active-state G-protein-coupled receptor. Structure, 2018, 26(1), 171-180.e2.
[http://dx.doi.org/10.1016/j.str.2017.11.013] [PMID: 29249607]
[135]
Katritch, V.; Fenalti, G.; Abola, E.E.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci., 2014, 39(5), 233-244.
[http://dx.doi.org/10.1016/j.tibs.2014.03.002] [PMID: 24767681]
[136]
White, K.L.; Eddy, M.T.; Gao, Z.G.; Han, G.W.; Lian, T.; Deary, A.; Patel, N.; Jacobson, K.A.; Katritch, V.; Stevens, R.C. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure, 2018, 26(2), 259-269.e5.
[http://dx.doi.org/10.1016/j.str.2017.12.013] [PMID: 29395784]
[137]
Ye, L.; Neale, C.; Sljoka, A.; Lyda, B.; Pichugin, D.; Tsuchimura, N.; Larda, S.T.; Pomès, R.; García, A.E.; Ernst, O.P.; Sunahara, R.K.; Prosser, R.S. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Commun., 2018, 9(1), 1372.
[http://dx.doi.org/10.1038/s41467-018-03314-9] [PMID: 29636462]
[138]
Yuan, S.; Filipek, S.; Vogel, H. A gating mechanism of the serotonin 5-HT3 receptor. Structure, 2016, 24(5), 816-825.
[http://dx.doi.org/10.1016/j.str.2016.03.019] [PMID: 27112600]
[139]
Venkatakrishnan, A.J.; Ma, A.K.; Fonseca, R.; Latorraca, N.R.; Kelly, B.; Betz, R.M.; Asawa, C.; Kobilka, B.K.; Dror, R.O. Diverse GPCRs exhibit conserved water networks for stabilization and activation. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 3288-3293.
[http://dx.doi.org/10.1073/pnas.1809251116] [PMID: 30728297]
[140]
Dorszewska, J.; Florczak-Wyspianska, J.; Kowalska, M.; Stanski, M.; Kowalewska, A.; Kozubski, W. Serotonin in neurological diseases In: Serotonin - A Chemical Messenger Between All Types of Living Cells; IntechOpen; , 2017.
[http://dx.doi.org/10.5772/intechopen.69035]
[141]
Dorszewska, J.; Prendecki, M.; Oczkowska, A.; Rozycka, A.; Lianeri, M.; Kozubski, W. Polymorphism of the COMT, MAO, DAT, NET and 5-HTT genes, and biogenic amines in Parkinson’s disease. Curr. Genomics, 2013, 14(8), 518-533.
[http://dx.doi.org/10.2174/1389202914666131210210241] [PMID: 24532984]
[142]
Mohammad-Zadeh, L.F.; Moses, L.; Gwaltney-Brant, S.M. Serotonin: A review. J. Vet. Pharmacol. Ther., 2008, 31(3), 187-199.
[http://dx.doi.org/10.1111/j.1365-2885.2008.00944.x] [PMID: 18471139]
[143]
Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res., 2008, 195(1), 198-213.
[http://dx.doi.org/10.1016/j.bbr.2008.03.020] [PMID: 18571247]
[144]
Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Southan, C.; Sharman, J.L.; Campo, B.; Cavanagh, D.R.; Alexander, S.P.H.; Davenport, A.P.; Spedding, M.; Davies, J.A. The IUPHAR/ BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to malaria pharmacology. Nucleic Acids Res., 2020, 48(D1), D1006-D1021.
[PMID: 31691834]
[145]
Xu, P.; Huang, S.; Zhang, H.; Mao, C.; Zhou, X.E.; Cheng, X.; Simon, I.A.; Shen, D.D.; Yen, H.Y.; Robinson, C.V.; Harpsøe, K.; Svensson, B.; Guo, J.; Jiang, H.; Gloriam, D.E.; Melcher, K.; Jiang, Y.; Zhang, Y.; Xu, H.E. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature, 2021, 592(7854), 469-473.
[http://dx.doi.org/10.1038/s41586-021-03376-8] [PMID: 33762731]
[146]
Kowalska, M.; Prendecki, M.; Kozubski, W.; Lianeri, M.; Dorszewska, J. Molecular factors in migraine. Oncotarget, 2016, 7(31), 50708-50718.
[http://dx.doi.org/10.18632/oncotarget.9367] [PMID: 27191890]
[147]
Theodore, W.H. Does serotonin play a role in epilepsy? Epilepsy Curr., 2003, 3(5), 173-177.
[http://dx.doi.org/10.1046/j.1535-7597.2003.03508.x] [PMID: 15346169]
[148]
Hercigonja Novkovic, V.; Rudan, V.; Pivac, N.; Nedic, G.; Muck-Seler, D. Platelet serotonin concentration in children with attention-deficit/hyperactivity disorder. Neuropsychobiology, 2009, 59(1), 17-22.
[http://dx.doi.org/10.1159/000202825] [PMID: 19221444]
[149]
Whitney, M.S.; Shemery, A.M.; Yaw, A.M.; Donovan, L.J.; Glass, J.D.; Deneris, E.S. Adult brain serotonin deficiency causes hyperactivity, circadian disruption, and elimination of siestas. J. Neurosci., 2016, 36(38), 9828-9842.
[http://dx.doi.org/10.1523/JNEUROSCI.1469-16.2016] [PMID: 27656022]
[150]
Sandyk, R. Serotonergic mechanisms in amyotrophic lateral sclerosis. Int. J. Neurosci., 2006, 116(7), 775-826.
[http://dx.doi.org/10.1080/00207450600754087] [PMID: 16861147]
[151]
Yang, X.; Heitman, L.H.; IJzerman, A.P.; van der Es, D. Molecular probes for the human adenosine receptors. Purinergic Signal., 2021, 17(1), 85-108.
[http://dx.doi.org/10.1007/s11302-020-09753-8] [PMID: 33313997]
[152]
Jacobson, K.A.; Gao, Z.G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov., 2006, 5(3), 247-264.
[http://dx.doi.org/10.1038/nrd1983] [PMID: 16518376]
[153]
Stone, T.W.; Ceruti, S.; Abbracchio, M.P. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb. Exp. Pharmacol., 2009, 193(193), 535-587.
[http://dx.doi.org/10.1007/978-3-540-89615-9_17] [PMID: 19639293]
[154]
Ordway, G.A.; Schwartz, M.A.; Frazer, A. Brain norepinephrine: neurobiology and therapeutics; Cambridge University Press, 2007, pp. 1-642.
[155]
Klimek, V.; Rajkowska, G.; Luker, S.N.; Dilley, G.; Meltzer, H.Y.; Overholser, J.C.; Stockmeier, C.A.; Ordway, G.A. Brain noradrenergic receptors in major depression and schizophrenia. Neuropsychopharmacology, 1999, 21(1), 69-81.
[http://dx.doi.org/10.1016/S0893-133X(98)00134-1] [PMID: 10379521]
[156]
Gupta, M.K.; Papay, R.S.; Jurgens, C.W.D.; Gaivin, R.J.; Shi, T.; Doze, V.A.; Perez, D.M. α1-Adrenergic receptors regulate neurogenesis and gliogenesis. Mol. Pharmacol., 2009, 76(2), 314-326.
[http://dx.doi.org/10.1124/mol.109.057307] [PMID: 19487244]
[157]
Nguyen, P.V.; Connor, S.A. Noradrenergic regulation of hippocampus-dependent memory. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19(3), 187-196.
[http://dx.doi.org/10.2174/1871524919666190719163632] [PMID: 31749419]
[158]
Perez, D.M. α1-adrenergic receptors in neurotransmission, synaptic plasticity, and cognition. Vol. 11, Frontiers in Pharmacology. Front. Pharmacol., 2020.
[http://dx.doi.org/10.3389/fphar.2020.581098]
[159]
Hertz, L.; Lovatt, D.; Goldman, S.A.; Nedergaard, M. Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochem. Int., 2010, 57(4), 411-420.
[http://dx.doi.org/10.1016/j.neuint.2010.03.019] [PMID: 20380860]
[160]
Xiao, R-P. The Adrenergic Receptors in the 21st Century. In: Circulation; Springer 2006, 113(18), pp. 129-134.
[161]
Kendall, D.A.; Yudowski, G.A. Cannabinoid receptors in the central nervous system: Their signaling and roles in disease. Front. Cell. Neurosci., 2017, 10, 294.
[http://dx.doi.org/10.3389/fncel.2016.00294] [PMID: 28101004]
[162]
Aizpurua-Olaizola, O.; Elezgarai, I.; Rico-Barrio, I.; Zarandona, I.; Etxebarria, N.; Usobiaga, A. Targeting the endocannabinoid system: future therapeutic strategies. Drug Discov. Today, 2017, 22(1), 105-110.
[http://dx.doi.org/10.1016/j.drudis.2016.08.005] [PMID: 27554802]
[163]
Pryce, G.; Ahmed, Z.; Hankey, D.J.R.; Jackson, S.J.; Croxford, J.L.; Pocock, J.M.; Ledent, C.; Petzold, A.; Thompson, A.J.; Giovannoni, G.; Cuzner, M.L.; Baker, D. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain, 2003, 126(Pt 10), 2191-2202.
[http://dx.doi.org/10.1093/brain/awg224] [PMID: 12876144]
[164]
Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol., 2005, 5(5), 400-411.
[http://dx.doi.org/10.1038/nri1602] [PMID: 15864274]
[165]
Campbell, V.A.; Gowran, A. Alzheimer’s disease; taking the edge off with cannabinoids? Br. J. Pharmacol., 2007, 152(5), 655-662.
[http://dx.doi.org/10.1038/sj.bjp.0707446] [PMID: 17828287]
[166]
Bilkei-Gorzo, A. The endocannabinoid system in normal and pathological brain ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1607), 3326-3341.
[http://dx.doi.org/10.1098/rstb.2011.0388] [PMID: 23108550]
[167]
Scotter, E.L.; Abood, M.E.; Glass, M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br. J. Pharmacol., 2010, 160(3), 480-498.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00735.x] [PMID: 20590559]
[168]
Fernández-Ruiz, J.; Moreno-Martet, M.; Rodríguez-Cueto, C.; Palomo-Garo, C.; Gómez-Cañas, M.; Valdeolivas, S.; Guaza, C.; Romero, J.; Guzmán, M.; Mechoulam, R.; Ramos, J.A. Prospects for cannabinoid therapies in basal ganglia disorders. Br. J. Pharmacol., 2011, 163(7), 1365-1378.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01365.x] [PMID: 21545415]
[169]
Marsicano, G.; Kuner, R. Anatomical distribution of receptors, ligands and enzymes in the brain and in the spinal cord: Circuitries and neurochemistry.In: Cannabinoids and the Brain; Springer: Boston, MA, 2008, pp. 161-201.
[http://dx.doi.org/10.1007/978-0-387-74349-3_10]
[170]
Jordan, C.J.; Xi, Z.X. Progress in brain cannabinoid CB2 receptor research: From genes to behavior. Neurosci. Biobehav. Rev., 2019, 98, 208-220.
[http://dx.doi.org/10.1016/j.neubiorev.2018.12.026] [PMID: 30611802]
[171]
Mackie, K. Cannabinoid receptors: Where they are and what they do. J. Neuroendocrinol., 2008, 10-14.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01671.x]
[172]
Bosier, B.; Muccioli, G.G.; Hermans, E.; Lambert, D.M. Functionally selective cannabinoid receptor signalling: therapeutic implications and opportunities. Biochem. Pharmacol., 2010, 80(1), 1-12.
[http://dx.doi.org/10.1016/j.bcp.2010.02.013] [PMID: 20206137]
[173]
Nogueras-Ortiz, C.; Yudowski, G.A. The multiple waves of cannabinoid 1 receptor signaling. Mol. Pharmacol., 2016, 90(5), 620-626.
[http://dx.doi.org/10.1124/mol.116.104539] [PMID: 27338082]
[174]
Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci., 2015, 16(1), 30-42.
[http://dx.doi.org/10.1038/nrn3876] [PMID: 25524120]
[175]
Palazuelos, J.; Aguado, T.; Pazos, M.R.; Julien, B.; Carrasco, C.; Resel, E.; Sagredo, O.; Benito, C.; Romero, J.; Azcoitia, I.; Fernández-Ruiz, J.; Guzmán, M.; Galve-Roperh, I. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain, 2009, 132(Pt 11), 3152-3164.
[http://dx.doi.org/10.1093/brain/awp239] [PMID: 19805493]
[176]
Yeh, F.L.; Wang, Y.; Tom, I.; Gonzalez, L.C.; Sheng, M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron, 2016, 91(2), 328-340.
[http://dx.doi.org/10.1016/j.neuron.2016.06.015] [PMID: 27477018]
[177]
Sagredo, O.; García-Arencibia, M.; de Lago, E.; Finetti, S.; Decio, A.; Fernández-Ruiz, J. Cannabinoids and neuroprotection in basal ganglia disorders. Mol. Neurobiol., 2007, 36(1), 82-91.
[http://dx.doi.org/10.1007/s12035-007-0004-3] [PMID: 17952653]
[178]
Ramírez, B.G.; Blázquez, C.; Gómez del Pulgar, T.; Guzmán, M.; de Ceballos, M.L. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci., 2005, 25(8), 1904-1913.
[http://dx.doi.org/10.1523/JNEUROSCI.4540-04.2005] [PMID: 15728830]
[179]
Dockray, G.J. Cholecystokinins in rat cerebral cortex: identification, purification and characterization by immunochemical methods. Brain Res., 1980, 188(1), 155-165.
[http://dx.doi.org/10.1016/0006-8993(80)90564-8] [PMID: 7370750]
[180]
Innis, R.B.; Snyder, S.H. Distinct cholecystokinin receptors in brain and pancreas. Proc. Natl. Acad. Sci. USA, 1980, 77(11), 6917-6921.
[http://dx.doi.org/10.1073/pnas.77.11.6917] [PMID: 6256771]
[181]
Bradwejn, J.; Koszycki, D.; Meterissian, G. Cholecystokinin-tetrapeptide induces panic attacks in patients with panic disorder. Can. J. Psychiatry, 1990, 35(1), 83-85.
[http://dx.doi.org/10.1177/070674379003500115] [PMID: 2180549]
[182]
Ballaz, S. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev. Neurosci., 2017, 28(6), 573-585.
[http://dx.doi.org/10.1515/revneuro-2016-0088] [PMID: 28343167]
[183]
Beglinger, C.; Degen, L.; Matzinger, D.; D’Amato, M.; Drewe, J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am. J. Physiol. – Regul. Integr. Comp. Physiol., 2001, 280(4), 49-54.
[http://dx.doi.org/10.1152/ajpregu.2001.280.4.R1149]
[184]
Dockray, G.J. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes., 2012, 19(1), 8-12.
[http://dx.doi.org/10.1097/MED.0b013e32834eb77d] [PMID: 22157397]
[185]
Beglinger, C. Overview. Cholecystokinin and eating. Curr. Opin. Investig. Drugs, 2002, 3(4), 587-588.
[PMID: 12090729]
[186]
Choi, J.G.; Jeong, M.; Joo, B.R.; Ahn, J.H.; Woo, J.H.; Kim, D.H.; Oh, M.S.; Choi, J.H. Reduced levels of intestinal neuropeptides and neurotrophins in neurotoxin-induced Parkinson disease mouse models. J. Neuropathol. Exp. Neurol., 2021, 80(1), 15-20.
[http://dx.doi.org/10.1093/jnen/nlaa113] [PMID: 33000126]
[187]
Fasano, A.; Visanji, N.P.; Liu, L.W.C.; Lang, A.E.; Pfeiffer, R.F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol., 2015, 14(6), 625-639.
[http://dx.doi.org/10.1016/S1474-4422(15)00007-1] [PMID: 25987282]
[188]
Everitt, B.J.; Meister, B.; Hökfelt, T.; Melander, T.; Terenius, L.; Rökaeus, A.; Theodorsson-Norheim, E.; Dockray, G.; Edwardson, J.; Cuello, C. The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons. Brain Res., 1986, 396(2), 97-155.
[http://dx.doi.org/10.1016/0165-0173(86)90001-9] [PMID: 2874874]
[189]
Hökfelt, T.; Skirboll, L.; Rehfeld, J.F.; Goldstein, M.; Markey, K.; Dann, O. A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience, 1980, 5(12), 2093-2124.
[http://dx.doi.org/10.1016/0306-4522(80)90127-X] [PMID: 7007911]
[190]
Beaulieu, J.M.; Espinoza, S.; Gainetdinov, R.R. Dopamine receptors - IUPHAR Review 13. Br. J. Pharmacol., 2015, 172(1), 1-23.
[http://dx.doi.org/10.1111/bph.12906] [PMID: 25671228]
[191]
Kebabian, J.W. Multiple classes of dopamine receptors in mammalian central nervous system: the involvement of dopamine-sensitive adenylyl cyclase. Life Sci., 1978, 23(5), 479-483.
[http://dx.doi.org/10.1016/0024-3205(78)90157-1] [PMID: 357876]
[192]
Spano, P.F.; Govoni, S.; Trabucchi, M. Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv. Biochem. Psychopharmacol., 1978, 19, 155-165.
[PMID: 358777]
[193]
Bueschbell, B.; Barreto, C.A.V.; Preto, A.J.; Schiedel, A.C.; Moreira, I.S. A complete assessment of dopamine receptor-ligand interactions through computational methods. Molecules, 2019, 24(7), E1196.
[http://dx.doi.org/10.3390/molecules24071196] [PMID: 30934701]
[194]
Cokan, K.B.; Mavri, M.; Rutland, C.S.; Glišić, S.; Senćanski, M.; Vrecl, M. Critical impact of different conserved endoplasmic retention motifs and dopamine receptor interacting proteins (Drips) on intracellular localization and trafficking of the d2 dopamine receptor (D2-r) isoforms; Biomolecules Biomolecules, 2020, pp. 1-18.
[195]
Mitsukawa, K.; Lu, X.; Bartfai, T. Galanin, galanin receptors and drug targets. Cell. Mol. Life Sci., 2008, 65(12), 1796-1805.
[http://dx.doi.org/10.1007/s00018-008-8153-8] [PMID: 18500647]
[196]
Tatemoto, K.; Rökaeus, A.; Jörnvall, H.; McDonald, T.J.; Mutt, V. Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett., 1983, 164(1), 124-128.
[http://dx.doi.org/10.1016/0014-5793(83)80033-7] [PMID: 6197320]
[197]
Ottlecz, A.; Samson, W.K.; McCann, S.M. Galanin: evidence for a hypothalamic site of action to release growth hormone. Peptides, 1986, 7(1), 51-53.
[http://dx.doi.org/10.1016/0196-9781(86)90060-4] [PMID: 2423991]
[198]
Lu, X.; Sharkey, L.; Bartfai, T. The brain galanin receptors: targets for novel antidepressant drugs. CNS Neurol. Disord. Drug Targets, 2007, 6(3), 183-192.
[http://dx.doi.org/10.2174/187152707780619335] [PMID: 17511615]
[199]
Hua, X.Y.; Salgado, K.F.; Gu, G.; Fitzsimmons, B.; Kondo, I.; Bartfai, T. Mechanisms of antinociception of spinal galanin: How does galanin inhibit spinal sensitization?. Neuropeptides, 2005, 211-216.
[200]
Nordström, O.; Melander, T.; Hökfelt, T.; Bartfai, T.; Goldstein, M. Evidence for an inhibitory effect of the peptide galanin on dopamine release from the rat median eminence. Neurosci. Lett., 1987, 73(1), 21-26.
[http://dx.doi.org/10.1016/0304-3940(87)90024-3] [PMID: 2436097]
[201]
Liu, H.X.; Hökfelt, T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol. Sci., 2002, 23(10), 468-474.
[http://dx.doi.org/10.1016/S0165-6147(02)02074-6] [PMID: 12368071]
[202]
Wrenn, C.C.; Crawley, J.N. Pharmacological evidence supporting a role for galanin in cognition and affect. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(1), 283-299.
[http://dx.doi.org/10.1016/S0278-5846(00)00156-1] [PMID: 11263757]
[203]
Hökfelt, T.; Wiesenfeld-Hallin, Z.; Villar, M.; Melander, T. Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci. Lett., 1987, 83(3), 217-220.
[http://dx.doi.org/10.1016/0304-3940(87)90088-7] [PMID: 2450311]
[204]
Elliott-Hunt, C.R.; Marsh, B.; Bacon, A.; Pope, R.; Vanderplank, P.; Wynick, D. Galanin acts as a neuroprotective factor to the hippocampus. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 5105-5110.
[http://dx.doi.org/10.1073/pnas.0304823101] [PMID: 15041741]
[205]
Counts, S.E.; Perez, S.E.; Ginsberg, S.D.; De Lacalle, S.; Mufson, E.J. Galanin in Alzheimer disease. Mol. Interv., 2003, 3(3), 137-156.
[http://dx.doi.org/10.1124/mi.3.3.137] [PMID: 14993421]
[206]
Mazarati, A.; Lu, X.; Kilk, K.; Langel, U.; Wasterlain, C.; Bartfai, T. Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizure-induced neurogenesis in the dentate gyrus. Eur. J. Neurosci., 2004, 19(12), 3235-3244.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03449.x] [PMID: 15217380]
[207]
Hökfelt, T.; Bartfai, T.; Bloom, F. Neuropeptides: opportunities for drug discovery. Lancet Neurol., 2003, 2(8), 463-472.
[http://dx.doi.org/10.1016/S1474-4422(03)00482-4] [PMID: 12878434]
[208]
Mazarati, A.M. Galanin and galanin receptors in epilepsy. Neuropeptides, 2004, 38(6), 331-343.
[http://dx.doi.org/10.1016/j.npep.2004.07.006] [PMID: 15567469]
[209]
Wiesenfeld-Hallin, Z.; Xu, X.J.; Crawley, J.N.; Hökfelt, T. Galanin and spinal nociceptive mechanisms: Recent results from transgenic and knock-out models. Neuropeptides, 2005, 207-210.
[210]
Wang, P.; Li, H.; Barde, S.; Zhang, M.D.; Sun, J.; Wang, T.; Zhang, P.; Luo, H.; Wang, Y.; Yang, Y.; Wang, C.; Svenningsson, P.; Theodorsson, E.; Hökfelt, T.G.; Xu, Z.Q. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc. Natl. Acad. Sci. USA, 2016, 113(32), E4726-E4735.
[http://dx.doi.org/10.1073/pnas.1609198113] [PMID: 27457954]
[211]
Lundström, L.; Elmquist, A.; Bartfai, T.; Langel, U. Galanin and its receptors in neurological disorders. Neuromol. Med., 2005, 7(1-2), 157-180.
[http://dx.doi.org/10.1385/NMM:7:1-2:157] [PMID: 16052044]
[212]
Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.S.; Stark, H.; Thurmond, R.L.; Haas, H.L. International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol. Rev., 2015, 67(3), 601-655.
[http://dx.doi.org/10.1124/pr.114.010249] [PMID: 26084539]
[213]
Nieto-Alamilla, G.; Márquez-Gómez, R.; García-Gálvez, A-M.; Morales-Figueroa, G-E.; Arias-Montaño, J-A. The histamine H3 receptor: Structure, pharmacology, and function. Mol. Pharmacol., 2016, 90(5), 649-673.
[http://dx.doi.org/10.1124/mol.116.104752] [PMID: 27563055]
[214]
Keppel, H.J.M. The terms ‘autacoid’, ‘hormone’ and ‘chalone’ and how they have shifted with time. Auton. Autacoid Pharmacol., 2015, 35(4), 51-58.
[http://dx.doi.org/10.1111/aap.12037] [PMID: 27028114]
[215]
Wouters, M.M.; Vicario, M.; Santos, J. The role of mast cells in functional GI disorders. Gut, 2016, 65(1), 155-168.
[http://dx.doi.org/10.1136/gutjnl-2015-309151] [PMID: 26194403]
[216]
Blandina, P.; Provensi, G.; Munari, L.; Passani, M.B. Histamine neurons in the tuberomamillary nucleus: A whole center or distinct subpopulations? Front. Syst. Neurosci., 2012, 6, 33.
[http://dx.doi.org/10.3389/fnsys.2012.00033]
[217]
Stromberga, Z.; Chess-Williams, R.; Moro, C. Histamine modulation of urinary bladder urothelium, lamina propria and detrusor contractile activity via H1 and H2 receptors. Sci. Rep., 2019, 9(1), 3899.
[http://dx.doi.org/10.1038/s41598-019-40384-1] [PMID: 30846750]
[218]
Passani, M.B.; Panula, P.; Lin, J-S. Histamine in the brain. Front. Syst. Neurosci., 2014, 8, 64.
[PMID: 24808830]
[219]
Chazot, P.; Cowart, M.; Fukui, H.; Ganellin, C.R.; Gutzmer, R.; Haas, H.L. Histamine receptors (version 2019.4) in the IUPHAR/ BPS guide to pharmacology database. IUPHAR/BPS Guid to Pharmacol CITE, 2019, 4.
[220]
Bond, R.A.; Ijzerman, A.P. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci., 2006, 27(2), 92-96.
[http://dx.doi.org/10.1016/j.tips.2005.12.007] [PMID: 16406086]
[221]
Baronio, D.; Gonchoroski, T.; Castro, K.; Zanatta, G.; Gottfried, C.; Riesgo, R. Histaminergic system in brain disorders: lessons from the translational approach and future perspectives. Ann. Gen. Psychiatry, 2014, 13(1), 34.
[http://dx.doi.org/10.1186/s12991-014-0034-y] [PMID: 25426159]
[222]
Jadidi-Niaragh, F.; Mirshafiey, A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology, 2010, 59(3), 180-189.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.005] [PMID: 20493888]
[223]
Naddafi, F.; Mirshafiey, A. The neglected role of histamine in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2013, 28(4), 327-336.
[http://dx.doi.org/10.1177/1533317513488925] [PMID: 23677734]
[224]
Ito, C. The role of the central histaminergic system on schizophrenia. Drug News Perspect., 2004, 17(6), 383-387.
[http://dx.doi.org/10.1358/dnp.2004.17.6.829029] [PMID: 15334189]
[225]
Mahmood, D. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: A current preclinical & clinical perspective. Int. J. Health Sci. (Qassim), 2016, 10(4), 564-575.
[http://dx.doi.org/10.12816/0048906] [PMID: 27833522]
[226]
Liu, Q.; Fan, W.; He, H.; Huang, F. The role of peripheral opioid receptors in orofacial pain. Oral Dis., 2021, 27(5), 1106-1114.
[http://dx.doi.org/10.1111/odi.13435] [PMID: 32437594]
[227]
Wiffen, P.J.; Wee, B.; Derry, S.; Bell, R.F.; Moore, R.A. Opioids for cancer pain - an overview of Cochrane reviews. Cochrane Database Syst. Rev., 2017, 7(7), CD012592.
[PMID: 28683172]
[228]
Barber, A. μ- and κ-opioid receptor agonists produce peripheral inhibition of neurogenic plasma extravasation in rat skin. Eur. J. Pharmacol., 1993, 236(1), 113-120.
[http://dx.doi.org/10.1016/0014-2999(93)90233-8] [PMID: 8391450]
[229]
Earl, J.R.; Grootveld, M.C.; Blake, D.R.; Morris, C.J. Effect of μ, δ and κ opioid receptor agonists on a reactive oxygen species mediated model of skin inflammation. Skin Pharmacol., 1996, 9(4), 250-258.
[http://dx.doi.org/10.1159/000211422] [PMID: 8896116]
[230]
Stein, C.; Machelska, H. Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol. Rev., 2011, 63(4), 860-881.
[http://dx.doi.org/10.1124/pr.110.003145] [PMID: 21969325]
[231]
Corbett, A.D.; Henderson, G.; McKnight, A.T.; Paterson, S.J. 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br. J. Pharmacol., 2006, 147(Suppl. 1), S153-S162.
[http://dx.doi.org/10.1038/sj.bjp.0706435] [PMID: 16402099]
[232]
Israel, Y.; Kandov, Y.; Khaimova, E.; Kest, A.; Lewis, S.R.; Pasternak, G.W.; Pan, Y.X.; Rossi, G.C.; Bodnar, R.J. NPY-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. Peptides, 2005, 26(7), 1167-1175.
[http://dx.doi.org/10.1016/j.peptides.2005.01.017] [PMID: 15949635]
[233]
Cai, Z.; Ratka, A. Opioid system and Alzheimer’s disease. Neuromolecular Med., 2012, 14(2), 91-111.
[http://dx.doi.org/10.1007/s12017-012-8180-3] [PMID: 22527793]
[234]
Nissen, J.B.; Kragballe, K. Enkephalins modulate differentiation of normal human keratinocytes in vitro . Exp. Dermatol., 1997, 6(5), 222-229.
[http://dx.doi.org/10.1111/j.1600-0625.1997.tb00166.x] [PMID: 9450624]
[235]
Hadjiconstantinou, M.; Neff, N.H. Nicotine and endogenous opioids: neurochemical and pharmacological evidence. Neuropharmacology, 2011, 60(7-8), 1209-1220.
[http://dx.doi.org/10.1016/j.neuropharm.2010.11.010] [PMID: 21108953]
[236]
Jeftinija, S. Enkephalins modulate excitatory synaptic transmission in the superficial dorsal horn by acting at μ-opioid receptor sites. Brain Res., 1988, 460(2), 260-268.
[http://dx.doi.org/10.1016/0006-8993(88)90371-X] [PMID: 2852045]
[237]
Kong, H.; Raynor, K.; Yano, H.; Takeda, J.; Bell, G.I.; Reisine, T. Agonists and antagonists bind to different domains of the cloned κ opioid receptor. Proc. Natl. Acad. Sci. USA, 1994, 91(17), 8042-8046.
[http://dx.doi.org/10.1073/pnas.91.17.8042] [PMID: 8058754]
[238]
Maggi, R.; Pimpinelli, F.; Martini, L.; Piva, F. Inhibition of luteinizing hormone-releasing hormone secretion by delta-opioid agonists in GT1-1 neuronal cells. Endocrinology, 1995, 136(11), 5177-5181.
[http://dx.doi.org/10.1210/endo.136.11.7588256] [PMID: 7588256]
[239]
Meucci, E.; Delay-Goyet, P.; Roques, B.P.; Zajac, J.M. Binding in vivo of selective μ and δ opioid receptor agonists: opioid receptor occupancy by endogenous enkephalins. Eur. J. Pharmacol., 1989, 171(2-3), 167-178.
[http://dx.doi.org/10.1016/0014-2999(89)90105-2] [PMID: 2559856]
[240]
Stein, C. Opioid Receptors. Annu. Rev. Med., 2016, 67, 433-451.
[http://dx.doi.org/10.1146/annurev-med-062613-093100] [PMID: 26332001]
[241]
Alfaras-Melainis, K. Modulation of opioid receptor function by protein-protein interactions. Front. Biosci., 2009, (14), 3594.
[http://dx.doi.org/10.2741/3474]
[242]
Simonds, W.F. The molecular basis of opioid receptor function. Endocr. Rev., 1988, 9(2), 200-212.
[http://dx.doi.org/10.1210/edrv-9-2-200] [PMID: 2841104]
[243]
Barreto, C.A.V.; Baptista, S.J.; Preto, A.J.; Silvério, D.; Melo, R.; Moreira, I.S. Decoding partner specificity of opioid receptor family. Front Mol Biosci., , 812.
[http://dx.doi.org/10.3389/fmolb.2021.715215]
[244]
Chu, S.C.P.; Kieffer, B.L. Delta opioid receptors in brain function and diseases. Pharmacol. Ther., 2013, 140(1), 112-120.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.003] [PMID: 23764370]
[245]
Stein, C. Opioids, sensory systems and chronic pain. Eur. J. Pharmacol., 2013, 716(1-3), 179-187.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.076] [PMID: 23500206]
[246]
Rittner, H.L.; Brack, A.; Stein, C. Pain and the immune system. Br. J. Anaesth., 2008, 101(1), 40-44.
[http://dx.doi.org/10.1093/bja/aen078] [PMID: 18397920]
[247]
Epelbaum, J.; Dournaud, P.; Fodor, M.; Viollet, C. The neurobiology of somatostatin. Crit. Rev. Neurobiol., 1994, 8(1-2), 25-44.
[PMID: 7907281]
[248]
Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol., 1999, 20(3), 157-198.
[http://dx.doi.org/10.1006/frne.1999.0183] [PMID: 10433861]
[249]
Somatostatin, R.S. N. Engl. J. Med., 1983, 309(24), 1495-1501.
[http://dx.doi.org/10.1056/NEJM198312153092406] [PMID: 6139753]
[250]
Ramírez, J.L.; Mouchantaf, R.; Kumar, U.; Otero Corchon, V.; Rubinstein, M.; Low, M.J.; Patel, Y.C. Brain somatostatin receptors are up-regulated in somatostatin-deficient mice. Mol. Endocrinol., 2002, 16(8), 1951-1963.
[http://dx.doi.org/10.1210/me.2002-0068] [PMID: 12145348]
[251]
Reisine, T.; Bell, G.I. Molecular biology of somatostatin receptors. Endocr. Rev., 1995, 16(4), 427-442.
[PMID: 8521788]
[252]
Hukovic, N.; Rocheville, M.; Kumar, U.; Sasi, R.; Khare, S.; Patel, Y.C. Agonist-dependent up-regulation of human somatostatin receptor type 1 requires molecular signals in the cytoplasmic C-tail. J. Biol. Chem., 1999, 274(35), 24550-24558.
[http://dx.doi.org/10.1074/jbc.274.35.24550] [PMID: 10455118]
[253]
Hukovic, N.; Panetta, R.; Kumar, U.; Patel, Y.C. Agonist-dependent regulation of cloned human somatostatin receptor types 1-5 (hSSTR1-5): subtype selective internalization or upregulation. Endocrinology, 1996, 137(9), 4046-4049.
[http://dx.doi.org/10.1210/endo.137.9.8756582] [PMID: 8756582]
[254]
Song, Y-H.; Yoon, J.; Lee, S-H. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp. Mol. Med., 2021, 53(3), 328-338.
[http://dx.doi.org/10.1038/s12276-021-00580-4] [PMID: 33742131]
[255]
Francis, B.H.; Baskin, D.G.; Saunders, D.R.; Ensinck, J.W. Distribution of somatostatin-14 and somatostatin-28 gastrointestinal-pancreatic cells of rats and humans. Gastroenterology, 1990, 99(5), 1283-1291.
[http://dx.doi.org/10.1016/0016-5085(90)91151-U] [PMID: 1976560]
[256]
Abdel-Rahman, O.; Lamarca, A.; Valle, J.W.; Hubner, R.A. Somatostatin receptor expression in hepatocellular carcinoma: prognostic and therapeutic considerations. Endocr. Relat. Cancer, 2014, 21(6), R485-R493.
[http://dx.doi.org/10.1530/ERC-14-0389] [PMID: 25336571]
[257]
Liguz-Lecznar, M.; Urban-Ciecko, J.; Kossut, M. Somatostatin and somatostatin-containing neurons in shaping neuronal activity and plasticity. Front. Neural Circuits, 2016, 10, 48.
[http://dx.doi.org/10.3389/fncir.2016.00048] [PMID: 27445703]
[258]
Baraban, S.C.; Tallent, M.K. Interneuron Diversity series: Interneuronal neuropeptides--endogenous regulators of neuronal excitability. Trends Neurosci., 2004, 27(3), 135-142.
[http://dx.doi.org/10.1016/j.tins.2004.01.008] [PMID: 15036878]
[259]
Bichet, D.; Bouvier, M.; Chini, B.; Gimpl, G.; Guillon, G.; Kimura, T. Vasopressin and oxytocin receptors (version 2019.4) in the IUPHAR/ BPS Guide to Pharmacology Database. IUPHAR/BPS Guid to Pharmacol CITE, 2019, 4.
[260]
Holmes, C.L.; Landry, D.W.; Granton, J.T. Science review: Vasopressin and the cardiovascular system part 1--receptor physiology. Crit. Care, 2003, 7(6), 427-434.
[http://dx.doi.org/10.1186/cc2337] [PMID: 14624682]
[261]
Fineberg, S.K.; Ross, D.A. Oxytocin and the Social Brain. Biol. Psychiatry, 2017, 81(3), e19-e21.
[http://dx.doi.org/10.1016/j.biopsych.2016.11.004] [PMID: 28024707]
[262]
Lee, H.J.; Macbeth, A.H.; Pagani, J.H.; Young, W.S., III Oxytocin: the great facilitator of life. Prog. Neurobiol., 2009, 88(2), 127-151.
[PMID: 19482229]
[263]
Yang, H-P.; Wang, L.; Han, L.; Wang, S.C. Nonsocial functions of hypothalamic oxytocin. ISRN Neurosci., 2013, 2013, 179272.
[http://dx.doi.org/10.1155/2013/179272] [PMID: 24967304]
[264]
Rousseau-Merck, M.F.; René, P.; Derré, J.; Bienvenu, T.; Berger, R.; de Keyzer, Y. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32. Genomics, 1995, 30(2), 405-406.
[PMID: 8586456]
[265]
Thibonnier, M.; Preston, J.A.; Dulin, N.; Wilkins, P.L.; Berti-Mattera, L.N.; Mattera, R. The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology, 1997, 138(10), 4109-4122.
[http://dx.doi.org/10.1210/endo.138.10.5432] [PMID: 9322919]
[266]
Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Wilkins, P.L.; Berti-Mattera, L.N.; Mattera, R. Molecular pharmacology of human vasopressin receptors. Adv. Exp. Med. Biol., 1998, 449, 251-276.
[http://dx.doi.org/10.1007/978-1-4615-4871-3_34] [PMID: 10026814]
[267]
Koshimizu, T.A.; Nasa, Y.; Tanoue, A.; Oikawa, R.; Kawahara, Y.; Kiyono, Y.; Adachi, T.; Tanaka, T.; Kuwaki, T.; Mori, T.; Takeo, S.; Okamura, H.; Tsujimoto, G. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7807-7812.
[http://dx.doi.org/10.1073/pnas.0600875103] [PMID: 16682631]
[268]
Aoyagi, T.; Birumachi, J.; Hiroyama, M.; Fujiwara, Y.; Sanbe, A.; Yamauchi, J.; Tanoue, A. Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology, 2007, 148(5), 2075-2084.
[http://dx.doi.org/10.1210/en.2006-1315] [PMID: 17303660]
[269]
Birumachi, J.; Hiroyama, M.; Fujiwara, Y.; Aoyagi, T.; Sanbe, A.; Tanoue, A. Impaired arginine-vasopressin-induced aldosterone release from adrenal gland cells in mice lacking the vasopressin V1A receptor. Eur. J. Pharmacol., 2007, 566(1-3), 226-230.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.022] [PMID: 17449028]
[270]
Briley, E.M.; Lolait, S.J.; Axelrod, J.; Felder, C.C. The cloned vasopressin V1a receptor stimulates phospholipase A2, phospholipase C, and phospholipase D through activation of receptor-operated calcium channels. Neuropeptides, 1994, 27(1), 63-74.
[http://dx.doi.org/10.1016/0143-4179(94)90017-5] [PMID: 7969820]
[271]
Chandrashekhar, Y.; Prahash, A.J.; Sen, S.; Gupta, S.; Roy, S.; Anand, I.S. The role of arginine vasopressin and its receptors in the normal and failing rat heart. J. Mol. Cell. Cardiol., 2003, 35(5), 495-504.
[http://dx.doi.org/10.1016/S0022-2828(03)00053-1] [PMID: 12738231]
[272]
Yirmiya, N.; Rosenberg, C.; Levi, S.; Salomon, S.; Shulman, C.; Nemanov, L.; Dina, C.; Ebstein, R.P. Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol. Psychiatry, 2006, 11(5), 488-494.
[http://dx.doi.org/10.1038/sj.mp.4001812] [PMID: 16520824]
[273]
Young, L.J.; Nilsen, R.; Waymire, K.G.; MacGregor, G.R.; Insel, T.R. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 1999, 400(6746), 766-768.
[http://dx.doi.org/10.1038/23475] [PMID: 10466725]
[274]
Bielsky, I.F.; Hu, S.B.; Szegda, K.L.; Westphal, H.; Young, L.J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology, 2004, 29(3), 483-493.
[http://dx.doi.org/10.1038/sj.npp.1300360] [PMID: 14647484]
[275]
Lim, M.M.; Wang, Z.; Olazábal, D.E.; Ren, X.; Terwilliger, E.F.; Young, L.J. Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature, 2004, 429(6993), 754-757.
[http://dx.doi.org/10.1038/nature02539] [PMID: 15201909]
[276]
Gaillard, R.C.; Schoenenberg, P.; Favrod-Coune, C.A.; Muller, A.F.; Marie, J.; Bockaert, J.; Jard, S. Properties of rat anterior pituitary vasopressin receptors: relation to adenylate cyclase and the effect of corticotropin-releasing factor. Proc. Natl. Acad. Sci. USA, 1984, 81(9), 2907-2911.
[http://dx.doi.org/10.1073/pnas.81.9.2907] [PMID: 6326152]
[277]
Lolait, S.J.; O’Carroll, A.M.; Mahan, L.C.; Felder, C.C.; Button, D.C.; Young, W.S., III; Mezey, E.; Brownstein, M.J. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl. Acad. Sci. USA, 1995, 92(15), 6783-6787.
[http://dx.doi.org/10.1073/pnas.92.15.6783] [PMID: 7624319]
[278]
Lolait, S.J.; Stewart, L.Q.; Jessop, D.S.; Young, W.S., III; O’Carroll, A.M. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology, 2007, 148(2), 849-856.
[http://dx.doi.org/10.1210/en.2006-1309] [PMID: 17122081]
[279]
René, P.; Lenne, F.; Ventura, M.A.; Bertagna, X.; de Keyzer, Y. Nucleotide sequence and structural organization of the human vasopressin pituitary receptor (V3) gene. Gene, 2000, 241(1), 57-64.
[http://dx.doi.org/10.1016/S0378-1119(99)00468-0] [PMID: 10607899]
[280]
Griebel, G.; Simiand, J.; Serradeil-Le Gal, C.; Wagnon, J.; Pascal, M.; Scatton, B.; Maffrand, J.P.; Soubrie, P. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6370-6375.
[http://dx.doi.org/10.1073/pnas.092012099] [PMID: 11959912]
[281]
Nikkheslat, N.; McLaughlin, A.P.; Hastings, C.; Zajkowska, Z.; Nettis, M.A.; Mariani, N.; Enache, D.; Lombardo, G.; Pointon, L.; Cowen, P.J.; Cavanagh, J.; Harrison, N.A.; Bullmore, E.T.; Pariante, C.M.; Mondelli, V. Childhood trauma, HPA axis activity and antidepressant response in patients with depression. Brain Behav. Immun., 2020, 87, 229-237.
[http://dx.doi.org/10.1016/j.bbi.2019.11.024] [PMID: 31794798]
[282]
Rosenblat, J.D.; McIntyre, R.S.; Alves, G.S.; Fountoulakis, K.N.; Carvalho, A.F. Beyond monoamines-novel targets for treatment-resistant depression: A comprehensive review. Curr. Neuropharmacol., 2015, 13(5), 636-655.
[http://dx.doi.org/10.2174/1570159X13666150630175044] [PMID: 26467412]
[283]
Juruena, M.F.; Pariante, C.M.; Papadopoulos, A.S.; Poon, L.; Lightman, S.; Cleare, A.J. Prednisolone suppression test in depression: prospective study of the role of HPA axis dysfunction in treatment resistance. Br. J. Psychiatry, 2009, 194(4), 342-349.
[http://dx.doi.org/10.1192/bjp.bp.108.050278] [PMID: 19336786]
[284]
Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med., 2011, 73(2), 114-126.
[http://dx.doi.org/10.1097/PSY.0b013e31820ad12b] [PMID: 21257974]
[285]
Dinan, T.G.; Scott, L.V. Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin. J. Anat., 2005, 207(3), 259-264.
[http://dx.doi.org/10.1111/j.1469-7580.2005.00443.x] [PMID: 16185250]
[286]
Meynen, G.; Unmehopa, U.A.; van Heerikhuize, J.J.; Hofman, M.A.; Swaab, D.F.; Hoogendijk, W.J.G. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report. Biol. Psychiatry, 2006, 60(8), 892-895.
[http://dx.doi.org/10.1016/j.biopsych.2005.12.010] [PMID: 16499879]
[287]
Zhou, J-N.; Riemersma, R.F.; Unmehopa, U.A.; Hoogendijk, W.J.G.; van Heerikhuize, J.J.; Hofman, M.A.; Swaab, D.F. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch. Gen. Psychiatry, 2001, 58(7), 655-662.
[http://dx.doi.org/10.1001/archpsyc.58.7.655] [PMID: 11448372]
[288]
van Londen, L.; Goekoop, J.G.; van Kempen, G.M.J.; Frankhuijzen-Sierevogel, A.C.; Wiegant, V.M.; van der Velde, E.A.; De Wied, D. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology, 1997, 17(4), 284-292.
[http://dx.doi.org/10.1016/S0893-133X(97)00054-7] [PMID: 9326754]
[289]
Purba, J.S.; Hoogendijk, W.J.G.; Hofman, M.A.; Swaab, D.F. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry, 1996, 53(2), 137-143.
[http://dx.doi.org/10.1001/archpsyc.1996.01830020055007] [PMID: 8629889]
[290]
Chaki, S. Vasopressin V1B receptor antagonists as potential antidepressants. Int. J. Neuropsychopharmacol., 2021, 24(6), 450-463.
[http://dx.doi.org/10.1093/ijnp/pyab013] [PMID: 33733667]
[291]
Fatima, S.; Muhammad, H.; Arif, A. Nephrogenic diabetes insipidus. Pak. Pediatr. J., 2011, 35(3), 169-170.
[292]
Ala, Y.; Morin, D.; Mouillac, B.; Sabatier, N.; Vargas, R.; Cotte, N.; Déchaux, M.; Antignac, C.; Arthus, M.F.; Lonergan, M.; Turner, M.S.; Balestre, M.N.; Alonso, G.; Hibert, M.; Barberis, C.; Hendy, G.N.; Bichet, D.G.; Jard, S. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J. Am. Soc. Nephrol., 1998, 9(10), 1861-1872.
[http://dx.doi.org/10.1681/ASN.V9101861] [PMID: 9773787]
[293]
Sato, K.; Fukuno, H.; Taniguchi, T.; Sawada, S.; Fukui, T.; Kinoshita, M. A novel mutation in the vasopressin V2 receptor gene in a woman with congenital nephrogenic diabetes insipidus. Intern. Med., 1999, 38(10), 808-812.
[http://dx.doi.org/10.2169/internalmedicine.38.808] [PMID: 10526945]
[294]
Schöneberg, T.; Kostenis, E.; Liu, J.; Gudermann, T.; Wess, J. Molecular aspects of vasopressin receptor function. Adv. Exp. Med. Biol., 1998, 449, 347-358.
[http://dx.doi.org/10.1007/978-1-4615-4871-3_44] [PMID: 10026824]
[295]
Weig, H.J.; Laugwitz, K.L.; Moretti, A.; Kronsbein, K.; Städele, C.; Brüning, S.; Seyfarth, M.; Brill, T.; Schömig, A.; Ungerer, M. Enhanced cardiac contractility after gene transfer of V2 vasopressin receptors in vivo by ultrasound-guided injection or transcoronary delivery. Circulation, 2000, 101(13), 1578-1585.
[http://dx.doi.org/10.1161/01.CIR.101.13.1578] [PMID: 10747352]
[296]
Åkerlund, M.; Bossmar, T.; Brouard, R.; Kostrzewska, A.; Laudanski, T.; Lemancewicz, A.; Serradeil-Le Gal, C.; Steinwall, M. Receptor binding of oxytocin and vasopressin antagonists and inhibitory effects on isolated myometrium from preterm and term pregnant women. Br. J. Obstet. Gynaecol., 1999, 106(10), 1047-1053.
[http://dx.doi.org/10.1111/j.1471-0528.1999.tb08112.x] [PMID: 10519430]
[297]
Juul, KV; Bichet, DG; Nielsen, S; Nørgaard, JP The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors., 2014, 306(9), 931-940.
[http://dx.doi.org/10.1152/ajprenal.00604.2013]
[298]
Yayla, MA; Arda, B Peptide hormones and neurodegenerative diseases. J Exp Basic Med Sci., 2021, 2(1), 062-75.
[299]
Buisman-Pijlman, F.T.A.; Sumracki, N.M.; Gordon, J.J.; Hull, P.R.; Carter, C.S.; Tops, M. Individual differences underlying susceptibility to addiction: Role for the endogenous oxytocin system. Pharmacol. Biochem. Behav., 2014, 119, 22-38.
[http://dx.doi.org/10.1016/j.pbb.2013.09.005] [PMID: 24056025]
[300]
Viviani, D.; Stoop, R. Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. Prog. Brain Res., 2008, 170, 207-218.
[http://dx.doi.org/10.1016/S0079-6123(08)00418-4] [PMID: 18655884]
[301]
Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Gruppe, H.; Mattay, V.S.; Gallhofer, B.; Meyer-Lindenberg, A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci., 2005, 25(49), 11489-11493.
[http://dx.doi.org/10.1523/JNEUROSCI.3984-05.2005] [PMID: 16339042]
[302]
Petersson, M.; Lundeberg, T.; Sohlström, A.; Wiberg, U.; Uvnäs-Moberg, K. Oxytocin increases the survival of musculocutaneous flaps. Naunyn Schmiedebergs Arch. Pharmacol., 1998, 357(6), 701-704.
[http://dx.doi.org/10.1007/PL00005227] [PMID: 9686948]
[303]
Grewen, K.M.; Light, K.C.; Mechlin, B.; Girdler, S.S. Ethnicity is associated with alterations in oxytocin relationships to pain sensitivity in women. Ethn. Health, 2008, 13(3), 219-241.
[http://dx.doi.org/10.1080/13557850701837310] [PMID: 18568974]
[304]
Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci., 2012, 35(11), 649-659.
[http://dx.doi.org/10.1016/j.tins.2012.08.004] [PMID: 22974560]
[305]
McQuaid, R.J.; McInnis, O.A.; Abizaid, A.; Anisman, H. Making room for oxytocin in understanding depression. Neurosci. Biobehav. Rev., 2014, 45, 305-322.
[http://dx.doi.org/10.1016/j.neubiorev.2014.07.005] [PMID: 25025656]
[306]
Wulsin, A.C.; Herman, J.P.; Solomon, M.B. Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress. Psychoneuroendocrinology, 2010, 35(7), 1100-1112.
[http://dx.doi.org/10.1016/j.psyneuen.2010.01.011] [PMID: 20149549]
[307]
Bey, K.; Campos-Martin, R.; Klawohn, J.; Reuter, B.; Grützmann, R.; Riesel, A.; Wagner, M.; Ramirez, A.; Kathmann, N. Hypermethylation of the oxytocin receptor gene (OXTR) in obsessive-compulsive disorder: further evidence for a biomarker of disease and treatment response. Epigenetics, 2021, 1-11.
[http://dx.doi.org/10.1080/15592294.2021.1943864] [PMID: 34269138]
[308]
Gabery, S.; Ahmed, R.M.; Caga, J.; Kiernan, M.C.; Halliday, G.M.; Petersén, Å. Loss of the metabolism and sleep regulating neuronal populations expressing orexin and oxytocin in the hypothalamus in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol., 2021, 47(7), 979-989.
[http://dx.doi.org/10.1111/nan.12709] [PMID: 33755993]
[309]
Bunzow, J.R.; Sonders, M.S.; Arttamangkul, S.; Harrison, L.M.; Zhang, G.; Quigley, D.I.; Darland, T.; Suchland, K.L.; Pasumamula, S.; Kennedy, J.L.; Olson, S.B.; Magenis, R.E.; Amara, S.G.; Grandy, D.K. Amphetamine, 3,4-methylenedioxymethamphe-tamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol., 2001, 60(6), 1181-1188.
[http://dx.doi.org/10.1124/mol.60.6.1181] [PMID: 11723224]
[310]
Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; Boyle, N.; Pu, X.; Kouranova, E.; Lichtblau, H.; Ochoa, F.Y.; Branchek, T.A.; Gerald, C. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 8966-8971.
[http://dx.doi.org/10.1073/pnas.151105198] [PMID: 11459929]
[311]
Eyun, S-I.; Moriyama, H.; Hoffmann, F.G.; Moriyama, E.N. Molecular evolution and functional divergence of trace amine-associated receptors. PLoS One, 2016, 11(3), e0151023.
[http://dx.doi.org/10.1371/journal.pone.0151023] [PMID: 26963722]
[312]
Lindemann, L.; Ebeling, M.; Kratochwil, N.A.; Bunzow, J.R.; Grandy, D.K.; Hoener, M.C. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics, 2005, 85(3), 372-385.
[http://dx.doi.org/10.1016/j.ygeno.2004.11.010] [PMID: 15718104]
[313]
Revel, F.G.; Moreau, J.L.; Pouzet, B.; Mory, R.; Bradaia, A.; Buchy, D.; Metzler, V.; Chaboz, S.; Groebke, Z.K.; Galley, G.; Norcross, R.D.; Tuerck, D.; Bruns, A.; Morairty, S.R.; Kilduff, T.S.; Wallace, T.L.; Risterucci, C.; Wettstein, J.G.; Hoener, M.C. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol. Psychiatry, 2013, 18(5), 543-556.
[http://dx.doi.org/10.1038/mp.2012.57] [PMID: 22641180]
[314]
Pei, Y.; Asif-Malik, A.; Canales, J.J. Trace amines and the trace amine-associated receptor 1: Pharmacology, neurochemistry, and clinical implications. Front. Neurosci., 2016, 10, 148.
[http://dx.doi.org/10.3389/fnins.2016.00148] [PMID: 27092049]
[315]
Raab, S.; Wang, H.; Uhles, S.; Cole, N.; Alvarez-Sanchez, R.; Künnecke, B.; Ullmer, C.; Matile, H.; Bedoucha, M.; Norcross, R.D.; Ottaway-Parker, N.; Perez-Tilve, D.; Conde Knape, K.; Tschöp, M.H.; Hoener, M.C.; Sewing, S. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Mol. Metab., 2015, 5(1), 47-56.
[http://dx.doi.org/10.1016/j.molmet.2015.09.015] [PMID: 26844206]
[316]
Zucchi, R.; Chiellini, G.; Scanlan, T.S.; Grandy, D.K. Trace amine-associated receptors and their ligands. Br. J. Pharmacol., 2006, 149(8), 967-978.
[http://dx.doi.org/10.1038/sj.bjp.0706948] [PMID: 17088868]
[317]
Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D. Trace amines and their receptors. Pharmacol. Rev., 2018, 70(3), 549-620.
[http://dx.doi.org/10.1124/pr.117.015305] [PMID: 29941461]
[318]
Boulton, A.A. Phenylethylaminergic modulation of catecholaminergic neurotransmission. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1991, 15(2), 139-156.
[http://dx.doi.org/10.1016/0278-5846(91)90076-D] [PMID: 1651528]
[319]
Rutigliano, G.; Accorroni, A.; Zucchi, R. The case for TAAR1 as a modulator of central nervous system function. Front. Pharmacol., 2018, 8(JAN), 987.
[http://dx.doi.org/10.3389/fphar.2017.00987] [PMID: 29375386]
[320]
Jones, R.S.G. Noradrenaline-octopamine interactions on cortical neurones in the rat. Eur. J. Pharmacol., 1982, 77(2-3), 159-162.
[http://dx.doi.org/10.1016/0014-2999(82)90012-7] [PMID: 6800831]
[321]
Liberles, S.D. Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr. Opin. Neurobiol., 2015, 34, 1-7.
[http://dx.doi.org/10.1016/j.conb.2015.01.001] [PMID: 25616211]
[322]
Espinoza, S.; Ghisi, V.; Emanuele, M.; Leo, D.; Sukhanov, I.; Sotnikova, T.D.; Chieregatti, E.; Gainetdinov, R.R. Postsynaptic D2 dopamine receptor supersensitivity in the striatum of mice lacking TAAR1. Neuropharmacology, 2015, 93, 308-313.
[http://dx.doi.org/10.1016/j.neuropharm.2015.02.010] [PMID: 25721394]
[323]
Harmeier, A.; Obermueller, S.; Meyer, C.A.; Revel, F.G.; Buchy, D.; Chaboz, S.; Dernick, G.; Wettstein, J.G.; Iglesias, A.; Rolink, A.; Bettler, B.; Hoener, M.C. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur. Neuropsychopharmacol., 2015, 25(11), 2049-2061.
[http://dx.doi.org/10.1016/j.euroneuro.2015.08.011] [PMID: 26372541]
[324]
Bradaia, A.; Trube, G.; Stalder, H.; Norcross, R.D.; Ozmen, L.; Wettstein, J.G.; Pinard, A.; Buchy, D.; Gassmann, M.; Hoener, M.C.; Bettler, B. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20081-20086.
[http://dx.doi.org/10.1073/pnas.0906522106] [PMID: 19892733]
[325]
Revel, F.G.; Moreau, J-L.; Gainetdinov, R.R.; Bradaia, A.; Sotnikova, T.D.; Mory, R.; Durkin, S.; Zbinden, K.G.; Norcross, R.; Meyer, C.A.; Metzler, V.; Chaboz, S.; Ozmen, L.; Trube, G.; Pouzet, B.; Bettler, B.; Caron, M.G.; Wettstein, J.G.; Hoener, M.C. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc. Natl. Acad. Sci. USA, 2011, 108(20), 8485-8490.
[http://dx.doi.org/10.1073/pnas.1103029108] [PMID: 21525407]
[326]
Liberles, S.D.; Buck, L.B. A second class of chemosensory receptors in the olfactory epithelium. Nature, 2006, 442(7103), 645-650.
[http://dx.doi.org/10.1038/nature05066] [PMID: 16878137]
[327]
Wallrabenstein, I.; Kuklan, J.; Weber, L.; Zborala, S.; Werner, M.; Altmüller, J.; Becker, C.; Schmidt, A.; Hatt, H.; Hummel, T.; Gisselmann, G. Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLoS One, 2013, 8(2), e54950.
[http://dx.doi.org/10.1371/journal.pone.0054950] [PMID: 23393561]
[328]
Dinter, J.; Mühlhaus, J.; Wienchol, C.L.; Yi, C.X.; Nürnberg, D.; Morin, S.; Grüters, A.; Köhrle, J.; Schöneberg, T.; Tschöp, M.; Krude, H.; Kleinau, G.; Biebermann, H. Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5. PLoS One, 2015, 10(2), e0117774.
[http://dx.doi.org/10.1371/journal.pone.0117774] [PMID: 25706283]
[329]
Mühlhaus, J.; Dinter, J.; Nürnberg, D.; Rehders, M.; Depke, M.; Golchert, J.; Homuth, G.; Yi, C.X.; Morin, S.; Köhrle, J.; Brix, K.; Tschöp, M.; Kleinau, G.; Biebermann, H. Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile. Int. J. Mol. Sci., 2014, 15(11), 20638-20655.
[http://dx.doi.org/10.3390/ijms151120638] [PMID: 25391046]
[330]
Mazella, J.; Sarret, P.; Vincent, J-P. Neurotensin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guid to Pharmacol CITE, 2019, 4.
[331]
Vita, N.; Laurent, P.; Lefort, S.; Chalon, P.; Dumont, X.; Kaghad, M.; Gully, D.; Le Fur, G.; Ferrara, P.; Caput, D. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett., 1993, 317(1-2), 139-142.
[http://dx.doi.org/10.1016/0014-5793(93)81509-X] [PMID: 8381365]
[332]
Zhang, X.; Xu, Z.Q.; Bao, L.; Dagerlind, A.; Hökfelt, T. Complementary distribution of receptors for neurotensin and NPY in small neurons in rat lumbar DRGs and regulation of the receptors and peptides after peripheral axotomy. J. Neurosci., 1995, 15(4), 2733-2747.
[http://dx.doi.org/10.1523/JNEUROSCI.15-04-02733.1995] [PMID: 7536818]
[333]
Elde, R.; Schalling, M.; Ceccatelli, S.; Nakanishi, S.; Hökfelt, T. Localization of neuropeptide receptor mRNA in rat brain: initial observations using probes for neurotensin and substance P receptors. Neurosci. Lett., 1990, 120(1), 134-138.
[http://dx.doi.org/10.1016/0304-3940(90)90187-E] [PMID: 1705671]
[334]
Chalon, P.; Vita, N.; Kaghad, M.; Guillemot, M.; Bonnin, J.; Delpech, B.; Le Fur, G.; Ferrara, P.; Caput, D. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett., 1996, 386(2-3), 91-94.
[http://dx.doi.org/10.1016/0014-5793(96)00397-3] [PMID: 8647296]
[335]
Mazella, J.; Botto, J.M.; Guillemare, E.; Coppola, T.; Sarret, P.; Vincent, J.P. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J. Neurosci., 1996, 16(18), 5613-5620.
[http://dx.doi.org/10.1523/JNEUROSCI.16-18-05613.1996] [PMID: 8795617]
[336]
Vita, N.; Oury-Donat, F.; Chalon, P.; Guillemot, M.; Kaghad, M.; Bachy, A.; Thurneyssen, O.; Garcia, S.; Poinot-Chazel, C.; Casellas, P.; Keane, P.; Le Fur, G.; Maffrand, J.P.; Soubrie, P.; Caput, D.; Ferrara, P. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Eur. J. Pharmacol., 1998, 360(2-3), 265-272.
[http://dx.doi.org/10.1016/S0014-2999(98)00678-5] [PMID: 9851594]
[337]
Sarret, P.; Beaudet, A.; Vincent, J.P.; Mazella, J. Regional and cellular distribution of low affinity neurotensin receptor mRNA in adult and developing mouse brain. J. Comp. Neurol., 1998, 394(3), 344-356.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19980511)394:3<344:AID-CNE6>3.0.CO;2-1] [PMID: 9579398]
[338]
Walker, N.; Lepee-Lorgeoux, I.; Fournier, J.; Betancur, C.; Rostene, W.; Ferrara, P.; Caput, D. Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. Brain Res. Mol. Brain Res., 1998, 57(2), 193-200.
[http://dx.doi.org/10.1016/S0169-328X(98)00074-6] [PMID: 9675417]
[339]
Amar, S.; Kitabgi, P.; Vincent, J.P. Activation of phosphatidylinositol turnover by neurotensin receptors in the human colonic adenocarcinoma cell line HT29. FEBS Lett., 1986, 201(1), 31-36.
[http://dx.doi.org/10.1016/0014-5793(86)80565-8] [PMID: 3011505]
[340]
Amar, S.; Kitabgi, P.; Vincent, J-P. Stimulation of inositol phosphate production by neurotensin in neuroblastoma N1E115 cells: implication of GTP-binding proteins and relationship with the cyclic GMP response. J. Neurochem., 1987, 49(4), 999-1006.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb09986.x] [PMID: 3040912]
[341]
Gailly, P.; Najimi, M.; Hermans, E. Evidence for the dual coupling of the rat neurotensin receptor with pertussis toxin-sensitive and insensitive G-proteins. FEBS Lett., 2000, 483(2-3), 109-113.
[http://dx.doi.org/10.1016/S0014-5793(00)02095-0] [PMID: 11042263]
[342]
Amar, S.; Mazella, J.; Checler, F.; Kitabgi, P.; Vincent, J.P. Regulation of cyclic GMP levels by neurotensin in neuroblastoma clone N1E115. Biochem. Biophys. Res. Commun., 1985, 129(1), 117-125.
[http://dx.doi.org/10.1016/0006-291X(85)91411-1] [PMID: 2988544]
[343]
Bozou, J.C.; Amar, S.; Vincent, J.P.; Kitabgi, P. Neurotensinmediated inhibition of cyclic AMP formation in neuroblastoma N1E115 cells: involvement of the inhibitory GTP-binding component of adenylate cyclase. Mol. Pharmacol., 1986, 29(5), 489-496.
[PMID: 3010077]
[344]
Clineschmidt, B.V.; McGuffin, J.C. Neurotensin administered intracisternally inhibits responsiveness of mice to noxious stimuli. Eur. J. Pharmacol., 1977, 46(4), 395-396.
[http://dx.doi.org/10.1016/0014-2999(77)90236-9] [PMID: 201475]
[345]
Furuta, S.; Kisara, K.; Sakurada, S.; Sakurada, T.; Sasaki, Y.; Suzuki, K. Structure-antinociceptive activity studies with neurotensin. Br. J. Pharmacol., 1984, 83(1), 43-48.
[http://dx.doi.org/10.1111/j.1476-5381.1984.tb10117.x] [PMID: 6435708]
[346]
Kleczkowska, P.; Lipkowski, A.W. Neurotensin and neurotensin receptors: characteristic, structure-activity relationship and pain modulation--a review. Eur. J. Pharmacol., 2013, 716(1-3), 54-60.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.004] [PMID: 23500196]
[347]
Alexander, W; Bernstein, KE; Catt, KJ; Gasparo, M de, ; Singh, KD; Eguchi, S Angiotensin receptors (version 2019.4) in the IUPHAR/ BPS Guide to Pharmacology Database. IUPHAR/BPS Guid to Pharmacol CITE, 2019, 4.
[348]
Karnik, S.S.; Unal, H.; Kemp, J.R.; Tirupula, K.C.; Eguchi, S.; Vanderheyden, P.M.L.; Thomas, W.G. International union of basic and clinical pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. [corrected]. Pharmacol. Rev., 2015, 67(4), 754-819.
[http://dx.doi.org/10.1124/pr.114.010454] [PMID: 26315714]
[349]
de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev., 2000, 52(3), 415-472.
[PMID: 10977869]
[350]
Verma, K.; Pant, M.; Paliwal, S.; Dwivedi, J.; Sharma, S. An insight on multicentric signaling of angiotensin II in cardiovascular system: A recent update. Front. Pharmacol., 2021, 12, 734917.
[http://dx.doi.org/10.3389/fphar.2021.734917] [PMID: 34489714]
[351]
Adamcova, M.; Kawano, I.; Simko, F. The impact of microRNAs in renin-angiotensin-system-induced cardiac remodelling. Int. J. Mol. Sci., 2021, 22(9), 4762.
[http://dx.doi.org/10.3390/ijms22094762] [PMID: 33946230]
[352]
Matsubara, H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ. Res., 1998, 83(12), 1182-1191.
[http://dx.doi.org/10.1161/01.RES.83.12.1182] [PMID: 9851935]
[353]
Kawai, T.; Forrester, S.J.; O’Brien, S.; Baggett, A.; Rizzo, V.; Eguchi, S. AT1 receptor signaling pathways in the cardiovascular system. Pharmacol. Res., 2017, 125((Pt A)), 4-13.
[http://dx.doi.org/10.1016/j.phrs.2017.05.008] [PMID: 28527699]
[354]
Allen, A.M.; MacGregor, D.P.; McKinley, M.J.; Mendelsohn, F.A.O. Angiotensin II receptors in the human brain. Regul. Pept., 1999, 79(1), 1-7.
[http://dx.doi.org/10.1016/S0167-0115(98)00138-4] [PMID: 9930578]
[355]
Li, Y.; Li, X.H.; Yuan, H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc. Diagn. Ther., 2012, 2(1), 56-62.
[PMID: 24282697]
[356]
Higuchi, S.; Ohtsu, H.; Suzuki, H.; Shirai, H.; Frank, G.D.; Eguchi, S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. (Lond.), 2007, 112(8), 417-428.
[http://dx.doi.org/10.1042/CS20060342] [PMID: 17346243]
[357]
Catt, K.J.; Mendelsohn, F.A.; Millan, M.A.; Aguilera, G. The role of angiotensin II receptors in vascular regulation. J. Cardiovasc. Pharmacol., 1984, 6(Suppl. 4), S575-S586.
[http://dx.doi.org/10.1097/00005344-198406004-00004] [PMID: 6083400]
[358]
Hurt, R.C.; Garrett, J.C.; Keifer, O.P., Jr; Linares, A.; Couling, L.; Speth, R.C.; Ressler, K.J.; Marvar, P.J. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear. Genes Brain Behav., 2015, 14(7), 526-533.
[http://dx.doi.org/10.1111/gbb.12235] [PMID: 26257395]
[359]
Marvar, P.J.; Goodman, J.; Fuchs, S.; Choi, D.C.; Banerjee, S.; Ressler, K.J. Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. Biol. Psychiatry, 2014, 75(11), 864-872.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.024] [PMID: 24094510]
[360]
Nazzaro, P.; Manzari, M.; Merlo, M.; Triggiani, R.; Scarano, A.; Ciancio, L.; Pirrelli, A. Distinct and combined vascular effects of ACE blockade and HMG-CoA reductase inhibition in hypertensive subjects. Hypertension, 1999, 33(2), 719-725.
[http://dx.doi.org/10.1161/01.HYP.33.2.719] [PMID: 10024335]
[361]
Nakajima, M.; Hutchinson, H.G.; Fujinaga, M.; Hayashida, W.; Morishita, R.; Zhang, L.; Horiuchi, M.; Pratt, R.E.; Dzau, V.J. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc. Natl. Acad. Sci. USA, 1995, 92(23), 10663-10667.
[http://dx.doi.org/10.1073/pnas.92.23.10663] [PMID: 7479861]
[362]
Millatt, L.J.; Abdel-Rahman, E.M.; Siragy, H.M. Angiotensin II and nitric oxide: A question of balance. Regul. Pept., 1999, 81(1-3), 1-10.
[http://dx.doi.org/10.1016/S0167-0115(99)00027-0] [PMID: 10395403]
[363]
Griendling, K.K.; Lassègue, B.; Alexander, R.W. Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol., 1996, 36, 281-306.
[http://dx.doi.org/10.1146/annurev.pa.36.040196.001433] [PMID: 8725391]
[364]
Laragh, J.H.; Brenner, B.M. Characteristics of angiotensin II receptors and their role in cell and organ physiology.Hypertension : pathophysiology, diagnosis, and management; Raven Press, 1995, pp. 1695-1720.
[365]
Horiuchi, M.; Akishita, M.; Dzau, V.J. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension, 1999, 33(2), 613-621.
[http://dx.doi.org/10.1161/01.HYP.33.2.613] [PMID: 10024316]
[366]
de Gasparo, M.; Siragy, H.M. The AT2 receptor: fact, fancy and fantasy. Regul. Pept., 1999, 81(1-3), 11-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00023-3] [PMID: 10395404]
[367]
D’Amore, A.; Black, M.J.; Thomas, W.G. The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension, 2005, 46(6), 1347-1354.
[http://dx.doi.org/10.1161/01.HYP.0000193504.51489.cf] [PMID: 16286564]
[368]
Gold, S.; Haran, I.; Attias, J.; Shapira, I.; Shahar, A. Biochemical and cardiovascular measures in subjects with noise-induced hearing loss. J. Occup. Med., 1989, 31(11), 933-937.
[http://dx.doi.org/10.1097/00043764-198911000-00018] [PMID: 2809800]
[369]
Padia, S.H.; Kemp, B.A.; Howell, N.L.; Fournie-Zaluski, M-C.; Roques, B.P.; Carey, R.M. Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension, 2008, 51(2), 460-465.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103242] [PMID: 18158338]
[370]
Kemp, B.A.; Bell, J.F.; Rottkamp, D.M.; Howell, N.L.; Shao, W.; Navar, L.G.; Padia, S.H.; Carey, R.M. Intrarenal angiotensin III is the predominant agonist for proximal tubule angiotensin type 2 receptors. Hypertension, 2012, 60(2), 387-395.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.191403] [PMID: 22689743]
[371]
Barber, M.N.; Sampey, D.B.; Widdop, R.E. AT(2) receptor stimulation enhances antihypertensive effect of AT(1) receptor antagonist in hypertensive rats. Hypertension, 1999, 34(5), 1112-1116.
[http://dx.doi.org/10.1161/01.HYP.34.5.1112] [PMID: 10567191]
[372]
Buisson, B.; Laflamme, L.; Bottari, S.P.; de Gasparo, M.; Gallo-Payet, N.; Payet, M.D.A.A. G protein is involved in the angiotensin AT2 receptor inhibition of the T-type calcium current in non-differentiated NG108-15 cells. J. Biol. Chem., 1995, 270(4), 1670-1674.
[http://dx.doi.org/10.1074/jbc.270.4.1670] [PMID: 7829501]
[373]
Stroth, U.; Blume, A.; Mielke, K.; Unger, T. Angiotensin AT(2) receptor stimulates ERK1 and ERK2 in quiescent but inhibits ERK in NGF-stimulated PC12W cells. Brain Res. Mol. Brain Res., 2000, 78(1-2), 175-180.
[http://dx.doi.org/10.1016/S0169-328X(00)00093-0] [PMID: 10891597]
[374]
Tsutsumi, Y.; Matsubara, H.; Masaki, H.; Kurihara, H.; Murasawa, S.; Takai, S.; Miyazaki, M.; Nozawa, Y.; Ozono, R.; Nakagawa, K.; Miwa, T.; Kawada, N.; Mori, Y.; Shibasaki, Y.; Tanaka, Y.; Fujiyama, S.; Koyama, Y.; Fujiyama, A.; Takahashi, H.; Iwasaka, T. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J. Clin. Invest., 1999, 104(7), 925-935.
[http://dx.doi.org/10.1172/JCI7886] [PMID: 10510333]
[375]
Wu, L.; Iwai, M.; Nakagami, H.; Chen, R.; Suzuki, J.; Akishita, M.; de Gasparo, M.; Horiuchi, M. Effect of angiotensin II type 1 receptor blockade on cardiac remodeling in angiotensin II type 2 receptor null mice. Arterioscler. Thromb. Vasc. Biol., 2002, 22(1), 49-54.
[http://dx.doi.org/10.1161/hq0102.102277] [PMID: 11788460]
[376]
Wu, L.; Iwai, M.; Nakagami, H.; Li, Z.; Chen, R.; Suzuki, J.; Akishita, M.; de Gasparo, M.; Horiuchi, M. Roles of angiotensin II type 2 receptor stimulation associated with selective angiotensin II type 1 receptor blockade with valsartan in the improvement of inflammation-induced vascular injury. Circulation, 2001, 104(22), 2716-2721.
[http://dx.doi.org/10.1161/hc4601.099404] [PMID: 11723025]
[377]
Yamada, T.; Horiuchi, M.; Dzau, V.J. Angiotensin II type 2 receptor mediates programmed cell death. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 156-160.
[http://dx.doi.org/10.1073/pnas.93.1.156] [PMID: 8552595]
[378]
Zimpelmann, J.; Burns, K.D. Angiotensin II AT2 receptors inhibit growth responses in proximal tubule cells. Am. J. Physiol. Renal Physiol., 2001, 281(2), 50-52.
[http://dx.doi.org/10.1152/ajprenal.2001.281.2.F300]
[379]
Hansen, J.L.; Servant, G.; Baranski, T.J.; Fujita, T.; Iiri, T.; Sheikh, S.P. Functional reconstitution of the angiotensin II type 2 receptor and G(i) activation. Circ. Res., 2000, 87(9), 753-759.
[http://dx.doi.org/10.1161/01.RES.87.9.753] [PMID: 11055978]
[380]
Zhang, J.; Pratt, R.E. The AT2 receptor selectively associates with Gialpha2 and Gialpha3 in the rat fetus. J. Biol. Chem., 1996, 271(25), 15026-15033.
[http://dx.doi.org/10.1074/jbc.271.25.15026] [PMID: 8663053]
[381]
Cui, T.; Nakagami, H.; Iwai, M.; Takeda, Y.; Shiuchi, T.; Daviet, L.; Nahmias, C.; Horiuchi, M. Pivotal role of tyrosine phosphatase SHP-1 in AT2 receptor-mediated apoptosis in rat fetal vascular smooth muscle cell. Cardiovasc. Res., 2001, 49(4), 863-871.
[http://dx.doi.org/10.1016/S0008-6363(00)00299-6] [PMID: 11230986]
[382]
Dimitropoulou, C.; White, R.E.; Fuchs, L.; Zhang, H.; Catravas, J.D.; Carrier, G.O. Angiotensin II relaxes microvessels via the AT2 receptor and Ca2+-activated K+ (BKCa) channels. Hypertension, 2001, 37(21), 301-307.
[383]
Fischer, T.A.; Singh, K.; O’Hara, D.S.; Kaye, D.M.; Kelly, R.A. Role of AT1 and AT2 receptors in regulation of MAPKS and MKP-1 by ANG II in adult cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol., 1998, 275(3), 44-53.
[384]
Gohlke, P.; Pees, C.; Unger, T. AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension, 1998, 31(1 Pt 2), 349-355.
[http://dx.doi.org/10.1161/01.HYP.31.1.349] [PMID: 9453327]
[385]
Kang, J.; Richards, E.M.; Posner, P.; Sumners, C. Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment. Am. J. Physiol. Cell Physiol., 1995, 268(1), 37.
[386]
Rueckschloss, U.; Quinn, M.T.; Holtz, J.; Morawietz, H. Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2002, 22(11), 1845-1851.
[http://dx.doi.org/10.1161/01.ATV.0000035392.38687.65] [PMID: 12426214]
[387]
Silvestre, J.S.; Tamarat, R.; Senbonmatsu, T.; Icchiki, T.; Ebrahimian, T.; Iglarz, M.; Besnard, S.; Duriez, M.; Inagami, T.; Lévy, B.I. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb. Circ. Res., 2002, 90(10), 1072-1079.
[http://dx.doi.org/10.1161/01.RES.0000019892.41157.24] [PMID: 12039796]
[388]
Sohn, H.Y.; Raff, U.; Hoffmann, A.; Gloe, T.; Heermeier, K.; Galle, J.; Pohl, U. Differential role of angiotensin II receptor subtypes on endothelial superoxide formation. Br. J. Pharmacol., 2000, 131(4), 667-672.
[http://dx.doi.org/10.1038/sj.bjp.0703566] [PMID: 11030714]
[389]
Touyz, R.M.; Berry, C. Recent advances in angiotensin II signaling. Braz. J. Med. Biol. Res., 2002, 35(9), 1001-1015.
[http://dx.doi.org/10.1590/S0100-879X2002000900001] [PMID: 12219172]
[390]
Inagami, T.; Iwai, N.; Sasaki, K.; Guo, D.F.; Furuta, H.; Yamano, Y.; Bardhan, S.; Chaki, S.; Makito, N.; Badr, K. Angiotensin II receptors: cloning and regulation. Arzneimittelforschung, 1993, 43(2A), 226-228.
[PMID: 8498969]
[391]
Albiston, A.L.; Mustafa, T.; McDowall, S.G.; Mendelsohn, F.A.; Lee, J.; Chai, S.Y. AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol. Metab., 2003, 14(2), 72-77.
[http://dx.doi.org/10.1016/S1043-2760(02)00037-1] [PMID: 12591177]
[392]
Chaki, S.; Inagami, T. A newly found angiotensin II receptor subtype mediates cyclic GMP formation in differentiated Neuro-2A cells. Eur. J. Pharmacol., 1992, 225(4), 355-356.
[http://dx.doi.org/10.1016/0922-4106(92)90111-8] [PMID: 1323479]
[393]
Hallberg, M. Targeting the insulin-regulated aminopeptidase/AT4 receptor for cognitive disorders. Drug News Perspect., 2009, 22(3), 133-139.
[http://dx.doi.org/10.1358/dnp.2009.22.3.1325032] [PMID: 19440555]
[394]
Harding, J.W.; Cook, V.I.; Miller-Wing, A.V.; Hanesworth, J.M.; Sardinia, M.F.; Hall, K.L.; Stobb, J.W.; Swanson, G.N.; Coleman, J.K.; Wright, J.W. Identification of an AII(3-8) [AIV] binding site in guinea pig hippocampus. Brain Res., 1992, 583(1-2), 340-343.
[http://dx.doi.org/10.1016/S0006-8993(10)80047-2] [PMID: 1504842]
[395]
Benoist, C.C.; Wright, J.W.; Zhu, M.; Appleyard, S.M.; Wayman, G.A.; Harding, J.W. Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs. J. Pharmacol. Exp. Ther., 2011, 339(1), 35-44.
[http://dx.doi.org/10.1124/jpet.111.182220] [PMID: 21719467]
[396]
Wright, J.W.; Harding, J.W. Brain renin-angiotensin--a new look at an old system. Prog. Neurobiol., 2011, 95(1), 49-67.
[http://dx.doi.org/10.1016/j.pneurobio.2011.07.001] [PMID: 21777652]
[397]
Beyer, C.E.; Dwyer, J.M.; Platt, B.J.; Neal, S.; Luo, B.; Ling, H.P.; Lin, Q.; Mark, R.J.; Rosenzweig-Lipson, S.; Schechter, L.E. Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation. Psychopharmacology (Berl.), 2010, 209(4), 303-311.
[http://dx.doi.org/10.1007/s00213-010-1791-1] [PMID: 20224888]
[398]
Davis, C.J.; Kramár, E.A.; De, A.; Meighan, P.C.; Simasko, S.M.; Wright, J.W.; Harding, J.W. AT4 receptor activation increases intracellular calcium influx and induces a non-N-methyl-D-aspartate dependent form of long-term potentiation. Neuroscience, 2006, 137(4), 1369-1379.
[http://dx.doi.org/10.1016/j.neuroscience.2005.10.051] [PMID: 16343778]
[399]
Chai, S.Y.; Fernando, R.; Peck, G.; Ye, S-Y.; Mendelsohn, F.A.O.; Jenkins, T.A.; Albiston, A.L. The angiotensin IV/AT4 receptor. Cell. Mol. Life Sci., 2004, 61(21), 2728-2737.
[http://dx.doi.org/10.1007/s00018-004-4246-1] [PMID: 15549174]
[400]
Laviano, A.; Molfino, A.; Rianda, S.; Rossi Fanelli, F. The growth hormone secretagogue receptor (Ghs-R). Curr. Pharm. Des., 2012, 18(31), 4749-4754.
[http://dx.doi.org/10.2174/138161212803216906] [PMID: 22632856]
[401]
Soares, J-B.; Roncon-Albuquerque, R., Jr; Leite-Moreira, A. Ghrelin and ghrelin receptor inhibitors: Agents in the treatment of obesity. Expert Opin. Ther. Targets, 2008, 12(9), 1177-1189.
[http://dx.doi.org/10.1517/14728222.12.9.1177] [PMID: 18694382]
[402]
Pusztai, P.; Sarman, B.; Ruzicska, E.; Toke, J.; Racz, K.; Somogyi, A.; Tulassay, Z. Ghrelin: A new peptide regulating the neurohormonal system, energy homeostasis and glucose metabolism. Diabetes Metab. Res. Rev., 2008, 24(5), 343-352.
[http://dx.doi.org/10.1002/dmrr.830] [PMID: 18350524]
[403]
Guan, X.M.; Yu, H.; Palyha, O.C.; McKee, K.K.; Feighner, S.D.; Sirinathsinghji, D.J.S.; Smith, R.G.; Van der Ploeg, L.H.; Howard, A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res., 1997, 48(1), 23-29.
[http://dx.doi.org/10.1016/S0169-328X(97)00071-5] [PMID: 9379845]
[404]
Schellekens, H.; Dinan, T.G.; Cryan, J.F. Lean mean fat reducing “ghrelin” machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology, 2010, 58(1), 2-16.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.024] [PMID: 19573543]
[405]
Gnanapavan, S.; Kola, B.; Bustin, S.A.; Morris, D.G.; McGee, P.; Fairclough, P.; Bhattacharya, S.; Carpenter, R.; Grossman, A.B.; Korbonits, M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab., 2002, 87(6), 2988-2991.
[http://dx.doi.org/10.1210/jcem.87.6.8739] [PMID: 12050285]
[406]
Gómez, R.; Lago, F.; Gómez-Reino, J.J.; Gualillo, O. Novel factors as therapeutic targets to treat diabetes. Focus on leptin and ghrelin. Expert Opin. Ther. Targets, 2009, 13(5), 583-591.
[http://dx.doi.org/10.1517/14728220902914834] [PMID: 19397477]
[407]
Broglio, F.; Gianotti, L.; Destefanis, S.; Fassino, S.; Abbate, D.G.; Mondelli, V.; Lanfranco, F.; Gottero, C.; Gauna, C.; Hofland, L.; Van der Lely, A.J.; Ghigo, E. The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state. Clin. Endocrinol. (Oxf.), 2004, 60(5), 592-599.
[http://dx.doi.org/10.1111/j.1365-2265.2004.02011.x] [PMID: 15104562]
[408]
Müller, T.D.; Tschöp, M.H.; Jarick, I.; Ehrlich, S.; Scherag, S.; Herpertz-Dahlmann, B.; Zipfel, S.; Herzog, W.; de Zwaan, M.; Burghardt, R.; Fleischhaker, C.; Klampfl, K.; Wewetzer, C.; Herpertz, S.; Zeeck, A.; Tagay, S.; Burgmer, M.; Pfluger, P.T.; Scherag, A.; Hebebrand, J.; Hinney, A. Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. J. Psychiatr. Res., 2011, 45(5), 706-711.
[http://dx.doi.org/10.1016/j.jpsychires.2010.10.001] [PMID: 21035823]
[409]
Laviano, A.; Meguid, M.M.; Inui, A.; Muscaritoli, M.; Rossi-Fanelli, F. Therapy insight: Cancer anorexia-cachexia syndrome--when all you can eat is yourself. Nat. Clin. Pract. Oncol., 2005, 2(3), 158-165.
[http://dx.doi.org/10.1038/ncponc0112] [PMID: 16264909]
[410]
Ma, X.; Lin, L.; Qin, G.; Lu, X.; Fiorotto, M.; Dixit, V.D.; Sun, Y. Ablations of ghrelin and ghrelin receptor exhibit differential metabolic phenotypes and thermogenic capacity during aging. PLoS One, 2011, 6(1), e16391.
[http://dx.doi.org/10.1371/journal.pone.0016391] [PMID: 21298106]
[411]
Nagaya, N.; Kangawa, K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of chronic heart failure. Regul. Pept., 2003, 114(2-3), 71-77.
[http://dx.doi.org/10.1016/S0167-0115(03)00117-4] [PMID: 12832093]
[412]
Gjesing, A.P.; Larsen, L.H.; Torekov, S.S.; Hainerová, I.A.; Kapur, R.; Johansen, A.; Albrechtsen, A.; Boj, S.; Holst, B.; Harper, A.; Urhammer, S.A.; Borch-Johnsen, K.; Pisinger, C.; Echwald, S.M.; Eiberg, H.; Astrup, A.; Lebl, J.; Ferrer, J.; Schwartz, T.W.; Hansen, T.; Pedersen, O. Family and population-based studies of variation within the ghrelin receptor locus in relation to measures of obesity. PLoS One, 2010, 5(4), e10084.
[http://dx.doi.org/10.1371/journal.pone.0010084] [PMID: 20404923]
[413]
Kamegai, J.; Tamura, H.; Shimizu, T.; Ishii, S.; Sugihara, H.; Oikawa, S. Insulin-like growth factor-I down-regulates ghrelin receptor (growth hormone secretagogue receptor) expression in the rat pituitary. Regul. Pept., 2005, 127(1-3), 203-206.
[http://dx.doi.org/10.1016/j.regpep.2004.12.001] [PMID: 15680488]
[414]
Yada, T.; Dezaki, K.; Sone, H.; Koizumi, M.; Damdindorj, B.; Nakata, M.; Kakei, M. Ghrelin regulates insulin release and glycemia: physiological role and therapeutic potential. Curr. Diabetes Rev., 2008, 4(1), 18-23.
[http://dx.doi.org/10.2174/157339908783502352] [PMID: 18220691]
[415]
Dezaki, K.; Sone, H.; Yada, T. Ghrelin is a physiological regulator of insulin release in pancreatic islets and glucose homeostasis. Pharmacol. Ther., 2008, 118(2), 239-249.
[http://dx.doi.org/10.1016/j.pharmthera.2008.02.008] [PMID: 18433874]
[416]
Zlotos, D.P.; Jockers, R.; Cecon, E.; Rivara, S.; Witt-Enderby, P.A. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J. Med. Chem., 2014, 57(8), 3161-3185.
[http://dx.doi.org/10.1021/jm401343c] [PMID: 24228714]
[417]
Reppert, S.M.; Weaver, D.R.; Ebisawa, T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 1994, 13(5), 1177-1185.
[http://dx.doi.org/10.1016/0896-6273(94)90055-8] [PMID: 7946354]
[418]
Dubocovich, M.L.; Delagrange, P.; Krause, D.N.; Sugden, D.; Cardinali, D.P.; Olcese, J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev., 2010, 62(3), 343-380.
[http://dx.doi.org/10.1124/pr.110.002832] [PMID: 20605968]
[419]
Cardinali, D.P.; Delagrange, P.; Dubocovich, M.L.; Jockers, R.; Krause, D.N.; Markus, R.P. Melatonin receptors (version 2019.4) in the IUPHAR/BPS guide to pharmacology database; IUPHAR/BPS Guid to Pharmacol CITE, 2019. (4)
[420]
Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. A Review of Melatonin, Its Receptors and Drugs. Eurasian J. Med., 2016, 48(2), 135-141.
[http://dx.doi.org/10.5152/eurasianjmed.2015.0267] [PMID: 27551178]
[421]
Boutin, J.A.; Ferry, G. Is There Sufficient Evidence that the Melatonin Binding Site MT3 Is Quinone Reductase 2? J. Pharmacol. Exp. Ther., 2019, 368(1), 59-65.
[http://dx.doi.org/10.1124/jpet.118.253260] [PMID: 30389722]
[422]
Nosjean, O.; Ferro, M.; Cogé, F.; Beauverger, P.; Henlin, J.M.; Lefoulon, F.; Fauchere, J.L.; Delagrange, P.; Canet, E.; Boutin, J.A. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J. Biol. Chem., 2000, 275(40), 31311-31317.
[http://dx.doi.org/10.1074/jbc.M005141200] [PMID: 10913150]
[423]
Tosini, G.; Owino, S.; Guillaume, J.L.; Jockers, R. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. BioEssays, 2014, 36(8), 778-787.
[http://dx.doi.org/10.1002/bies.201400017] [PMID: 24903552]
[424]
Markus, R.P.; Cecon, E.; Pires-Lapa, M.A. Immune-pineal axis: nuclear factor κB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int. J. Mol. Sci., 2013, 14(6), 10979-10997.
[http://dx.doi.org/10.3390/ijms140610979] [PMID: 23708099]
[425]
Jockers, R.; Maurice, P.; Boutin, J.A.; Delagrange, P. Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br. J. Pharmacol., 2008, 154(6), 1182-1195.
[http://dx.doi.org/10.1038/bjp.2008.184] [PMID: 18493248]
[426]
Doghramji, K. Melatonin and its receptors: A new class of sleep-promoting agents. J. Clin. Sleep Med., 2007, 3(5)(Suppl.), S17-S23.
[http://dx.doi.org/10.5664/jcsm.26932] [PMID: 17824497]
[427]
Wongprayoon, P.; Govitrapong, P. Melatonin Receptor as a Drug Target for Neuroprotection. Curr. Mol. Pharmacol., 2021, 14(2), 150-164.
[http://dx.doi.org/10.2174/1874467213666200421160835] [PMID: 32316905]
[428]
Dubocovich, M.L. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med., 2007, 8(Suppl. 3), 34-42.
[http://dx.doi.org/10.1016/j.sleep.2007.10.007] [PMID: 18032103]
[429]
Lépinay, J.; Taragnat, C.; Dubois, J.P.; Chesneau, D.; Jockers, R. Delagrange, P Negative regulation of melatonin secretion by melatonin receptors in ovine pinealocytes. PLoS One, 2021, 16, e0255249.
[430]
Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173(18), 2702-2725.
[http://dx.doi.org/10.1111/bph.13536] [PMID: 27314810]
[431]
Reppert, S.M.; Godson, C.; Mahle, C.D.; Weaver, D.R.; Slaugenhaupt, S.A.; Gusella, J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8734-8738.
[http://dx.doi.org/10.1073/pnas.92.19.8734] [PMID: 7568007]
[432]
Besharse, JC; Dunis, DA Methoxyindoles and photoreceptor metabolism: Activation of rod shedding. Science (80), 1983, 219((4590)), 1341-1343.
[433]
Sharan, K.; Lewis, K.; Furukawa, T.; Yadav, V.K. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J. Pineal Res., 2017, 63(2), e12423.
[http://dx.doi.org/10.1111/jpi.12423] [PMID: 28512916]
[434]
Rui, T.; Wang, H.; Li, Q.; Cheng, Y.; Gao, Y.; Fang, X.; Ma, X.; Chen, G.; Gao, C.; Gu, Z.; Song, S.; Zhang, J.; Wang, C.; Wang, Z.; Wang, T.; Zhang, M.; Min, J.; Chen, X.; Tao, L.; Wang, F.; Luo, C. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J. Pineal Res., 2021, 70(2), e12704.
[http://dx.doi.org/10.1111/jpi.12704] [PMID: 33206394]
[435]
Noseda, A.C.D.; Rodrigues, L.S.; Targa, A.D.S.; Ilkiw, J.L.; Fagotti, J.; Dos Santos, P.D.; Cecon, E.; Markus, R.P.; Solimena, M.; Jockers, R.; Lima, M.M.S. MT2 melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson’s disease. Eur. J. Pharmacol., 2021, 891, 173722.
[http://dx.doi.org/10.1016/j.ejphar.2020.173722] [PMID: 33159932]
[436]
Ayoub, M.A.; Couturier, C.; Lucas-Meunier, E.; Angers, S.; Fossier, P.; Bouvier, M.; Jockers, R. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem., 2002, 277(24), 21522-21528.
[http://dx.doi.org/10.1074/jbc.M200729200] [PMID: 11940583]
[437]
Ayoub, M.A.; Levoye, A.; Delagrange, P.; Jockers, R. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol., 2004, 66(2), 312-321.
[http://dx.doi.org/10.1124/mol.104.000398] [PMID: 15266022]
[438]
Baba, K.; Benleulmi-Chaachoua, A.; Journé, A.S.; Kamal, M.; Guillaume, J.L.; Dussaud, S.; Gbahou, F.; Yettou, K.; Liu, C.; Contreras-Alcantara, S.; Jockers, R.; Tosini, G. Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci. Signal., 2013, 6(296), ra89.
[http://dx.doi.org/10.1126/scisignal.2004302] [PMID: 24106342]
[439]
Takeda, S.; Kadowaki, S.; Haga, T.; Takaesu, H.; Mitaku, S. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett., 2002, 520(1-3), 97-101.
[http://dx.doi.org/10.1016/S0014-5793(02)02775-8] [PMID: 12044878]
[440]
Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; Southan, C.; Davies, J.A. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br. J. Pharmacol., 2017, 174(Suppl. 1), S17-S129.
[http://dx.doi.org/10.1111/bph.13878] [PMID: 29055040]
[441]
Davenport, A.P.; Alexander, S.P.H.; Sharman, J.L.; Pawson, A.J.; Benson, H.E.; Monaghan, A.E.; Liew, W.C.; Mpamhanga, C.P.; Bonner, T.I.; Neubig, R.R.; Pin, J.P.; Spedding, M.; Harmar, A.J. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev., 2013, 65(3), 967-986.
[http://dx.doi.org/10.1124/pr.112.007179] [PMID: 23686350]
[442]
Gloriam, D.E.I.; Schiöth, H.B.; Fredriksson, R. Nine new human Rhodopsin family G-protein coupled receptors: identification, sequence characterisation and evolutionary relationship. Biochim. Biophys. Acta, 2005, 1722(3), 235-246.
[http://dx.doi.org/10.1016/j.bbagen.2004.12.001] [PMID: 15777626]
[443]
Vedel, L.; Nøhr, A.C.; Gloriam, D.E.; Bräuner-Osborne, H. Pharmacology and function of the orphan GPR139 G protein-coupled receptor. Basic Clin. Pharmacol. Toxicol., 2020, 126(S6)(Suppl. 6), 35-46.
[http://dx.doi.org/10.1111/bcpt.13263] [PMID: 31132229]
[444]
Kononoff, J.; Kallupi, M.; Kimbrough, A.; Conlisk, D.; de Guglielmo, G.; George, O. Systemic and intra-habenular activation of the orphan G protein-coupled receptor GPR139 decreases compulsive-like alcohol drinking and hyperalgesia in alcohol-dependent rats. eNeuro, 2018, 5(3), 153-171.
[http://dx.doi.org/10.1523/ENEURO.0153-18.2018] [PMID: 29971251]
[445]
Hitchcock, S; Lam, B; Monenschein, H; Reichard, H. 4-oxo-3,4- dihydro-1,2,3-benzotriazine modulators of GPR139, 2015.
[446]
Ebejer, J.L.; Duffy, D.L.; van der Werf, J.; Wright, M.J.; Montgomery, G.; Gillespie, N.A.; Hickie, I.B.; Martin, N.G.; Medland, S.E. Genome-wide association study of inattention and hyperactivity-impulsivity measured as quantitative traits. Twin Res. Hum. Genet., 2013, 16(2), 560-574.
[http://dx.doi.org/10.1017/thg.2013.12] [PMID: 23527680]
[447]
Castellani, C.A.; Awamleh, Z.; Melka, M.G.; O’Reilly, R.L.; Singh, S.M. Copy number variation distribution in six monozygotic twin pairs discordant for schizophrenia. Twin Res. Hum. Genet., 2014, 17(2), 108-120.
[http://dx.doi.org/10.1017/thg.2014.6] [PMID: 24556202]
[448]
Al Hafid, N.; Christodoulou, J. Phenylketonuria: A review of current and future treatments. Transl. Pediatr., 2015, 4(4), 304-317.
[PMID: 26835392]
[449]
Salim, K.; Fenton, T.; Bacha, J.; Urien-Rodriguez, H.; Bonnert, T.; Skynner, H.A.; Watts, E.; Kerby, J.; Heald, A.; Beer, M.; McAllister, G.; Guest, P.C. Oligomerization of G-protein-coupled receptors shown by selective co-immunoprecipitation. J. Biol. Chem., 2002, 277(18), 15482-15485.
[http://dx.doi.org/10.1074/jbc.M201539200] [PMID: 11854302]
[450]
Derouiche, L.; Massotte, D. G protein-coupled receptor heteromers are key players in substance use disorder. Neurosci. Biobehav. Rev., 2019, 106, 73-90.
[http://dx.doi.org/10.1016/j.neubiorev.2018.09.026] [PMID: 30278192]
[451]
Pellissier, L.P.; Barthet, G.; Gaven, F.; Cassier, E.; Trinquet, E.; Pin, J.P.; Marin, P.; Dumuis, A.; Bockaert, J.; Banères, J.L.; Claeysen, S. G protein activation by serotonin type 4 receptor dimers: evidence that turning on two protomers is more efficient. J. Biol. Chem., 2011, 286(12), 9985-9997.
[http://dx.doi.org/10.1074/jbc.M110.201939] [PMID: 21247891]
[452]
Han, Y.; Moreira, I.S.; Urizar, E.; Weinstein, H.; Javitch, J.A. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat. Chem. Biol., 2009, 5(9), 688-695.
[http://dx.doi.org/10.1038/nchembio.199] [PMID: 19648932]
[453]
Maggio, R.; Rocchi, C.; Scarselli, M. Experimental strategies for studying G protein-coupled receptor homo- and heteromerization with radioligand binding and signal transduction methods. Methods Enzymol., 2013, 521, 295-310.
[http://dx.doi.org/10.1016/B978-0-12-391862-8.00016-8] [PMID: 23351746]
[454]
Borroto-Escuela, D.O.; Hagman, B.; Woolfenden, M.; Pinton, L.; Jiménez-Beristain, A.; Oflijan, J. In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. Neuromethods, 2016, 110, 109-124.
[http://dx.doi.org/10.1007/978-1-4939-3064-7_9]
[455]
Vischer, H.F.; Castro, M.; Pin, J.P. G protein-coupled receptor multimers: A question still open despite the use of novel approaches. Mol. Pharmacol., 2015, 88(3), 561-571.
[http://dx.doi.org/10.1124/mol.115.099440] [PMID: 26138074]
[456]
Franco, R. G-protein-coupled receptor heteromers or how neurons can display differently flavoured patterns in response to the same neurotransmitter. Br. J. Pharmacol., 2009, 158(1), 23-31.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00181.x] [PMID: 19422387]
[457]
Franco, R.; Martínez-Pinilla, E.; Lanciego, J.L.; Navarro, G. Basic pharmacological and structural evidence for class A G-protein-coupled receptor heteromerization. Front. Pharmacol., 2016, 7(MAR), 76.
[http://dx.doi.org/10.3389/fphar.2016.00076] [PMID: 27065866]
[458]
Ciruela, F.; Casadó, V.; Rodrigues, R.J.; Luján, R.; Burgueño, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S.R.; Mallol, J.; Cortés, A.; Canela, E.I.; López-Giménez, J.F.; Milligan, G.; Lluis, C.; Cunha, R.A.; Ferré, S.; Franco, R. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci., 2006, 26(7), 2080-2087.
[http://dx.doi.org/10.1523/JNEUROSCI.3574-05.2006] [PMID: 16481441]
[459]
Ferré, S.; Ciruela, F.; Quiroz, C.; Luján, R.; Popoli, P.; Cunha, R.A.; Agnati, L.F.; Fuxe, K.; Woods, A.S.; Lluis, C.; Franco, R. Adenosine receptor heteromers and their integrative role in striatal function. Sci. World J., 2007, 7(Suppl. 2), 74-85.
[http://dx.doi.org/10.1100/tsw.2007.211] [PMID: 17982579]
[460]
Cristóvão-Ferreira, S.; Navarro, G.; Brugarolas, M.; Pérez-Capote, K.; Vaz, S.H.; Fattorini, G.; Conti, F.; Lluis, C.; Ribeiro, J.A.; McCormick, P.J.; Casadó, V.; Franco, R.; Sebastião, A.M. A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA transport into astrocytes. Purinergic Signal., 2013, 9(3), 433-449.
[http://dx.doi.org/10.1007/s11302-013-9364-5] [PMID: 23657626]
[461]
George, S.R.; Kern, A.; Smith, R.G.; Franco, R. Dopamine receptor heteromeric complexes and their emerging functions. Prog. Brain Res., 2014, 211, 183-200.
[http://dx.doi.org/10.1016/B978-0-444-63425-2.00008-8] [PMID: 24968781]
[462]
Hasbi, A.; Fan, T.; Alijaniaram, M.; Nguyen, T.; Perreault, M.L.; O’Dowd, B.F.; George, S.R. Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc. Natl. Acad. Sci. USA, 2009, 106(50), 21377-21382.
[http://dx.doi.org/10.1073/pnas.0903676106] [PMID: 19948956]
[463]
So, C.H.; Verma, V.; O’Dowd, B.F.; George, S.R. Desensitization of the dopamine D1 and D2 receptor hetero-oligomer mediated calcium signal by agonist occupancy of either receptor. Mol. Pharmacol., 2007, 72(2), 450-462.
[http://dx.doi.org/10.1124/mol.107.034884] [PMID: 17519357]
[464]
Rashid, A.J.; So, C.H.; Kong, M.M.C.; Furtak, T.; El-Ghundi, M.; Cheng, R.; O’Dowd, B.F.; George, S.R. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. USA, 2007, 104(2), 654-659.
[http://dx.doi.org/10.1073/pnas.0604049104] [PMID: 17194762]
[465]
Portoghese, P.S.; Lunzer, M.M. Identity of the putative δ1-opioid receptor as a δ-κ heteromer in the mouse spinal cord. Eur. J. Pharmacol., 2003, 467(1-3), 233-234.
[http://dx.doi.org/10.1016/S0014-2999(03)01599-1] [PMID: 12706480]
[466]
Gomes, I.; Jordan, B.A.; Gupta, A.; Trapaidze, N.; Nagy, V.; Devi, L.A. Heterodimerization of μ and δ opioid receptors: A role in opiate synergy. J. Neurosci., 2000, 20(22), RC110-RC110.
[http://dx.doi.org/10.1523/JNEUROSCI.20-22-j0007.2000] [PMID: 11069979]
[467]
Gupta, A.; Mulder, J.; Gomes, I.; Rozenfeld, R.; Bushlin, I.; Ong, E.; Lim, M.; Maillet, E.; Junek, M.; Cahill, C.M.; Harkany, T.; Devi, L.A. Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci. Signal., 2010, 3(131), ra54.
[http://dx.doi.org/10.1126/scisignal.2000807] [PMID: 20647592]
[468]
Yekkirala, A.S.; Kalyuzhny, A.E.; Portoghese, P.S. Standard opioid agonists activate heteromeric opioid receptors: evidence for morphine and [d-Ala(2)-MePhe(4)-Glyol(5)]enkephalin as selective μ-δ agonists. ACS Chem. Neurosci., 2010, 1(2), 146-154.
[http://dx.doi.org/10.1021/cn9000236] [PMID: 22816017]
[469]
van Rijn, R.M.; Whistler, J.L.; Waldhoer, M. Opioid-receptor-heteromer-specific trafficking and pharmacology. Curr. Opin. Pharmacol., 2010, 10(1), 73-79.
[http://dx.doi.org/10.1016/j.coph.2009.09.007] [PMID: 19846340]
[470]
Waldhoer, M.; Fong, J.; Jones, R.M.; Lunzer, M.M.; Sharma, S.K.; Kostenis, E.; Portoghese, P.S.; Whistler, J.L. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc. Natl. Acad. Sci. USA, 2005, 102(25), 9050-9055.
[http://dx.doi.org/10.1073/pnas.0501112102] [PMID: 15932946]
[471]
Daniels, D.J.; Kulkarni, A.; Xie, Z.; Bhushan, R.G.; Portoghese, P.S. A bivalent ligand (KDAN-18) containing δ-antagonist and κ-agonist pharmacophores bridges δ2 and κ1 opioid receptor phenotypes. J. Med. Chem., 2005, 48(6), 1713-1716.
[http://dx.doi.org/10.1021/jm034234f] [PMID: 15771416]
[472]
Bhushan, R.G.; Sharma, S.K.; Xie, Z.; Daniels, D.J.; Portoghese, P.S. A bivalent ligand (KDN-21) reveals spinal δ and κ opioid receptors are organized as heterodimers that give rise to δ(1) and κ(2) phenotypes. Selective targeting of δ-κ heterodimers. J. Med. Chem., 2004, 47(12), 2969-2972.
[http://dx.doi.org/10.1021/jm0342358] [PMID: 15163177]
[473]
Fuxe, K.; Harfstrand, A.; Agnati, L.F.; Kalia, M.; Fredholm, B.; Svensson, T. Central catecholamine-neuropeptide Y interactions at the pre- and postsynaptic level in cardiovascular centers. J Cardiovasc Pharmacol, 1987, 10(Suppl. 12).
[474]
Fuxe, K.; Agnati, L.F. Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med. Res. Rev., 1985, 5(4), 441-482.
[http://dx.doi.org/10.1002/med.2610050404] [PMID: 2999530]
[475]
Fuxe, K.; Agnati, L.F.; Benfenati, F.; Celani, M.; Zini, I.; Zoli, M.; Mutt, V. Evidence for the existence of receptor--receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. Neural Transm. Suppl., 1983, 18, 165-179.
[PMID: 6192208]
[476]
Borroto-Escuela, D.O.; Van Craenenbroeck, K.; Romero-Fernandez, W.; Guidolin, D.; Woods, A.S.; Rivera, A.; Haegeman, G.; Agnati, L.F.; Tarakanov, A.O.; Fuxe, K. Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem. Biophys. Res. Commun., 2011, 404(4), 928-934.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.083] [PMID: 21184734]
[477]
Fiorentini, C.; Busi, C.; Spano, P.; Missale, C. Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr. Opin. Pharmacol., 2010, 10(1), 87-92.
[http://dx.doi.org/10.1016/j.coph.2009.09.008] [PMID: 19837631]
[478]
Błasiak, E.; Łukasiewicz, S.; Szafran-Pilch, K.; Dziedzicka-Wasylewska, M. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor. Pharmacol. Rep., 2017, 69(2), 235-241.
[http://dx.doi.org/10.1016/j.pharep.2016.10.016] [PMID: 28119185]
[479]
Martel, J.C. Gatti, McArthur, S. Dopamine receptor subtypes, physiology and pharmacology: New ligands and concepts in schizophrenia. Front. Pharmacol., 2020, 11, 1003.
[http://dx.doi.org/10.3389/fphar.2020.01003] [PMID: 32765257]
[480]
Van Craenenbroeck, K.; Borroto-Escuela, D.O.; Skieterska, K.; Duchou, J.; Romero-Fernandez, W.; Fuxe, K. Role of dimerization in dopamine D(4) receptor biogenesis. Curr. Protein Pept. Sci., 2014, 15(7), 659-665.
[http://dx.doi.org/10.2174/1389203715666140901110256] [PMID: 25175456]
[481]
Ng, G.Y.K.; O’Dowd, B.F.; Lee, S.P.; Chung, H.T.; Brann, M.R.; Seeman, P.; George, S.R. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem. Biophys. Res. Commun., 1996, 227(1), 200-204.
[http://dx.doi.org/10.1006/bbrc.1996.1489] [PMID: 8858125]
[482]
Karpa, K.D.; Lin, R.; Kabbani, N.; Levenson, R. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol., 2000, 58(4), 677-683.
[http://dx.doi.org/10.1124/mol.58.4.677] [PMID: 10999936]
[483]
O’Dowd, B.F.; Nguyen, T.; Ji, X.; George, S.R. D5 dopamine receptor carboxyl tail involved in D5-D2 heteromer formation. Biochem. Biophys. Res. Commun., 2013, 431(3), 586-589.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.139] [PMID: 23318175]
[484]
Scarselli, M.; Novi, F.; Schallmach, E.; Lin, R.; Baragli, A.; Colzi, A.; Griffon, N.; Corsini, G.U.; Sokoloff, P.; Levenson, R.; Vogel, Z.; Maggio, R. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J. Biol. Chem., 2001, 276(32), 30308-30314.
[http://dx.doi.org/10.1074/jbc.M102297200] [PMID: 11373283]
[485]
Guo, W.; Shi, L.; Filizola, M.; Weinstein, H.; Javitch, J.A. Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17495-17500.
[http://dx.doi.org/10.1073/pnas.0508950102] [PMID: 16301531]
[486]
Perreault, M.L.; Hasbi, A.; Alijaniaram, M.; Fan, T.; Varghese, G.; Fletcher, P.J.; Seeman, P.; O’Dowd, B.F.; George, S.R. The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia. J. Biol. Chem., 2010, 285(47), 36625-36634.
[http://dx.doi.org/10.1074/jbc.M110.159954] [PMID: 20864528]
[487]
Lee, S.P.; So, C.H.; Rashid, A.J.; Varghese, G.; Cheng, R.; Lança, A.J.; O’Dowd, B.F.; George, S.R. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem., 2004, 279(34), 35671-35678.
[http://dx.doi.org/10.1074/jbc.M401923200] [PMID: 15159403]
[488]
Urizar, E.; Yano, H.; Kolster, R.; Galés, C.; Lambert, N.; Javitch, J.A. CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat. Chem. Biol., 2011, 7(9), 624-630.
[http://dx.doi.org/10.1038/nchembio.623] [PMID: 21785426]
[489]
Perreault, M.L.; Hasbi, A.; Shen, M.Y.F.; Fan, T.; Navarro, G.; Fletcher, P.J.; Franco, R.; Lanciego, J.L.; George, S.R. Disruption of a dopamine receptor complex amplifies the actions of cocaine. Eur. Neuropsychopharmacol., 2016, 26(9), 1366-1377.
[http://dx.doi.org/10.1016/j.euroneuro.2016.07.008] [PMID: 27480020]
[490]
Rico, A.J.; Dopeso-Reyes, I.G.; Martínez-Pinilla, E.; Sucunza, D.; Pignataro, D.; Roda, E.; Marín-Ramos, D.; Labandeira-García, J.L.; George, S.R.; Franco, R.; Lanciego, J.L. Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Struct. Funct., 2017, 222(4), 1767-1784.
[http://dx.doi.org/10.1007/s00429-016-1306-x] [PMID: 27612857]
[491]
Hasbi, A.; Madras, B.K.; Bergman, J.; Kohut, S.; Lin, Z.; Withey, S.L.; George, S.R. Δ-tetrahydrocannabinol increases dopamine D1-D2 receptor heteromer and elicits phenotypic reprogramming in adult primate striatal neurons. iScience, 2020, 23(1), 100794.
[http://dx.doi.org/10.1016/j.isci.2019.100794] [PMID: 31972514]
[492]
Hasbi, A.; Sivasubramanian, M.; Milenkovic, M.; Komarek, K.; Madras, B.K.; George, S.R. Dopamine D1-D2 receptor heteromer expression in key brain regions of rat and higher species: Upregulation in rat striatum after cocaine administration. Neurobiol. Dis., 2020, 143, 105017.
[http://dx.doi.org/10.1016/j.nbd.2020.105017] [PMID: 32679312]
[493]
So, C.H.; Verma, V.; Alijaniaram, M.; Cheng, R.; Rashid, A.J.; O’Dowd, B.F.; George, S.R. Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol. Pharmacol., 2009, 75(4), 843-854.
[http://dx.doi.org/10.1124/mol.108.051805] [PMID: 19171671]
[494]
Ng, J.; Rashid, A.J.; So, C.H.; O’Dowd, B.F.; George, S.R. Activation of calcium/calmodulin-dependent protein kinase IIalpha in the striatum by the heteromeric D1-D2 dopamine receptor complex. Neuroscience, 2010, 165(2), 535-541.
[http://dx.doi.org/10.1016/j.neuroscience.2009.10.017] [PMID: 19837142]
[495]
Nestler, E.J.; Carlezon, W.A., Jr The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry, 2006, 59(12), 1151-1159.
[http://dx.doi.org/10.1016/j.biopsych.2005.09.018] [PMID: 16566899]
[496]
Tye, K.M.; Mirzabekov, J.J.; Warden, M.R.; Ferenczi, E.A.; Tsai, H.C.; Finkelstein, J.; Kim, S.Y.; Adhikari, A.; Thompson, K.R.; Andalman, A.S.; Gunaydin, L.A.; Witten, I.B.; Deisseroth, K. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 2013, 493(7433), 537-541.
[http://dx.doi.org/10.1038/nature11740] [PMID: 23235822]
[497]
Seeman, P.; Van Tol, H.H.M. Dopamine receptor pharmacology. Trends Pharmacol. Sci., 1994, 15(7), 264-270.
[http://dx.doi.org/10.1016/0165-6147(94)90323-9] [PMID: 7940991]
[498]
O’Dowd, B.F.; Ji, X.; Nguyen, T.; George, S.R. Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation. Biochem. Biophys. Res. Commun., 2012, 417(1), 23-28.
[http://dx.doi.org/10.1016/j.bbrc.2011.11.027] [PMID: 22100647]
[499]
Glatt, S.J.; Faraone, S.V.; Lasky-Su, J.A.; Kanazawa, T.; Hwu, H.G.; Tsuang, M.T. Family-based association testing strongly implicates DRD2 as a risk gene for schizophrenia in Han Chinese from Taiwan. Mol. Psychiatry, 2009, 14(9), 885-893.
[http://dx.doi.org/10.1038/mp.2008.30] [PMID: 18332877]
[500]
Lane, H.Y.; Lee, C.C.; Chang, Y.C.; Lu, C.T.; Huang, C.H.; Chang, W.H. Effects of dopamine D2 receptor Ser311Cys polymorphism and clinical factors on risperidone efficacy for positive and negative symptoms and social function. Int. J. Neuropsychopharmacol., 2004, 7(4), 461-470.
[http://dx.doi.org/10.1017/S1461145704004389] [PMID: 15140279]
[501]
Hasbi, A.; Perreault, M.L.; Shen, M.Y.F.; Fan, T.; Nguyen, T.; Alijaniaram, M.; Banasikowski, T.J.; Grace, A.A.; O’Dowd, B.F.; Fletcher, P.J.; George, S.R. Activation of dopamine D1-D2 receptor complex attenuates cocaine reward and reinstatement of cocaine-seeking through inhibition of DARPP-32, ERK, and ΔFosB. Front. Pharmacol., 2018, 8, 924.
[http://dx.doi.org/10.3389/fphar.2017.00924] [PMID: 29354053]
[502]
Pei, L.; Li, S.; Wang, M.; Diwan, M.; Anisman, H.; Fletcher, P.J.; Nobrega, J.N.; Liu, F. Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nat. Med., 2010, 16(12), 1393-1395.
[http://dx.doi.org/10.1038/nm.2263] [PMID: 21113156]
[503]
Hasbi, A.; Perreault, M.L.; Shen, M.Y.F.; Zhang, L.; To, R.; Fan, T.; Nguyen, T.; Ji, X.; O’Dowd, B.F.; George, S.R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo : effective selective antagonism. FASEB J., 2014, 28(11), 4806-4820.
[http://dx.doi.org/10.1096/fj.14-254037] [PMID: 25063849]
[504]
Guitart, X.; Navarro, G.; Moreno, E.; Yano, H.; Cai, N.S.; Sánchez-Soto, M.; Kumar-Barodia, S.; Naidu, Y.T.; Mallol, J.; Cortés, A.; Lluís, C.; Canela, E.I.; Casadó, V.; McCormick, P.J.; Ferré, S. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer. Mol. Pharmacol., 2014, 86(4), 417-429.
[http://dx.doi.org/10.1124/mol.114.093096] [PMID: 25097189]
[505]
Guitart, X.; Moreno, E.; Rea, W.; Sánchez-Soto, M.; Cai, N.S.; Quiroz, C.; Kumar, V.; Bourque, L.; Cortés, A.; Canela, E.I.; Bishop, C.; Newman, A.H.; Casadó, V.; Ferré, S.; Biased, G. Protein-independent signaling of dopamine D1-D3 receptor heteromers in the nucleus accumbens. Mol. Neurobiol., 2019, 56(10), 6756-6769.
[http://dx.doi.org/10.1007/s12035-019-1564-8] [PMID: 30919214]
[506]
Fiorentini, C.; Busi, C.; Gorruso, E.; Gotti, C.; Spano, P.; Missale, C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol. Pharmacol., 2008, 74(1), 59-69.
[http://dx.doi.org/10.1124/mol.107.043885] [PMID: 18424554]
[507]
Marcellino, D.; Ferré, S.; Casadó, V.; Cortés, A.; Le Foll, B.; Mazzola, C.; Drago, F.; Saur, O.; Stark, H.; Soriano, A.; Barnes, C.; Goldberg, S.R.; Lluis, C.; Fuxe, K.; Franco, R. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J. Biol. Chem., 2008, 283(38), 26016-26025.
[http://dx.doi.org/10.1074/jbc.M710349200] [PMID: 18644790]
[508]
Farré, D.; Muñoz, A.; Moreno, E.; Reyes-Resina, I.; Canet-Pons, J.; Dopeso-Reyes, I.G.; Rico, A.J.; Lluís, C.; Mallol, J.; Navarro, G.; Canela, E.I.; Cortés, A.; Labandeira-García, J.L.; Casadó, V.; Lanciego, J.L.; Franco, R. Stronger dopamine D1 receptor-mediated neurotransmission in dyskinesia. Mol. Neurobiol., 2015, 52(3), 1408-1420.
[http://dx.doi.org/10.1007/s12035-014-8936-x] [PMID: 25344317]
[509]
Lanza, K.; Meadows, S.M.; Chambers, N.E.; Nuss, E.; Deak, M.M.; Ferré, S.; Bishop, C. Behavioral and cellular dopamine D1 and D3 receptor-mediated synergy: Implications for L-DOPA-induced dyskinesia. Neuropharmacology, 2018, 138, 304-314.
[http://dx.doi.org/10.1016/j.neuropharm.2018.06.024] [PMID: 29936243]
[510]
Solís, O.; Garcia-Montes, J.R.; González-Granillo, A.; Xu, M.; Moratalla, R. Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb. Cortex, 2017, 27(1), 435-446.
[PMID: 26483399]
[511]
Cote, S.R.; Chitravanshi, V.C.; Bleickardt, C.; Sapru, H.N.; Kuzhikandathil, E.V. Overexpression of the dopamine D3 receptor in the rat dorsal striatum induces dyskinetic behaviors. Behav. Brain Res., 2014, 263, 46-50.
[http://dx.doi.org/10.1016/j.bbr.2014.01.011] [PMID: 24462727]
[512]
Surmeier, D.J.; Song, W.J.; Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci., 1996, 16(20), 6579-6591.
[http://dx.doi.org/10.1523/JNEUROSCI.16-20-06579.1996] [PMID: 8815934]
[513]
Joyce, J.N. Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol. Ther., 2001, 90(2-3), 231-259.
[http://dx.doi.org/10.1016/S0163-7258(01)00139-5] [PMID: 11578658]
[514]
Maggio, R.; Millan, M.J. Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance. Curr. Opin. Pharmacol., 2010, 10(1), 100-107.
[http://dx.doi.org/10.1016/j.coph.2009.10.001] [PMID: 19896900]
[515]
Maggio, R.; Scarselli, M.; Novi, F.; Millan, M.J.; Corsini, G.U. Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole. J. Neurochem., 2003, 87(3), 631-641.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02038.x] [PMID: 14535946]
[516]
Novi, F.; Millan, M.J.; Corsini, G.U.; Maggio, R. Partial agonist actions of aripiprazole and the candidate antipsychotics S33592, bifeprunox, N-desmethylclozapine and preclamol at dopamine D(2L) receptors are modified by co-transfection of D(3) receptors: potential role of heterodimer formation. J. Neurochem., 2007, 102(4), 1410-1424.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04660.x] [PMID: 17532788]
[517]
Maggio, R.; Scarselli, M.; Capannolo, M.; Millan, M.J. Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation. Eur. Neuropsychopharmacol., 2015, 25(9), 1470-1479.
[http://dx.doi.org/10.1016/j.euroneuro.2014.09.016] [PMID: 25453482]
[518]
Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: from structure to function. Physiol. Rev., 1998, 78(1), 189-225.
[http://dx.doi.org/10.1152/physrev.1998.78.1.189] [PMID: 9457173]
[519]
Rondou, P.; Haegeman, G.; Van Craenenbroeck, K. The dopamine D4 receptor: biochemical and signalling properties. Cell. Mol. Life Sci., 2010, 67(12), 1971-1986.
[http://dx.doi.org/10.1007/s00018-010-0293-y] [PMID: 20165900]
[520]
Van Tol, H.H.M.; Bunzow, J.R.; Guan, H.C.; Sunahara, R.K.; Seeman, P.; Niznik, H.B.; Civelli, O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature, 1991, 350(6319), 610-614.
[http://dx.doi.org/10.1038/350610a0] [PMID: 1840645]
[521]
González, S.; Rangel-Barajas, C.; Peper, M.; Lorenzo, R.; Moreno, E.; Ciruela, F.; Borycz, J.; Ortiz, J.; Lluís, C.; Franco, R.; McCormick, P.J.; Volkow, N.D.; Rubinstein, M.; Floran, B.; Ferré, S. Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Mol. Psychiatry, 2012, 17(6), 650-662.
[http://dx.doi.org/10.1038/mp.2011.93] [PMID: 21844870]
[522]
Fuxe, K.; Guidolin, D.; Agnati, L.F.; Borroto-Escuela, D.O. Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert Opin. Ther. Targets, 2015, 19(3), 377-398.
[http://dx.doi.org/10.1517/14728222.2014.981529] [PMID: 25486101]
[523]
Centonze, D.; Grande, C.; Usiello, A.; Gubellini, P.; Erbs, E.; Martín, A.B.; Pisani, A.; Tognazzi, N.; Bernardi, G.; Moratalla, R.; Borrelli, E.; Calabresi, P. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J. Neurosci., 2003, 23(15), 6245-6254.
[http://dx.doi.org/10.1523/JNEUROSCI.23-15-06245.2003] [PMID: 12867509]
[524]
Ginés, S.; Hillion, J.; Torvinen, M.; Le Crom, S.; Casadó, V.; Canela, E.I.; Rondin, S.; Lew, J.Y.; Watson, S.; Zoli, M.; Agnati, L.F.; Verniera, P.; Lluis, C.; Ferré, S.; Fuxe, K.; Franco, R. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8606-8611.
[http://dx.doi.org/10.1073/pnas.150241097] [PMID: 10890919]
[525]
Franco, R.; Lluis, C.; Canela, E.I.; Mallol, J.; Agnati, L.; Casadó, V.; Ciruela, F.; Ferré, S.; Fuxe, K. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J. Neural Transm. (Vienna), 2007, 114(1), 93-104.
[http://dx.doi.org/10.1007/s00702-006-0566-7] [PMID: 17024327]
[526]
Caillé, I.; Dumartin, B.; Bloch, B. Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res., 1996, 730(1-2), 17-31.
[http://dx.doi.org/10.1016/0006-8993(96)00424-6] [PMID: 8883884]
[527]
Rivkees, S.A.; Price, S.L.; Zhou, F.C. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res., 1995, 677(2), 193-203.
[http://dx.doi.org/10.1016/0006-8993(95)00062-U] [PMID: 7552243]
[528]
Ferré, S.; Popoli, P.; Giménez-Llort, L.; Finnman, U.B.; Martínez, E.; Scotti de Carolis, A.; Fuxe, K. Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport, 1994, 6(1), 73-76.
[http://dx.doi.org/10.1097/00001756-199412300-00020] [PMID: 7703433]
[529]
Ferré, S.; Fredholm, B.B.; Morelli, M.; Popoli, P.; Fuxe, K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci., 1997, 20(10), 482-487.
[http://dx.doi.org/10.1016/S0166-2236(97)01096-5] [PMID: 9347617]
[530]
Ferré, S.; Torvinen, M.; Antoniou, K.; Irenius, E.; Civelli, O.; Arenas, E.; Fredholm, B.B.; Fuxe, K. Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J. Biol. Chem., 1998, 273(8), 4718-4724.
[http://dx.doi.org/10.1074/jbc.273.8.4718] [PMID: 9468534]
[531]
Toda, S.; Alguacil, L.F.; Kalivas, P.W. Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. J. Neurochem., 2003, 87(6), 1478-1484.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02121.x] [PMID: 14713303]
[532]
Rivera-Oliver, M.; Moreno, E.; Álvarez-Bagnarol, Y.; Ayala-Santiago, C.; Cruz-Reyes, N.; Molina-Castro, G.C.; Clemens, S.; Canela, E.I.; Ferré, S.; Casadó, V.; Díaz-Ríos, M. Adenosine A1-dopamine D1 receptor heteromers control the excitability of the spinal motoneuron. Mol. Neurobiol., 2019, 56(2), 797-811.
[http://dx.doi.org/10.1007/s12035-018-1120-y] [PMID: 29797183]
[533]
Canals, M.; Marcellino, D.; Fanelli, F.; Ciruela, F.; de Benedetti, P.; Goldberg, S.R.; Neve, K.; Fuxe, K.; Agnati, L.F.; Woods, A.S.; Ferré, S.; Lluis, C.; Bouvier, M.; Franco, R. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem., 2003, 278(47), 46741-46749.
[http://dx.doi.org/10.1074/jbc.M306451200] [PMID: 12933819]
[534]
Hillion, J.; Canals, M.; Torvinen, M.; Casadó, V.; Scott, R.; Terasmaa, A.; Hansson, A.; Watson, S.; Olah, M.E.; Mallol, J.; Canela, E.I.; Zoli, M.; Agnati, L.F.; Ibanez, C.F.; Lluis, C.; Franco, R.; Ferre, S.; Fuxe, K. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem., 2002, 277(20), 18091-18097.
[http://dx.doi.org/10.1074/jbc.M107731200] [PMID: 11872740]
[535]
Fuxe, K.; Agnati, L.F.; Jacobsen, K.; Hillion, J.; Canals, M.; Torvinen, M.; Tinner-Staines, B.; Staines, W.; Rosin, D.; Terasmaa, A.; Popoli, P.; Leo, G.; Vergoni, V.; Lluis, C.; Ciruela, F.; Franco, R.; Ferré, S. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology, 2003, 61(11)(Suppl. 6), S19-S23.
[http://dx.doi.org/10.1212/01.WNL.0000095206.44418.5C] [PMID: 14663004]
[536]
Kamiya, T.; Saitoh, O.; Yoshioka, K.; Nakata, H. Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem. Biophys. Res. Commun., 2003, 306(2), 544-549.
[http://dx.doi.org/10.1016/S0006-291X(03)00991-4] [PMID: 12804599]
[537]
Trifilieff, P.; Rives, M.L.; Urizar, E.; Piskorowski, R.A.; Vishwasrao, H.D.; Castrillon, J.; Schmauss, C.; Slättman, M.; Gullberg, M.; Javitch, J.A. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques, 2011, 51(2), 111-118.
[http://dx.doi.org/10.2144/000113719] [PMID: 21806555]
[538]
Borroto-Escuela, D.O.; Romero-Fernandez, W.; Garriga, P.; Ciruela, F.; Narvaez, M.; Tarakanov, A.O.; Palkovits, M.; Agnati, L.F.; Fuxe, K. G protein-coupled receptor heterodimerization in the brain. Methods Enzymol., 2013, 521, 281-294.
[http://dx.doi.org/10.1016/B978-0-12-391862-8.00015-6] [PMID: 23351745]
[539]
Fuxe, K.; Marcellino, D.; Genedani, S.; Agnati, L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Mov. Disord., 2007, 22(14), 1990-2017.
[http://dx.doi.org/10.1002/mds.21440] [PMID: 17618524]
[540]
Ferre, S.; von Euler, G.; Johansson, B.; Fredholm, B.B.; Fuxe, K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. USA, 1991, 88(16), 7238-7241.
[http://dx.doi.org/10.1073/pnas.88.16.7238] [PMID: 1678519]
[541]
Ferré, S.; Fuxe, K. Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res., 1992, 594(1), 124-130.
[http://dx.doi.org/10.1016/0006-8993(92)91036-E] [PMID: 1467931]
[542]
Ferré, S.; Quiroz, C.; Woods, A.S.; Cunha, R.; Popoli, P.; Ciruela, F.; Lluis, C.; Franco, R.; Azdad, K.; Schiffmann, S.N. An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr. Pharm. Des., 2008, 14(15), 1468-1474.
[http://dx.doi.org/10.2174/138161208784480108] [PMID: 18537670]
[543]
Ballesteros-Yáñez, I.; Castillo, C.A.; Merighi, S.; Gessi, S. The Role of Adenosine Receptors in Psychostimulant Addiction. Front. Pharmacol., 2018, 8(JAN), 985.
[http://dx.doi.org/10.3389/fphar.2017.00985] [PMID: 29375384]
[544]
Dalrymple, M.B.; Pfleger, K.D.G.; Eidne, K.A. G protein-coupled receptor dimers: functional consequences, disease states and drug targets. Pharmacol. Ther., 2008, 118(3), 359-371.
[http://dx.doi.org/10.1016/j.pharmthera.2008.03.004] [PMID: 18486226]
[545]
Rosin, D.L.; Hettinger, B.D.; Lee, A.; Linden, J. Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology, 2003, 61(11)(Suppl. 6), S12-S18.
[http://dx.doi.org/10.1212/01.WNL.0000095205.33940.99] [PMID: 14663003]
[546]
Fuxe, K.; Ferré, S.; Genedani, S.; Franco, R.; Agnati, L.F. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav., 2007, 92(1-2), 210-217.
[http://dx.doi.org/10.1016/j.physbeh.2007.05.034] [PMID: 17572452]
[547]
Gluck, M.R.; Santana, L.A.; Granson, H.; Yahr, M.D. Novel dopamine releasing response of an anti-convulsant agent with possible anti-Parkinson’s activity. J. Neural Transm. (Vienna), 2004, 111(6), 713-724.
[http://dx.doi.org/10.1007/s00702-004-0107-1] [PMID: 15168218]
[548]
Schiffmann, S.N.; Fisone, G.; Moresco, R.; Cunha, R.A.; Ferré, S. Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol., 2007, 83(5), 277-292.
[http://dx.doi.org/10.1016/j.pneurobio.2007.05.001] [PMID: 17646043]
[549]
Shen, H.Y.; Coelho, J.E.; Ohtsuka, N.; Canas, P.M.; Day, Y.J.; Huang, Q.Y.; Rebola, N.; Yu, L.; Boison, D.; Cunha, R.A.; Linden, J.; Tsien, J.Z.; Chen, J.F. A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J. Neurosci., 2008, 28(12), 2970-2975.
[http://dx.doi.org/10.1523/JNEUROSCI.5255-07.2008] [PMID: 18354001]
[550]
Kim, D.S.; Palmiter, R.D. Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1346-1351.
[http://dx.doi.org/10.1073/pnas.252753799] [PMID: 12538862]
[551]
Chase, T.N.; Bibbiani, F.; Bara-Jimenez, W.; Dimitrova, T.; Oh-Lee, J.D. Translating A2A antagonist KW6002 from animal models to parkinsonian patients. Neurology, 2003, 61(11)(Suppl. 6), S107-S111.
[http://dx.doi.org/10.1212/01.WNL.0000095223.08711.48] [PMID: 14663022]
[552]
Torvinen, M.; Marcellino, D.; Canals, M.; Agnati, L.F.; Lluis, C.; Franco, R.; Fuxe, K. Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol. Pharmacol., 2005, 67(2), 400-407.
[http://dx.doi.org/10.1124/mol.104.003376] [PMID: 15539641]
[553]
Takagi, H.; Morishima, Y.; Matsuyama, T.; Hayashi, H.; Watanabe, T.; Wada, H. Histaminergic axons in the neostriatum and cerebral cortex of the rat: A correlated light and electron microscopic immunocytochemical study using histidine decarboxylase as a marker. Brain Res., 1986, 364(1), 114-123.
[http://dx.doi.org/10.1016/0006-8993(86)90992-3] [PMID: 3004646]
[554]
Ferrada, C.; Moreno, E.; Casadó, V.; Bongers, G.; Cortés, A.; Mallol, J.; Canela, E.I.; Leurs, R.; Ferré, S.; Lluís, C.; Franco, R. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br. J. Pharmacol., 2009, 157(1), 64-75.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00152.x] [PMID: 19413572]
[555]
Moreno, E.; Hoffmann, H.; Gonzalez-Sepúlveda, M.; Navarro, G.; Casadó, V.; Cortés, A.; Mallol, J.; Vignes, M.; McCormick, P.J.; Canela, E.I.; Lluís, C.; Moratalla, R.; Ferré, S.; Ortiz, J.; Franco, R. Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J. Biol. Chem., 2011, 286(7), 5846-5854.
[http://dx.doi.org/10.1074/jbc.M110.161489] [PMID: 21173143]
[556]
Moreno, E.; Moreno-Delgado, D.; Navarro, G.; Hoffmann, H.M.; Fuentes, S.; Rosell-Vilar, S.; Gasperini, P.; Rodríguez-Ruiz, M.; Medrano, M.; Mallol, J.; Cortés, A.; Casadó, V.; Lluís, C.; Ferré, S.; Ortiz, J.; Canela, E.; McCormick, P.J. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine’s effects. J. Neurosci., 2014, 34(10), 3545-3558.
[http://dx.doi.org/10.1523/JNEUROSCI.4147-13.2014] [PMID: 24599455]
[557]
Kononoff Vanhanen, J.; Nuutinen, S.; Tuominen, M.; Panula, P. Histamine H3 receptor regulates sensorimotor gating and dopaminergic signaling in the striatum. J. Pharmacol. Exp. Ther., 2016, 357(2), 264-272.
[http://dx.doi.org/10.1124/jpet.115.230771] [PMID: 26945087]
[558]
Ferrada, C.; Ferré, S.; Casadó, V.; Cortés, A.; Justinova, Z.; Barnes, C.; Canela, E.I.; Goldberg, S.R.; Leurs, R.; Lluis, C.; Franco, R. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology, 2008, 55(2), 190-197.
[http://dx.doi.org/10.1016/j.neuropharm.2008.05.008] [PMID: 18547596]
[559]
Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience, 2002, 114(1), 173-193.
[http://dx.doi.org/10.1016/S0306-4522(02)00135-5] [PMID: 12207964]
[560]
Ferré, S.; Ciruela, F.; Woods, A.S.; Lluis, C.; Franco, R. Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci., 2007, 30(9), 440-446.
[http://dx.doi.org/10.1016/j.tins.2007.07.001] [PMID: 17692396]
[561]
Szafran, K.; Łukasiewicz, S.; Faron-Górecka, A.; Kolasa, M.; Kuśmider, M.; Solich, J.; Dziedzicka-Wasylewska, M. Antidepressant drugs promote the heterodimerization of the dopamine D2 and somatostatin Sst5 receptors--fluorescence in vitro studies. Pharmacol. Rep., 2012, 64(5), 1253-1258.
[http://dx.doi.org/10.1016/S1734-1140(12)70921-0] [PMID: 23238481]
[562]
Szafran-Pilch, K.; Faron-Górecka, A.; Kolasa, M.; Żurawek, D.; Szlachta, M.; Solich, J.; Kuśmider, M.; Dziedzicka-Wasylewska, M. Antidepressants promote formation of heterocomplexes of dopamine D2 and somatostatin subtype 5 receptors in the mouse striatum. Brain Res. Bull., 2017, 135, 92-97.
[http://dx.doi.org/10.1016/j.brainresbull.2017.10.003] [PMID: 28987282]
[563]
Faron-Górecka, A.; Kuśmider, M.; Solich, J.; Kolasa, M.; Szafran, K.; Zurawek, D.; Pabian, P.; Dziedzicka-Wasylewska, M. Involvement of prolactin and somatostatin in depression and the mechanism of action of antidepressant drugs. Pharmacol. Rep., 2013, 65(6), 1640-1646.
[http://dx.doi.org/10.1016/S1734-1140(13)71525-1] [PMID: 24553012]
[564]
Borroto-Escuela, D.O.; Ravani, A.; Tarakanov, A.O.; Brito, I.; Narvaez, M.; Romero-Fernandez, W.; Corrales, F.; Agnati, L.F.; Tanganelli, S.; Ferraro, L.; Fuxe, K. Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochem. Biophys. Res. Commun., 2013, 435(1), 140-146.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.058] [PMID: 23624386]
[565]
Plach, M.; Schäfer, T.; Borroto-Escuela, D.O.; Weikert, D.; Gmeiner, P.; Fuxe, K.; Friedland, K. Differential allosteric modulation within dopamine D2R - neurotensin NTS1R and D2R - serotonin 5-HT2AR receptor complexes gives bias to intracellular calcium signalling. Sci. Rep., 2019, 9(1), 16312.
[http://dx.doi.org/10.1038/s41598-019-52540-8] [PMID: 31704949]
[566]
Ferraro, L.; Tomasini, M.C.; Mazza, R.; Fuxe, K.; Fournier, J.; Tanganelli, S.; Antonelli, T. Neurotensin receptors as modulators of glutamatergic transmission. Brain Res. Brain Res. Rev., 2008, 58(2), 365-373.
[http://dx.doi.org/10.1016/j.brainresrev.2007.11.001] [PMID: 18096238]
[567]
Koschatzky, S.; Tschammer, N.; Gmeiner, P. Cross-receptor interactions between dopamine D2L and neurotensin NTS1 receptors modulate binding affinities of dopaminergics. ACS Chem. Neurosci., 2011, 2(6), 308-316.
[http://dx.doi.org/10.1021/cn200020y] [PMID: 22778874]
[568]
Antonelli, T.; Tomasini, M.C.; Fuxe, K.; Agnati, L.F.; Tanganelli, S.; Ferraro, L. Focus on NTR/D2 interactions in the basal ganglia. J. Neural. Trans., 2007, 105-113.
[http://dx.doi.org/10.1007/s00702-006-0558-7]
[569]
Tanganelli, S.; Antonelli, T.; Tomasini, M.C.; Beggiato, S.; Fuxe, K.; Ferraro, L. Relevance of dopamine D(2)/neurotensin NTS1 and NMDA/neurotensin NTS1 receptor interaction in psychiatric and neurodegenerative disorders. Curr. Med. Chem., 2012, 19(3), 304-316.
[http://dx.doi.org/10.2174/092986712803414268] [PMID: 22335510]
[570]
Espinoza, S.; Salahpour, A.; Masri, B.; Sotnikova, T.D.; Messa, M.; Barak, L.S.; Caron, M.G.; Gainetdinov, R.R. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol. Pharmacol., 2011, 80(3), 416-425.
[http://dx.doi.org/10.1124/mol.111.073304] [PMID: 21670104]
[571]
Espinoza, S.; Masri, B.; Salahpour, A.; Gainetdinov, R.R. BRET approaches to characterize dopamine and TAAR1 receptor pharmacology and signaling. Methods Mol. Biol., 2013, 964, 107-122.
[http://dx.doi.org/10.1007/978-1-62703-251-3_8] [PMID: 23296781]
[572]
Lindemann, L.; Meyer, C.A.; Jeanneau, K.; Bradaia, A.; Ozmen, L.; Bluethmann, H.; Bettler, B.; Wettstein, J.G.; Borroni, E.; Moreau, J.L.; Hoener, M.C. Trace amine-associated receptor 1 modulates dopaminergic activity. J. Pharmacol. Exp. Ther., 2008, 324(3), 948-956.
[http://dx.doi.org/10.1124/jpet.107.132647] [PMID: 18083911]
[573]
Romero-Fernandez, W.; Borroto-Escuela, D.O.; Agnati, L.F.; Fuxe, K. Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol. Psychiatry, 2013, 18(8), 849-850.
[http://dx.doi.org/10.1038/mp.2012.103] [PMID: 22824810]
[574]
de la Mora, M.P.; Pérez-Carrera, D.; Crespo-Ramírez, M.; Tarakanov, A.; Fuxe, K.; Borroto-Escuela, D.O. Signaling in dopamine D2 receptor-oxytocin receptor heterocomplexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. Biochim. Biophys. Acta, 2016, 1862(11), 2075-2085.
[http://dx.doi.org/10.1016/j.bbadis.2016.07.004] [PMID: 27425032]
[575]
Pradhan, G.; Samson, S.L.; Sun, Y. Ghrelin: much more than a hunger hormone. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(6), 619-624.
[http://dx.doi.org/10.1097/MCO.0b013e328365b9be] [PMID: 24100676]
[576]
Davenport, A.P.; Bonner, T.I.; Foord, S.M.; Harmar, A.J.; Neubig, R.R.; Pin, J-P.; Spedding, M.; Kojima, M.; Kangawa, K. International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol. Rev., 2005, 57(4), 541-546.
[http://dx.doi.org/10.1124/pr.57.4.1] [PMID: 16382107]
[577]
GHSR growth hormone secretagogue receptor [Homo sapiens (human)] Gene - NCBI 2005.
[578]
Smith, R.G.; Van der Ploeg, L.H.T.; Howard, A.D.; Feighner, S.D.; Cheng, K.; Hickey, G.J.; Wyvratt, M.J., Jr; Fisher, M.H.; Nargund, R.P.; Patchett, A.A. Peptidomimetic regulation of growth hormone secretion. Endocr. Rev., 1997, 18(5), 621-645.
[http://dx.doi.org/10.1210/edrv.18.5.0316] [PMID: 9331545]
[579]
Adriaenssens, A.E.; Svendsen, B.; Lam, B.Y.H.; Yeo, G.S.H.; Holst, J.J.; Reimann, F.; Gribble, F.M. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia, 2016, 59(10), 2156-2165.
[http://dx.doi.org/10.1007/s00125-016-4033-1] [PMID: 27390011]
[580]
Meguid, M.M.; Fetissov, S.O.; Varma, M.; Sato, T.; Zhang, L.; Laviano, A.; Rossi-Fanelli, F. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition, 2000, 16(10), 843-857.
[http://dx.doi.org/10.1016/S0899-9007(00)00449-4] [PMID: 11054589]
[581]
Vucetic, Z.; Reyes, T.M. Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, 2(5), 577-593.
[http://dx.doi.org/10.1002/wsbm.77] [PMID: 20836049]
[582]
Kern, A.; Albarran-Zeckler, R.; Walsh, H.E.; Smith, R.G. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron, 2012, 73(2), 317-332.
[http://dx.doi.org/10.1016/j.neuron.2011.10.038] [PMID: 22284186]
[583]
Franco, R.; Cordomí, A.; Llinas Del Torrent, C.; Lillo, A.; Serrano-Marín, J.; Navarro, G.; Pardo, L. Structure and function of adenosine receptor heteromers. Cell. Mol. Life Sci., 2021, 78(8), 3957-3968.
[http://dx.doi.org/10.1007/s00018-021-03761-6] [PMID: 33580270]
[584]
Gao, Z.G.; Jacobson, K.A. Emerging adenosine receptor agonists. Expert Opin. Emerg. Drugs, 2007, 12(3), 479-492.
[http://dx.doi.org/10.1517/14728214.12.3.479] [PMID: 17874974]
[585]
Fredholm, B.B.; Irenius, E.; Kull, B.; Schulte, G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol., 2001, 61(4), 443-448.
[http://dx.doi.org/10.1016/S0006-2952(00)00570-0] [PMID: 11226378]
[586]
Navarro, G.; Cordomí, A.; Brugarolas, M.; Moreno, E.; Aguinaga, D.; Pérez-Benito, L.; Ferre, S.; Cortés, A.; Casadó, V.; Mallol, J.; Canela, E.I.; Lluís, C.; Pardo, L.; McCormick, P.J.; Franco, R. Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. BMC Biol., 2018, 16(1), 24.
[http://dx.doi.org/10.1186/s12915-018-0491-x] [PMID: 29486745]
[587]
Borroto-Escuela, D.O.; Fuxe, K. Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment. J. Neural Transm. (Vienna), 2019, 126(4), 455-471.
[http://dx.doi.org/10.1007/s00702-019-01969-2] [PMID: 30637481]
[588]
Ferre, S.; Ciruela, F.; Borycz, J.; Solinas, M.; Quarta, D.; Antoniou, K.; Quiroz, C.; Justinova, Z.; Lluis, C.; Franco, R.; Goldberg, S.R. Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain. Front. Biosci., 2008, 13(6), 2391-2399.
[http://dx.doi.org/10.2741/2852] [PMID: 17981720]
[589]
Aghajanian, G.K.; Marek, G.J. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology, 1997, 36(4-5), 589-599.
[http://dx.doi.org/10.1016/S0028-3908(97)00051-8] [PMID: 9225284]
[590]
Aghajanian, G.K.; Marek, G.J. Serotonin-glutamate interactions:A new target for antipsychotic drugs. Neuropsychopharmacology, 1999, 21(6), S122-S133.
[http://dx.doi.org/10.1016/S0893-133X(99)00106-2]
[591]
Stutzmann, G.E.; Marek, G.J.; Aghajanian, G.K. Adenosine preferentially suppresses serotonin2A receptor-enhanced excitatory postsynaptic currents in layer V neurons of the rat medial prefrontal cortex. Neuroscience, 2001, 105(1), 55-69.
[http://dx.doi.org/10.1016/S0306-4522(01)00170-1] [PMID: 11483300]
[592]
Marek, G.J. Activation of adenosine(1) (A(1)) receptors suppresses head shakes induced by a serotonergic hallucinogen in rats. Neuropharmacology, 2009, 56(8), 1082-1087.
[http://dx.doi.org/10.1016/j.neuropharm.2009.03.005] [PMID: 19324062]
[593]
Márquez-Gómez, R.; Robins, M.T.; Gutiérrez-Rodelo, C.; Arias, J.M.; Olivares-Reyes, J.A.; van Rijn, R.M.; Arias-Montaño, J.A. Functional histamine H3 and adenosine A2A receptor heteromers in recombinant cells and rat striatum. Pharmacol. Res., 2018, 129, 515-525.
[http://dx.doi.org/10.1016/j.phrs.2017.11.036] [PMID: 29217157]
[594]
Ballantyne, J.C.; Mao, J. Opioid therapy for chronic pain. N. Engl. J. Med., 2003, 349(20), 1943-1953.
[http://dx.doi.org/10.1056/NEJMra025411] [PMID: 14614170]
[595]
Skolnick, P. The Opioid Epidemic: Crisis and Solutions. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 143-159.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052534] [PMID: 28968188]
[596]
Dart, R.C.; Surratt, H.L.; Cicero, T.J.; Parrino, M.W.; Severtson, S.G.; Bucher-Bartelson, B.; Green, J.L. Trends in opioid analgesic abuse and mortality in the United States. N. Engl. J. Med., 2015, 372(3), 241-248.
[http://dx.doi.org/10.1056/NEJMsa1406143] [PMID: 25587948]
[597]
Machelska, H.; Celik, M.Ö. Advances in Achieving Opioid Analgesia Without Side Effects. Front. Pharmacol., 2018, 9(NOV), 1388.
[http://dx.doi.org/10.3389/fphar.2018.01388] [PMID: 30555325]
[598]
Li-Wei, C.; Can, G.; De-He, Z.; Qiang, W.; Xue-Jun, X.; Jie, C.; Zhi-Qiang, C. Homodimerization of human mu-opioid receptor overexpressed in Sf9 insect cells. Protein Pept. Lett., 2002, 9(2), 145-152.
[http://dx.doi.org/10.2174/0929866023408850] [PMID: 12141912]
[599]
Yekkirala, A.S.; Banks, M.L.; Lunzer, M.M.; Negus, S.S.; Rice, K.C.; Portoghese, P.S. Clinically employed opioid analgesics produce antinociception via μ-δ opioid receptor heteromers in Rhesus monkeys. ACS Chem. Neurosci., 2012, 3(9), 720-727.
[http://dx.doi.org/10.1021/cn300049m] [PMID: 23019498]
[600]
Costantino, C.M.; Gomes, I.; Stockton, S.D.; Lim, M.P.; Devi, L.A. Opioid receptor heteromers in analgesia. Expert Rev. Mol. Med., 2012, 14, e9.
[http://dx.doi.org/10.1017/erm.2012.5] [PMID: 22490239]
[601]
Gomes, I.; Gupta, A.; Filipovska, J.; Szeto, H.H.; Pintar, J.E.; Devi, L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 5135-5139.
[http://dx.doi.org/10.1073/pnas.0307601101] [PMID: 15044695]
[602]
Chakrabarti, S.; Liu, N-J.; Gintzler, A.R. Formation of mu-/kappa-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20115-20119.
[http://dx.doi.org/10.1073/pnas.1009923107] [PMID: 21041644]
[603]
Jordan, B.A.; Devi, L.A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature, 1999, 399(6737), 697-700.
[http://dx.doi.org/10.1038/21441] [PMID: 10385123]
[604]
Zhang, L.; Zhang, J-T.; Hang, L.; Liu, T. Mu opioid receptor heterodimers emerge as novel therapeutic targets: Recent progress and future perspective. Front. Pharmacol., 2020, 11, 1078.
[http://dx.doi.org/10.3389/fphar.2020.01078] [PMID: 32760281]
[605]
Olson, K.M.; Keresztes, A.; Tashiro, J.K.; Daconta, L.V.; Hruby, V.J.; Streicher, J.M. Synthesis and evaluation of a novel bivalent selective antagonist for the mu-delta opioid receptor heterodimer that reduces morphine withdrawal in mice. J. Med. Chem., 2018, 61(14), 6075-6086.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00403] [PMID: 29939746]
[606]
Rozenfeld, R.; Devi, L.A. Receptor heterodimerization leads to a switch in signaling: β-arrestin2-mediated ERK activation by μ-δ opioid receptor heterodimers. FASEB J., 2007, 21(10), 2455-2465.
[http://dx.doi.org/10.1096/fj.06-7793com] [PMID: 17384143]
[607]
Metcalf, M.D.; Yekkirala, A.S.; Powers, M.D.; Kitto, K.F.; Fairbanks, C.A.; Wilcox, G.L.; Portoghese, P.S. The δ opioid receptor agonist SNC80 selectively activates heteromeric μ-δ opioid receptors. ACS Chem. Neurosci., 2012, 3(7), 505-509.
[http://dx.doi.org/10.1021/cn3000394] [PMID: 22860219]
[608]
Gomes, I.; Fujita, W.; Gupta, A.; Saldanha, S.A.; Negri, A.; Pinello, C.E.; Eberhart, C.; Roberts, E.; Filizola, M.; Hodder, P.; Devi, L.A. Identification of a μ-δ opioid receptor heteromer-biased agonist with antinociceptive activity. Proc. Natl. Acad. Sci. USA, 2013, 110(29), 12072-12077.
[http://dx.doi.org/10.1073/pnas.1222044110] [PMID: 23818586]
[609]
Milan-Lobo, L.; Whistler, J.L. Heteromerization of the μ- and δ-opioid receptors produces ligand-biased antagonism and alters μ-receptor trafficking. J. Pharmacol. Exp. Ther., 2011, 337(3), 868-875.
[http://dx.doi.org/10.1124/jpet.111.179093] [PMID: 21422164]
[610]
Hasbi, A.; Nguyen, T.; Fan, T.; Cheng, R.; Rashid, A.; Alijaniaram, M.; Rasenick, M.M.; O’Dowd, B.F.; George, S.R. Trafficking of preassembled opioid μ-δ heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Biochemistry, 2007, 46(45), 12997-13009.
[http://dx.doi.org/10.1021/bi701436w] [PMID: 17941650]
[611]
Décaillot, F.M.; Rozenfeld, R.; Gupta, A.; Devi, L.A. Cell surface targeting of μ-δ opioid receptor heterodimers by RTP4. Proc. Natl. Acad. Sci. USA, 2008, 105(41), 16045-16050.
[http://dx.doi.org/10.1073/pnas.0804106105] [PMID: 18836069]
[612]
He, S.Q.; Zhang, Z.N.; Guan, J.S.; Liu, H.R.; Zhao, B.; Wang, H.B.; Li, Q.; Yang, H.; Luo, J.; Li, Z.Y.; Wang, Q.; Lu, Y.J.; Bao, L.; Zhang, X. Facilitation of μ-opioid receptor activity by preventing δ-opioid receptor-mediated codegradation. Neuron, 2011, 69(1), 120-131.
[http://dx.doi.org/10.1016/j.neuron.2010.12.001] [PMID: 21220103]
[613]
Erbs, E.; Faget, L.; Scherrer, G.; Matifas, A.; Filliol, D.; Vonesch, J.L.; Koch, M.; Kessler, P.; Hentsch, D.; Birling, M.C.; Koutsourakis, M.; Vasseur, L.; Veinante, P.; Kieffer, B.L.; Massotte, D. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct. Funct., 2015, 220(2), 677-702.
[http://dx.doi.org/10.1007/s00429-014-0717-9] [PMID: 24623156]
[614]
Wang, D.; Tawfik, V.L.; Corder, G.; Low, S.A.; François, A.; Basbaum, A.I.; Scherrer, G. Functional divergence of delta and mu opioid receptor organization in CNS pain circuits. Neuron, 2018, 98(1), 90-108.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.03.002] [PMID: 29576387]
[615]
Liu, N.J.; Chakrabarti, S.; Schnell, S.; Wessendorf, M.; Gintzler, A.R. Spinal synthesis of estrogen and concomitant signaling by membrane estrogen receptors regulate spinal κ- and μ-opioid receptor heterodimerization and female-specific spinal morphine antinociception. J. Neurosci., 2011, 31(33), 11836-11845.
[http://dx.doi.org/10.1523/JNEUROSCI.1901-11.2011] [PMID: 21849544]
[616]
Yang, Y.; Li, Q.; He, Q.H.; Han, J.S.; Su, L.; Wan, Y. Heteromerization of μ-opioid receptor and cholecystokinin B receptor through the third transmembrane domain of the μ-opioid receptor contributes to the anti-opioid effects of cholecystokinin octapeptide. Exp. Mol. Med., 2018, 50(5), 1-16.
[http://dx.doi.org/10.1038/s12276-018-0090-5] [PMID: 29780163]
[617]
Vilardaga, J.P.; Nikolaev, V.O.; Lorenz, K.; Ferrandon, S.; Zhuang, Z.; Lohse, M.J. Conformational cross-talk between α2A-adrenergic and μ-opioid receptors controls cell signaling. Nat. Chem. Biol., 2008, 4(2), 126-131.
[http://dx.doi.org/10.1038/nchembio.64] [PMID: 18193048]
[618]
Stone, L.S.; MacMillan, L.B.; Kitto, K.F.; Limbird, L.E.; Wilcox, G.L. The α2a adrenergic receptor subtype mediates spinal analgesia evoked by α2 agonists and is necessary for spinal adrenergic-opioid synergy. J. Neurosci., 1997, 17(18), 7157-7165.
[http://dx.doi.org/10.1523/JNEUROSCI.17-18-07157.1997] [PMID: 9278550]
[619]
Bourgoin, S.; Pohl, M.; Mauborgne, A.; Benoliel, J.J.; Collin, E.; Hamon, M.; Cesselin, F. Monoaminergic control of the release of calcitonin gene-related peptide- and substance P-like materials from rat spinal cord slices. Neuropharmacology, 1993, 32(7), 633-640.
[http://dx.doi.org/10.1016/0028-3908(93)90076-F] [PMID: 7689707]
[620]
Kamisaki, Y.; Hamada, T.; Maeda, K.; Ishimura, M.; Itoh, T. Presynaptic α2 Adrenoceptors Inhibit Glutamate Release from Rat Spinal Cord Synaptosomes; John Wiley & Sons, Ltd, 1993, pp. 522-526.
[621]
Jordan, B.; Devi, L.A. Molecular mechanisms of opioid receptor signal transduction. Br. J. Anaesth., 1998, 81(1), 12-19.
[http://dx.doi.org/10.1093/bja/81.1.12] [PMID: 9771268]
[622]
Richman, J.G.; Regan, J.W. α2-adrenergic receptors increase cell migration and decrease F-actin labeling in rat aortic smooth muscle cells. Am. J. Physiol. Cell Physiol., 1998, 274(3), 43.
[623]
Wang, D.; Stoveken, H.M.; Zucca, S.; Dao, M.; Orlandi, C.; Song, C. Genetic behavioral screen identifies an orphan anti-opioid system Science (80-), 2019, 365((6459)), 1267-1273.
[http://dx.doi.org/10.1126/science.aau2078]
[624]
Koshimizu, T.A.; Honda, K.; Nagaoka-Uozumi, S.; Ichimura, A.; Kimura, I.; Nakaya, M.; Sakai, N.; Shibata, K.; Ushijima, K.; Fujimura, A.; Hirasawa, A.; Kurose, H.; Tsujimoto, G.; Tanoue, A.; Takano, Y. Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance. Nat. Neurosci., 2018, 21(6), 820-833.
[http://dx.doi.org/10.1038/s41593-018-0144-y] [PMID: 29713080]
[625]
Moreno, E.; Quiroz, C.; Rea, W.; Cai, N.S.; Mallol, J.; Cortés, A.; Lluís, C.; Canela, E.I.; Casadó, V.; Ferré, S. Functional µ-Opioid-galanin receptor heteromers in the ventral tegmental area. J. Neurosci., 2017, 37(5), 1176-1186.
[http://dx.doi.org/10.1523/JNEUROSCI.2442-16.2016] [PMID: 28007761]
[626]
Cai, N.S.; Quiroz, C.; Bonaventura, J.; Bonifazi, A.; Cole, T.O.; Purks, J.; Billing, A.S.; Massey, E.; Wagner, M.; Wish, E.D.; Guitart, X.; Rea, W.; Lam, S.; Moreno, E.; Casadó-Anguera, V.; Greenblatt, A.D.; Jacobson, A.E.; Rice, K.C.; Casadó, V.; Newman, A.H.; Winkelman, J.W.; Michaelides, M.; Weintraub, E.; Volkow, N.D.; Belcher, A.M.; Ferré, S. Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids. J. Clin. Invest., 2019, 129(7), 2730-2744.
[http://dx.doi.org/10.1172/JCI126912] [PMID: 30913037]
[627]
Salio, C.; Fischer, J.; Franzoni, M.F.; Mackie, K.; Kaneko, T.; Conrath, M. CB1-cannabinoid and μ-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neuroreport, 2001, 12(17), 3689-3692.
[http://dx.doi.org/10.1097/00001756-200112040-00017] [PMID: 11726775]
[628]
Raehal, K.M.; Bohn, L.M. β-arrestins: regulatory role and therapeutic potential in opioid and cannabinoid receptor-mediated analgesia. Handb. Exp. Pharmacol., 2014, 219, 427-443.
[http://dx.doi.org/10.1007/978-3-642-41199-1_22] [PMID: 24292843]
[629]
Bouchet, C.A.; Ingram, S.L. Cannabinoids in the descending pain modulatory circuit: Role in inflammation. Pharmacol. Ther., 2020, 209, 107495.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107495] [PMID: 32004514]
[630]
Christie, M.J. Opioid and cannabinoid receptors: friends with benefits or just close friends? Br. J. Pharmacol., 2006, 148(4), 385-386.
[http://dx.doi.org/10.1038/sj.bjp.0706756] [PMID: 16682965]
[631]
Manduca, A.; Lassalle, O.; Sepers, M.; Campolongo, P.; Cuomo, V.; Marsicano, G.; Kieffer, B.; Vanderschuren, L.J.; Trezza, V.; Manzoni, O.J. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play. Front. Behav. Neurosci., 2016, 10(NOV), 211.
[http://dx.doi.org/10.3389/fnbeh.2016.00211] [PMID: 27899885]
[632]
Manduca, A.; Morena, M.; Campolongo, P.; Servadio, M.; Palmery, M.; Trabace, L.; Hill, M.N.; Vanderschuren, L.J.; Cuomo, V.; Trezza, V. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur. Neuropsychopharmacol., 2015, 25(8), 1362-1374.
[http://dx.doi.org/10.1016/j.euroneuro.2015.04.005] [PMID: 25914159]
[633]
Wei, D.; Lee, D.; Li, D.; Daglian, J.; Jung, K.M.; Piomelli, D. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology (Berl.), 2016, 233(10), 1911-1919.
[http://dx.doi.org/10.1007/s00213-016-4222-0] [PMID: 26873082]
[634]
Pu, S.F.; Zhuang, H.X.; Han, J.S. Cholecystokinin octapeptide (CCK-8) antagonizes morphine analgesia in nucleus accumbens of the rat via the CCK-B receptor. Brain Res., 1994, 657(1-2), 159-164.
[http://dx.doi.org/10.1016/0006-8993(94)90963-6] [PMID: 7820614]
[635]
Dourish, C.T.; O’Neill, M.F.; Coughlan, J.; Kitchener, S.J.; Hawley, D.; Iversen, S.D. The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur. J. Pharmacol., 1990, 176(1), 35-44.
[http://dx.doi.org/10.1016/0014-2999(90)90129-T] [PMID: 2311658]
[636]
Suzuki, S.; Chuang, L.F.; Yau, P.; Doi, R.H.; Chuang, R.Y. Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp. Cell Res., 2002, 280(2), 192-200.
[http://dx.doi.org/10.1006/excr.2002.5638] [PMID: 12413885]
[637]
Szabo, I.; Chen, X-H.; Xin, L.; Adler, M.W.; Howard, O.M.Z.; Oppenheim, J.J.; Rogers, T.J. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10276-10281.
[http://dx.doi.org/10.1073/pnas.102327699] [PMID: 12130663]
[638]
Juhasz, J.R.; Hasbi, A.; Rashid, A.J.; So, C.H.; George, S.R.; O’Dowd, B.F. Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. Eur. J. Pharmacol., 2008, 581(3), 235-243.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.060] [PMID: 18237729]
[639]
Tao, Y.M.; Yu, C.; Wang, W.S.; Hou, Y.Y.; Xu, X.J.; Chi, Z.Q.; Ding, Y.Q.; Wang, Y.J.; Liu, J.G. Heteromers of μ opioid and dopamine D1 receptors modulate opioid-induced locomotor sensitization in a dopamine-independent manner. Br. J. Pharmacol., 2017, 174(17), 2842-2861.
[http://dx.doi.org/10.1111/bph.13908] [PMID: 28608532]
[640]
Dai, W.L.; Xiong, F.; Yan, B.; Cao, Z.Y.; Liu, W.T.; Liu, J.H.; Yu, B.Y. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord. Sci. Rep., 2016, 6(1), 38746.
[http://dx.doi.org/10.1038/srep38746] [PMID: 28004735]
[641]
Vasudevan, L.; Borroto-Escuela, D.O.; Huysentruyt, J.; Fuxe, K.; Saini, D.K.; Stove, C. Heterodimerization of MU opioid receptor protomer with dopamine D2 receptor modulates agonist- induced internalization of MU opioid receptor. Biomolecules, 2019, 9(8), 368.
[http://dx.doi.org/10.3390/biom9080368] [PMID: 31416253]
[642]
Grecksch, G.; Just, S.; Pierstorff, C.; Imhof, A.K.; Glück, L.; Doll, C.; Lupp, A.; Becker, A.; Koch, T.; Stumm, R.; Höllt, V.; Schulz, S. Analgesic tolerance to high-efficacy agonists but not to morphine is diminished in phosphorylation-deficient S375A μ-opioid receptor knock-in mice. J. Neurosci., 2011, 31(39), 13890-13896.
[http://dx.doi.org/10.1523/JNEUROSCI.2304-11.2011] [PMID: 21957251]
[643]
McPherson, J.; Rivero, G.; Baptist, M.; Llorente, J.; Al-Sabah, S.; Krasel, C.; Dewey, W.L.; Bailey, C.P.; Rosethorne, E.M.; Charlton, S.J.; Henderson, G.; Kelly, E. μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol. Pharmacol., 2010, 78(4), 756-766.
[http://dx.doi.org/10.1124/mol.110.066613] [PMID: 20647394]
[644]
Whistler, J.L.; von Zastrow, M. Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 9914-9919.
[http://dx.doi.org/10.1073/pnas.95.17.9914] [PMID: 9707575]
[645]
Bohn, LM; Gainetdinov, RR; Caron, MG. G Protein-coupled receptor kinase/β-arrestin systems and drugs of abuse: Psychostimulant and opiate studies in knockout mice. Neuro. Mol. Med, 2004, 5(1), 041-50.
[646]
Artigas, F. Serotonin receptors involved in antidepressant effects. Pharmacol. Ther., 2013, 137(1), 119-131.
[http://dx.doi.org/10.1016/j.pharmthera.2012.09.006] [PMID: 23022360]
[647]
Borroto-Escuela, D.O.; Li, X.; Tarakanov, A.O.; Savelli, D.; Narváez, M.; Shumilov, K.; Andrade-Talavera, Y.; Jimenez-Beristain, A.; Pomierny, B.; Díaz-Cabiale, Z.; Cuppini, R.; Ambrogini, P.; Lindskog, M.; Fuxe, K. Existence of brain 5-HT1A-5-HT2A isoreceptor complexes with antagonistic allosteric receptor-receptor interactions regulating 5-HT1A receptor recognition. ACS Omega, 2017, 2(8), 4779-4789.
[http://dx.doi.org/10.1021/acsomega.7b00629] [PMID: 28920103]
[648]
Szlachta, M.; Kuśmider, M.; Pabian, P.; Solich, J.; Kolasa, M.; Żurawek, D.; Dziedzicka-Wasylewska, M.; Faron-Górecka, A. Repeated clozapine increases the level of serotonin 5-HT1A R heterodimerization with 5-HT2A or dopamine D2 receptors in the mouse cortex. Front. Mol. Neurosci., 2018, 11, 40.
[http://dx.doi.org/10.3389/fnmol.2018.00040] [PMID: 29497362]
[649]
Celada, P.; Bortolozzi, A.; Artigas, F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs, 2013, 27(9), 703-716.
[http://dx.doi.org/10.1007/s40263-013-0071-0] [PMID: 23757185]
[650]
Millan, M.J.; Marin, P.; Bockaert, J.; Mannoury la Cour, C. Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol. Sci., 2008, 29(9), 454-464.
[http://dx.doi.org/10.1016/j.tips.2008.06.007] [PMID: 18676031]
[651]
Carr, D.B.; Cooper, D.C.; Ulrich, S.L.; Spruston, N.; Surmeier, D.J. Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J. Neurosci., 2002, 22(16), 6846-6855.
[http://dx.doi.org/10.1523/JNEUROSCI.22-16-06846.2002] [PMID: 12177182]
[652]
Anastasio, N.C.; Stutz, S.J.; Fink, L.H.L.; Swinford-Jackson, S.E.; Sears, R.M.; DiLeone, R.J.; Rice, K.C.; Moeller, F.G.; Cunningham, K.A. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity. ACS Chem. Neurosci., 2015, 6(7), 1248-1258.
[http://dx.doi.org/10.1021/acschemneuro.5b00094] [PMID: 26120876]
[653]
Bubar, M.J.; Stutz, S.J.; Cunningham, K.A. 5-HT(2C) receptors localize to dopamine and GABA neurons in the rat mesoaccumbens pathway. PLoS One, 2011, 6(6), e20508.
[http://dx.doi.org/10.1371/journal.pone.0020508] [PMID: 21687728]
[654]
Esposito, E. Serotonin-dopamine interaction as a focus of novel antidepressant drugs. Curr. Drug Targets, 2006, 7(2), 177-185.
[http://dx.doi.org/10.2174/138945006775515455] [PMID: 16475959]
[655]
Moutkine, I.; Quentin, E.; Guiard, B.P.; Maroteaux, L.; Doly, S. Heterodimers of serotonin receptor subtypes 2 are driven by 5-HT2C protomers. J. Biol. Chem., 2017, 292(15), 6352-6368.
[http://dx.doi.org/10.1074/jbc.M117.779041] [PMID: 28258217]
[656]
Renner, U.; Zeug, A.; Woehler, A.; Niebert, M.; Dityatev, A.; Dityateva, G.; Gorinski, N.; Guseva, D.; Abdel-Galil, D.; Fröhlich, M.; Döring, F.; Wischmeyer, E.; Richter, D.W.; Neher, E.; Ponimaskin, E.G. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell Sci., 2012, 125(Pt 10), 2486-2499.
[http://dx.doi.org/10.1242/jcs.101337] [PMID: 22357950]
[657]
Barnes, N.M.; Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology, 1999, 38(8), 1083-1152.
[http://dx.doi.org/10.1016/S0028-3908(99)00010-6] [PMID: 10462127]
[658]
Raymond, J.R.; Mukhin, Y.V.; Gettys, T.W.; Garnovskaya, M.N. The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br. J. Pharmacol., 1999, 127(8), 1751-1764.
[http://dx.doi.org/10.1038/sj.bjp.0702723] [PMID: 10482904]
[659]
Li, Y.H.; Xiang, K.; Xu, X.; Zhao, X.; Li, Y.; Zheng, L.; Wang, J. Co-activation of both 5-HT1A and 5-HT7 receptors induced attenuation of glutamatergic synaptic transmission in the rat visual cortex. Neurosci. Lett., 2018, 686, 122-126.
[http://dx.doi.org/10.1016/j.neulet.2018.09.013] [PMID: 30205142]
[660]
Naumenko, V.S.; Popova, N.K.; Lacivita, E.; Leopoldo, M.; Ponimaskin, E.G. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther., 2014, 20(7), 582-590.
[http://dx.doi.org/10.1111/cns.12247] [PMID: 24935787]
[661]
Łukasiewicz, S.; Błasiak, E.; Szafran-Pilch, K.; Dziedzicka-Wasylewska, M. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics - in vitro studies. J. Neurochem., 2016, 137(4), 549-560.
[http://dx.doi.org/10.1111/jnc.13582] [PMID: 26876117]
[662]
Łukasiewicz, S.; Polit, A.; Kędracka-Krok, S.; Wędzony, K.; Maćkowiak, M.; Dziedzicka-Wasylewska, M. Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. Biochim. Biophys. Acta, 2010, 1803(12), 1347-1358.
[http://dx.doi.org/10.1016/j.bbamcr.2010.08.010] [PMID: 20831885]
[663]
Albizu, L.; Holloway, T.; González-Maeso, J.; Sealfon, S.C. Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology, 2011, 61(4), 770-777.
[http://dx.doi.org/10.1016/j.neuropharm.2011.05.023] [PMID: 21645528]
[664]
Borroto-Escuela, D.O.; Romero-Fernandez, W.; Tarakanov, A.O.; Marcellino, D.; Ciruela, F.; Agnati, L.F.; Fuxe, K. Dopamine D2 and 5-hydroxytryptamine 5-HT(2A) receptors assemble into functionally interacting heteromers. Biochem. Biophys. Res. Commun., 2010, 401(4), 605-610.
[http://dx.doi.org/10.1016/j.bbrc.2010.09.110] [PMID: 20888323]
[665]
Glennon, J.; Wadman, W.; McCreary, A.; Werkman, T. Dopamine Receptor Pharmacology: Interactions with Serotonin Receptors and Significance for the Aetiology and Treatment of Schizophrenia. CNS Neurol. Disord. Drug Targets, 2008, 5(1), 3-23.
[http://dx.doi.org/10.2174/187152706784111614] [PMID: 18289026]
[666]
Reimherr, F.W.; Wood, D.R.; Wender, P.H. The use of MK-801, a novel sympathomimetic, in adults with attention deficit disorder, residual type. Psychopharmacol. Bull., 1986, 22(1), 237-242.
[PMID: 3523579]
[667]
Gattaz, W.F.; Schummer, B.; Behrens, S. Effects of zotepine, haloperidol and clozapine on MK-801-induced stereotypy and locomotion in rats. J. Neural Transm. (Vienna), 1994, 96(3), 227-232.
[http://dx.doi.org/10.1007/BF01294789] [PMID: 7826573]
[668]
Borroto-Escuela, D.O.; Narvaez, M.; Marcellino, D.; Parrado, C.; Narvaez, J.A.; Tarakanov, A.O.; Agnati, L.F.; Díaz-Cabiale, Z.; Fuxe, K. Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem. Biophys. Res. Commun., 2010, 393(4), 767-772.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.078] [PMID: 20171159]
[669]
Branchek, T.; Smith, K.E.; Walker, M.W. Molecular biology and pharmacology of galanin receptors. Ann. N. Y. Acad. Sci., 1998, 863(1), 94-107.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb10687.x] [PMID: 9928163]
[670]
Fuxe, K.; Hedlund, P.; von Euler, G.; Lundgren, K.; Martire, M.; Ögren, S.O. Galanin/5-HT interactions in the rat central nervous system. Relevance for depression; Galanin, 1991, pp. 221-235.
[http://dx.doi.org/10.1007/978-1-349-12664-4_16]
[671]
Razani, H.; Díaz-Cabiale, Z.; Misane, I.; Wang, F.H.; Fuxe, K.; Ögren, S.O. Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine(1A) receptor mediated function in the rat. Neurosci. Lett., 2001, 299(1-2), 145-149.
[http://dx.doi.org/10.1016/S0304-3940(00)01788-2] [PMID: 11166958]
[672]
Fuxe, K.; von Euler, G.; Agnati, L.F.; Ögren, S.O. Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex. Neurosci. Lett., 1988, 85(1), 163-167.
[http://dx.doi.org/10.1016/0304-3940(88)90448-X] [PMID: 2452385]
[673]
Razani, H.; Diaz-Cabiale, Z.; Fuxe, K.; Ögren, S.O. Intraventricular galanin produces a time-dependent modulation of 5-HT1A receptors in the dorsal raphe of the rat. Neuroreport, 2000, 11(18), 3943-3948.
[http://dx.doi.org/10.1097/00001756-200012180-00008] [PMID: 11192606]
[674]
Fuxe, K.; Ögren, S.O.; Jansson, A.; Cintra, A.; Härfstrand, A.; Agnati, L.F. Intraventricular injections of galanin reduces 5-HT metabolism in the ventral limbic cortex, the hippocampal formation and the fronto-parietal cortex of the male rat. Acta Physiol. Scand., 1988, 133(4), 579-581.
[http://dx.doi.org/10.1111/j.1748-1716.1988.tb08444.x] [PMID: 2465672]
[675]
Kehr, J.; Yoshitake, T.; Wang, F.H.; Razani, H.; Gimenez-Llort, L.; Jansson, A.; Yamaguchi, M.; Ogren, S.O. Galanin is a potent in vivo modulator of mesencephalic serotonergic neurotransmission. Neuropsychopharmacology, 2002, 27(3), 341-356.
[http://dx.doi.org/10.1016/S0893-133X(02)00309-3] [PMID: 12225692]
[676]
Chruścicka, B.; Wallace Fitzsimons, S.E.; Borroto-Escuela, D.O.; Druelle, C.; Stamou, P.; Nally, K.; Dinan, T.G.; Cryan, J.F.; Fuxe, K.; Schellekens, H. Attenuation of oxytocin and serotonin 2A receptor signaling through novel heteroreceptor formation. ACS Chem. Neurosci., 2019, 10(7), 3225-3240.
[http://dx.doi.org/10.1021/acschemneuro.8b00665] [PMID: 31038917]
[677]
Eaton, J.L.; Roache, L.; Nguyen, K.N.; Cushing, B.S.; Troyer, E.; Papademetriou, E.; Raghanti, M.A. Organizational effects of oxytocin on serotonin innervation. Dev. Psychobiol., 2012, 54(1), 92-97.
[http://dx.doi.org/10.1002/dev.20566] [PMID: 21594870]
[678]
Lefevre, A.; Richard, N.; Jazayeri, M.; Beuriat, P.A.; Fieux, S.; Zimmer, L.; Duhamel, J.R.; Sirigu, A. Oxytocin and serotonin brain mechanisms in the nonhuman primate. J. Neurosci., 2017, 37(28), 6741-6750.
[http://dx.doi.org/10.1523/JNEUROSCI.0659-17.2017] [PMID: 28607170]
[679]
Dölen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 2013, 501(7466), 179-184.
[http://dx.doi.org/10.1038/nature12518] [PMID: 24025838]
[680]
Yoshida, M.; Takayanagi, Y.; Inoue, K.; Kimura, T.; Young, L.J.; Onaka, T.; Nishimori, K. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci., 2009, 29(7), 2259-2271.
[http://dx.doi.org/10.1523/JNEUROSCI.5593-08.2009] [PMID: 19228979]
[681]
Chruścicka, B.; Cowan, C.S.M.; Wallace Fitzsimons, S.E.; Borroto-Escuela, D.O.; Druelle, C.M.; Stamou, P.; Bergmann, C.A.; Dinan, T.G.; Slattery, D.A.; Fuxe, K.; Cryan, J.F.; Schellekens, H. Molecular, biochemical and behavioural evidence for a novel oxytocin receptor and serotonin 2C receptor heterocomplex. Neuropharmacology, 2021, 183, 108394.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108394] [PMID: 33188842]
[682]
Prosser, R.A. Melatonin inhibits in vitro serotonergic phase shifts of the suprachiasmatic circadian clock. Brain Res., 1999, 818(2), 408-413.
[http://dx.doi.org/10.1016/S0006-8993(98)01295-5] [PMID: 10082826]
[683]
Kamal, M.; Gbahou, F.; Guillaume, J.L.; Daulat, A.M.; Benleulmi-Chaachoua, A.; Luka, M.; Chen, P.; Kalbasi Anaraki, D.; Baroncini, M.; Mannoury la Cour, C.; Millan, M.J.; Prevot, V.; Delagrange, P.; Jockers, R. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J. Biol. Chem., 2015, 290(18), 11537-11546.
[http://dx.doi.org/10.1074/jbc.M114.559542] [PMID: 25770211]
[684]
Millan, M.J.; Gobert, A.; Lejeune, F.; Dekeyne, A.; Newman-Tancredi, A.; Pasteau, V.; Rivet, J.M.; Cussac, D. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J. Pharmacol. Exp. Ther., 2003, 306(3), 954-964.
[http://dx.doi.org/10.1124/jpet.103.051797] [PMID: 12750432]
[685]
Audinot, V.; Bonnaud, A.; Grandcolas, L.; Rodriguez, M.; Nagel, N.; Galizzi, J.P.; Balik, A.; Messager, S.; Hazlerigg, D.G.; Barrett, P.; Delagrange, P.; Boutin, J.A. Molecular cloning and pharmacological characterization of rat melatonin MT1 and MT2 receptors. Biochem. Pharmacol., 2008, 75(10), 2007-2019.
[http://dx.doi.org/10.1016/j.bcp.2008.02.022] [PMID: 18384758]
[686]
Racagni, G.; Riva, M.A.; Molteni, R.; Musazzi, L.; Calabrese, F.; Popoli, M.; Tardito, D. Mode of action of agomelatine: synergy between melatonergic and 5-HT2C receptors. World J. Biol. Psychiatry, 2011, 12(8), 574-587.
[http://dx.doi.org/10.3109/15622975.2011.595823] [PMID: 21999473]
[687]
Gerbier, R.; Ndiaye-Lobry, D.; Martinez de Morentin, P.B.; Cecon, E.; Heisler, L.K.; Delagrange, P.; Gbahou, F.; Jockers, R. Pharmacological evidence for transactivation within melatonin MT2 and serotonin 5-HT2C receptor heteromers in mouse brain. FASEB J., 2021, 35(1), e21161.
[http://dx.doi.org/10.1096/fj.202000305R] [PMID: 33156577]
[688]
Kishimoto, K.; Koyama, S.; Akaike, N. Synergistic μ-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons. Neuropharmacology, 2001, 41(5), 529-538.
[http://dx.doi.org/10.1016/S0028-3908(01)00100-9] [PMID: 11587707]
[689]
Daval, G.; Vergé, D.; Basbaum, A.I.; Bourgoin, S.; Hamon, M. Autoradiographic evidence of serotonin1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neurosci. Lett., 1987, 83(1-2), 71-76.
[http://dx.doi.org/10.1016/0304-3940(87)90218-7] [PMID: 3441302]
[690]
Pompeiano, M.; Palacios, J.M.; Mengod, G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J. Neurosci., 1992, 12(2), 440-453.
[http://dx.doi.org/10.1523/JNEUROSCI.12-02-00440.1992] [PMID: 1531498]
[691]
Law, P-Y.; Wong, Y.H.; Loh, H.H. Molecular mechanisms and regulation of opioid receptor signaling. Annu. Rev. Pharmacol. Toxicol., 2000, 40(1), 389-430.
[http://dx.doi.org/10.1146/annurev.pharmtox.40.1.389] [PMID: 10836142]
[692]
Cussac, D.; Rauly-Lestienne, I.; Heusler, P.; Finana, F.; Cathala, C.; Bernois, S.; De Vries, L. μ-Opioid and 5-HT1A receptors heterodimerize and show signalling crosstalk via G protein and MAP-kinase pathways. Cell. Signal., 2012, 24(8), 1648-1657.
[http://dx.doi.org/10.1016/j.cellsig.2012.04.010] [PMID: 22560877]
[693]
Milligan, G. Insights into ligand pharmacology using receptor-G-protein fusion proteins. Trends Pharmacol. Sci., 2000, 21(1), 24-28.
[http://dx.doi.org/10.1016/S0165-6147(99)01404-2] [PMID: 10637652]
[694]
Ashton, J.C.; Appleton, I.; Darlington, C.L.; Smith, P.F. Immunohistochemical localization of cerebrovascular cannabinoid CB1 receptor protein. J. Cardiovasc. Pharmacol., 2004, 44(5), 517-519.
[http://dx.doi.org/10.1097/00005344-200411000-00001] [PMID: 15505486]
[695]
Smith, T.H.; Sim-Selley, L.J.; Selley, D.E. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br. J. Pharmacol., 2010, 160(3), 454-466.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00777.x] [PMID: 20590557]
[696]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365(6441), 61-65.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[697]
Latek, D.; Kolinski, M.; Ghoshdastider, U.; Debinski, A.; Bombolewski, R.; Plazinska, A. Modeling of ligand binding to G protein coupled receptors: Cannabinoid CB 1, CB 2 and adrenergic β 2AR. J. Mol. Mod., 2011, 2353-2366.
[698]
Callén, L.; Moreno, E.; Barroso-Chinea, P.; Moreno-Delgado, D.; Cortés, A.; Mallol, J.; Casadó, V.; Lanciego, J.L.; Franco, R.; Lluis, C.; Canela, E.I.; McCormick, P.J. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J. Biol. Chem., 2012, 287(25), 20851-20865.
[http://dx.doi.org/10.1074/jbc.M111.335273] [PMID: 22532560]
[699]
Sierra, S.; Luquin, N.; Rico, A.J.; Gómez-Bautista, V.; Roda, E.; Dopeso-Reyes, I.G.; Vázquez, A.; Martínez-Pinilla, E.; Labandeira-García, J.L.; Franco, R.; Lanciego, J.L. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct. Funct., 2015, 220(5), 2721-2738.
[http://dx.doi.org/10.1007/s00429-014-0823-8] [PMID: 24972960]
[700]
Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 1997, 74(2), 129-180.
[http://dx.doi.org/10.1016/S0163-7258(97)82001-3] [PMID: 9336020]
[701]
Navarro, G.; Borroto-Escuela, D.; Angelats, E.; Etayo, Í.; Reyes-Resina, I.; Pulido-Salgado, M.; Rodríguez-Pérez, A.I.; Canela, E.I.; Saura, J.; Lanciego, J.L.; Labandeira-García, J.L.; Saura, C.A.; Fuxe, K.; Franco, R. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav. Immun., 2018, 67, 139-151.
[http://dx.doi.org/10.1016/j.bbi.2017.08.015] [PMID: 28843453]
[702]
Beltramo, M.; de Fonseca, F.R.; Navarro, M.; Calignano, A.; Gorriti, M.A.; Grammatikopoulos, G.; Sadile, A.G.; Giuffrida, A.; Piomelli, D. Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. J. Neurosci., 2000, 20(9), 3401-3407.
[http://dx.doi.org/10.1523/JNEUROSCI.20-09-03401.2000] [PMID: 10777802]
[703]
Giuffrida, A.; Parsons, L.H.; Kerr, T.M.; Rodríguez de Fonseca, F.; Navarro, M.; Piomelli, D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat. Neurosci., 1999, 2(4), 358-363.
[http://dx.doi.org/10.1038/7268] [PMID: 10204543]
[704]
Kearn, C.S.; Blake-Palmer, K.; Daniel, E.; Mackie, K.; Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: A mechanism for receptor cross-talk? Mol. Pharmacol., 2005, 67(5), 1697-1704.
[http://dx.doi.org/10.1124/mol.104.006882] [PMID: 15710746]
[705]
Herkenham, M.; Lynn, A.B.; de Costa, B.R.; Richfield, E.K. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res., 1991, 547(2), 267-274.
[http://dx.doi.org/10.1016/0006-8993(91)90970-7] [PMID: 1909204]
[706]
Meschler, J.P.; Howlett, A.C. Signal transduction interactions between CB1 cannabinoid and dopamine receptors in the rat and monkey striatum. Neuropharmacology, 2001, 40(7), 918-926.
[http://dx.doi.org/10.1016/S0028-3908(01)00012-0] [PMID: 11378162]
[707]
Van Der Stelt, M.; Di Marzo, V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: Implications for neurological and psychiatric disorders. In: European J; Pharmacol, 2003, pp. 133-150.
[http://dx.doi.org/10.1016/j.ejphar.2003.08.101]
[708]
Julian, M.D.; Martin, A.B.; Cuellar, B. Rodriguez, De Fonseca, F.; Navarro, M.; Moratalla, R.; Garcia-Segura, L.M. Neuroanatomical relationship between type 1 cannabinoid receptors and dopaminergic systems in the rat basal ganglia. Neuroscience, 2003, 119(1), 309-318.
[http://dx.doi.org/10.1016/S0306-4522(03)00070-8] [PMID: 12763090]
[709]
Terzian, A.L.; Drago, F.; Wotjak, C.T.; Micale, V. The dopamine and cannabinoid interaction in the modulation of emotions and cognition: Assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci., 2011, 5, 49.
[http://dx.doi.org/10.3389/fnbeh.2011.00049] [PMID: 21887137]
[710]
Serrano, A.; Vadas, E.; Ferrer, B.; Bilbao, A.; Granado, N.; Suárez, J.; Pavon, F.J.; Moratalla, R.; Rodríguez de Fonseca, F. Genetic deletion of dopamine D1 receptors increases the sensitivity to cannabinoid CB1 receptor antagonist-precipitated withdrawal when compared with wild-type littermates: studies in female mice repeatedly exposed to the Spice cannabinoid HU-210. Psychopharmacology (Berl.), 2021, 238(2), 551-557.
[http://dx.doi.org/10.1007/s00213-020-05704-8] [PMID: 33410990]
[711]
Egertová, M.; Elphick, M.R. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J. Comp. Neurol., 2000, 422(2), 159-171.
[http://dx.doi.org/10.1002/(SICI)1096-9861(20000626)422:2<159:AID-CNE1>3.0.CO;2-1] [PMID: 10842224]
[712]
Yin, H.H.; Lovinger, D.M. Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc. Natl. Acad. Sci. USA, 2006, 103(21), 8251-8256.
[http://dx.doi.org/10.1073/pnas.0510797103] [PMID: 16698932]
[713]
Pickel, V.M.; Chan, J.; Kearn, C.S.; Mackie, K. Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J. Comp. Neurol., 2006, 495(3), 299-313.
[http://dx.doi.org/10.1002/cne.20881] [PMID: 16440297]
[714]
Bagher, A.M.; Young, A.P.; Laprairie, R.B.; Toguri, J.T.; Kelly, M.E.M.; Denovan-Wright, E.M. Heteromer formation between cannabinoid type 1 and dopamine type 2 receptors is altered by combination cannabinoid and antipsychotic treatments. J. Neurosci. Res., 2020, 98(12), 2496-2509.
[http://dx.doi.org/10.1002/jnr.24716] [PMID: 32881145]
[715]
Bagher, A.M.; Laprairie, R.B.; Toguri, J.T.; Kelly, M.E.M.; Denovan-Wright, E.M. Bidirectional allosteric interactions between cannabinoid receptor 1 (CB1) and dopamine receptor 2 long (D2L) heterotetramers. Eur. J. Pharmacol., 2017, 813, 66-83.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.034] [PMID: 28734930]
[716]
Bagher, A.M.; Laprairie, R.B.; Kelly, M.E.M.; Denovan-Wright, E.M. Antagonism of dopamine receptor 2 long affects cannabinoid receptor 1 signaling in a cell culture model of striatal medium spiny projection neurons. Mol. Pharmacol., 2016, 89(6), 652-666.
[http://dx.doi.org/10.1124/mol.116.103465] [PMID: 27053685]
[717]
Pinna, A.; Bonaventura, J.; Farré, D.; Sánchez, M.; Simola, N.; Mallol, J.; Lluís, C.; Costa, G.; Baqi, Y.; Müller, C.E.; Cortés, A.; McCormick, P.; Canela, E.I.; Martínez-Pinilla, E.; Lanciego, J.L.; Casadó, V.; Armentero, M.T.; Franco, R. L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies. Exp. Neurol., 2014, 253, 180-191.
[http://dx.doi.org/10.1016/j.expneurol.2013.12.021] [PMID: 24412491]
[718]
Bonaventura, J.; Rico, A.J.; Moreno, E.; Sierra, S.; Sánchez, M.; Luquin, N.; Farré, D.; Müller, C.E.; Martínez-Pinilla, E.; Cortés, A.; Mallol, J.; Armentero, M.T.; Pinna, A.; Canela, E.I.; Lluís, C.; McCormick, P.J.; Lanciego, J.L.; Casadó, V.; Franco, R. L-DOPA-treatment in primates disrupts the expression of A(2A) adenosine-CB(1) cannabinoid-D(2) dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.036] [PMID: 24230991]
[719]
Jarrahian, A.; Watts, V.J.; Barker, E.L. D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor. J. Pharmacol. Exp. Ther., 2004, 308(3), 880-886.
[http://dx.doi.org/10.1124/jpet.103.057620] [PMID: 14634050]
[720]
Glass, M.; Felder, C.C. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J. Neurosci., 1997, 17(14), 5327-5333.
[http://dx.doi.org/10.1523/JNEUROSCI.17-14-05327.1997] [PMID: 9204917]
[721]
Marcellino, D.; Carriba, P.; Filip, M.; Borgkvist, A.; Frankowska, M.; Bellido, I.; Tanganelli, S.; Müller, C.E.; Fisone, G.; Lluis, C.; Agnati, L.F.; Franco, R.; Fuxe, K. Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology, 2008, 54(5), 815-823.
[http://dx.doi.org/10.1016/j.neuropharm.2007.12.011] [PMID: 18262573]
[722]
Ferré, S.; Goldberg, S.R.; Lluis, C.; Franco, R. Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology, 2009, 56(Suppl. 1), 226-234.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.076] [PMID: 18691604]
[723]
Soria, G.; Castañé, A.; Berrendero, F.; Ledent, C.; Parmentier, M.; Maldonado, R.; Valverde, O. Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. Eur. J. Neurosci., 2004, 20(8), 2203-2213.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03682.x] [PMID: 15450100]
[724]
Tebano, M.T.; Martire, A.; Chiodi, V.; Pepponi, R.; Ferrante, A.; Domenici, M.R.; Frank, C.; Chen, J.F.; Ledent, C.; Popoli, P. Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum. J. Neurochem., 2009, 110(6), 1921-1930.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06282.x] [PMID: 19627447]
[725]
Anderson, W.W.; Collingridge, G.L. The LTP Program: A data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Methods, 2001, 108(1), 71-83.
[http://dx.doi.org/10.1016/S0165-0270(01)00374-0] [PMID: 11459620]
[726]
Carriba, P.; Ortiz, O.; Patkar, K.; Justinova, Z.; Stroik, J.; Themann, A.; Müller, C.; Woods, A.S.; Hope, B.T.; Ciruela, F.; Casadó, V.; Canela, E.I.; Lluis, C.; Goldberg, S.R.; Moratalla, R.; Franco, R.; Ferré, S. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology, 2007, 32(11), 2249-2259.
[http://dx.doi.org/10.1038/sj.npp.1301375] [PMID: 17356572]
[727]
Rodríguez de Fonseca, F.; Rubio, P.; Menzaghi, F.; Merlo-Pich, E.; Rivier, J.; Koob, G.F.; Navarro, M. Corticotropin-releasing factor (CRF) antagonist [D-Phe12,Nle21,38,C alpha MeLeu37]CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behavior in rats. J. Pharmacol. Exp. Ther., 1996, 276(1), 56-64.
[PMID: 8558457]
[728]
Castellano, C.; Rossi-Arnaud, C.; Cestari, V.; Costanzi, M. Cannabinoids and memory: Animal studies. Curr. Drug Targets CNS Neurol. Disord., 2003, 2(6), 389-402.
[http://dx.doi.org/10.2174/1568007033482670] [PMID: 14683467]
[729]
Moreira, F.A.; Lutz, B. The endocannabinoid system: emotion, learning and addiction. Addict. Biol., 2008, 13(2), 196-212.
[http://dx.doi.org/10.1111/j.1369-1600.2008.00104.x] [PMID: 18422832]
[730]
Maldonado, R.; Berrendero, F.; Ozaita, A.; Robledo, P. Neurochemical basis of cannabis addiction. Neuroscience, 2011, 181, 1-17.
[http://dx.doi.org/10.1016/j.neuroscience.2011.02.035] [PMID: 21334423]
[731]
Viñals, X.; Moreno, E.; Lanfumey, L.; Cordomí, A.; Pastor, A.; de La Torre, R.; Gasperini, P.; Navarro, G.; Howell, L.A.; Pardo, L.; Lluís, C.; Canela, E.I.; McCormick, P.J.; Maldonado, R.; Robledo, P. Cognitive impairment induced by delta9- tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol., 2015, 13(7), e1002194.
[http://dx.doi.org/10.1371/journal.pbio.1002194] [PMID: 26158621]
[732]
Gorzalka, B.B.; Hill, M.N.; Sun, J.C. Functional role of the endocannabinoid system and AMPA/kainate receptors in 5-HT2A receptor-mediated wet dog shakes. Eur. J. Pharmacol., 2005, 516(1), 28-33.
[http://dx.doi.org/10.1016/j.ejphar.2005.04.019] [PMID: 15913602]
[733]
Darmani, N.A. Cannabinoids of diverse structure inhibit two DOI-induced 5-HT(2A) receptor-mediated behaviors in mice. Pharmacol. Biochem. Behav., 2001, 68(2), 311-317.
[http://dx.doi.org/10.1016/S0091-3057(00)00477-9] [PMID: 11267636]
[734]
Cheer, J.F.; Cadogan, A.K.; Marsden, C.A.; Fone, K.C.F.; Kendall, D.A. Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology, 1999, 38(4), 533-541.
[http://dx.doi.org/10.1016/S0028-3908(98)00208-1] [PMID: 10221757]
[735]
de Almeida, J.; Mengod, G. Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J. Neurochem., 2007, 103(2), 475-486.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04768.x] [PMID: 17635672]
[736]
Mechoulam, R.; Parker, L.A. The endocannabinoid system and the brain. Annu. Rev. Psychol., 2013, 64(1), 21-47.
[http://dx.doi.org/10.1146/annurev-psych-113011-143739] [PMID: 22804774]
[737]
Bombardi, C.; Di Giovanni, G. Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp. Brain Res., 2013, 230(4), 427-439.
[http://dx.doi.org/10.1007/s00221-013-3512-6] [PMID: 23591691]
[738]
Galindo, L.; Moreno, E.; López-Armenta, F.; Guinart, D.; Cuenca-Royo, A.; Izquierdo-Serra, M.; Xicota, L.; Fernandez, C.; Menoyo, E.; Fernández-Fernández, J.M.; Benítez-King, G.; Canela, E.I.; Casadó, V.; Pérez, V.; de la Torre, R.; Robledo, P. Cannabis users show enhanced expression of CB1-5HT2A receptor heteromers in olfactory neuroepithelium cells. Mol. Neurobiol., 2018, 55(8), 6347-6361.
[http://dx.doi.org/10.1007/s12035-017-0833-7] [PMID: 29294249]
[739]
Borroto-Escuela, D.O.; Narvaez, M.; Di Palma, M.; Calvo, F.; Rodriguez, D.; Millon, C.; Carlsson, J.; Agnati, L.F.; Garriga, P.; Díaz-Cabiale, Z.; Fuxe, K. Preferential activation by galanin 1-15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex. Biochem. Biophys. Res. Commun., 2014, 452(3), 347-353.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.061] [PMID: 25152404]
[740]
Millón, C.; Flores-Burgess, A.; Narváez, M.; Borroto-Escuela, D.O.; Santín, L.; Parrado, C. A role for galanin N-terminal fragment (1-15) in anxiety-and depression-related behaviors in Ra. Int. J. Neuropsychopharmacol., 2015, 18(3), 1-13.
[http://dx.doi.org/10.1093/ijnp/pyu064]
[741]
Fuxe, K.; Borroto-Escuela, D.O.; Romero-Fernandez, W.; Tarakanov, A.O.; Calvo, F.; Garriga, P.; Tena, M.; Narvaez, M.; Millón, C.; Parrado, C.; Ciruela, F.; Agnati, L.F.; Narvaez, J.A.; Díaz-Cabiale, Z. On the existence and function of galanin receptor heteromers in the central nervous system. Front. Endocrinol. (Lausanne), 2012, 3(OCT), 127.
[http://dx.doi.org/10.3389/fendo.2012.00127] [PMID: 23112793]
[742]
Rivas-Santisteban, R.; Rodriguez-Perez, A.I.; Muñoz, A.; Reyes-Resina, I.; Labandeira-García, J.L.; Navarro, G. Angiotensin AT1and AT2receptor heteromer expression in the hemilesioned rat model of Parkinson’s disease that increases with levodopa-induced dyskinesia. J. Neuroinflammation, 2020, 17(1), 1-16.
[http://dx.doi.org/10.1186/s12974-020-01908-z] [PMID: 31900165]
[743]
Perez-Lloret, S.; Otero-Losada, M.; Toblli, J.E.; Capani, F. Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson’s disease. Expert Opin. Investig. Drugs, 2017, 26(10), 1163-1173.
[http://dx.doi.org/10.1080/13543784.2017.1371133] [PMID: 28836869]
[744]
Muñoz, A.; Garrido-Gil, P.; Dominguez-Meijide, A.; Labandeira-Garcia, J.L. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson’s disease. Involvement of vascular endothelial growth factor and interleukin-1β. Exp. Neurol., 2014, 261, 720-732.
[http://dx.doi.org/10.1016/j.expneurol.2014.08.019] [PMID: 25160895]
[745]
Pin, J.P.; Galvez, T.; Prézeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther., 2003, 98(3), 325-354.
[http://dx.doi.org/10.1016/S0163-7258(03)00038-X] [PMID: 12782243]
[746]
Rondard, P.; Goudet, C.; Kniazeff, J.; Pin, J.P.; Prézeau, L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology, 2011, 60(1), 82-92.
[http://dx.doi.org/10.1016/j.neuropharm.2010.08.009] [PMID: 20713070]
[747]
Urwyler, S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol. Rev., 2011, 63(1), 59-126.
[http://dx.doi.org/10.1124/pr.109.002501] [PMID: 21228259]
[748]
Chun, L.; Zhang, W.H.; Liu, J.F. Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin., 2012, 33(3), 312-323.
[http://dx.doi.org/10.1038/aps.2011.186] [PMID: 22286915]
[749]
Binet, V.; Duthey, B.; Lecaillon, J.; Vol, C.; Quoyer, J.; Labesse, G.; Pin, J.P.; Prézeau, L. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. J. Biol. Chem., 2007, 282(16), 12154-12163.
[http://dx.doi.org/10.1074/jbc.M611071200] [PMID: 17310064]
[750]
Kunishima, N.; Shimada, Y.; Tsuji, Y.; Sato, T.; Yamamoto, M.; Kumasaka, T.; Nakanishi, S.; Jingami, H.; Morikawa, K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 2000, 407(6807), 971-977.
[http://dx.doi.org/10.1038/35039564] [PMID: 11069170]
[751]
Tsuchiya, D.; Kunishima, N.; Kamiya, N.; Jingami, H.; Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2660-2665.
[http://dx.doi.org/10.1073/pnas.052708599] [PMID: 11867751]
[752]
Conn, P.J.; Lindsley, C.W.; Jones, C.K. Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol. Sci., 2009, 30(1), 25-31.
[http://dx.doi.org/10.1016/j.tips.2008.10.006] [PMID: 19058862]
[753]
Bessis, A-S.; Rondard, P.; Gaven, F.; Brabet, I.; Triballeau, N.; Prezeau, L.; Acher, F.; Pin, J.P. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc. Natl. Acad. Sci. USA, 2002, 99(17), 11097-11102.
[http://dx.doi.org/10.1073/pnas.162138699] [PMID: 12151600]
[754]
Romano, C.; Miller, J.K.; Hyrc, K.; Dikranian, S.; Mennerick, S.; Takeuchi, Y.; Goldberg, M.P.; O’Malley, K.L. Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu5 dimerization. Mol. Pharmacol., 2001, 59(1), 46-53.
[http://dx.doi.org/10.1124/mol.59.1.46] [PMID: 11125023]
[755]
Tsuji, Y.; Shimada, Y.; Takeshita, T.; Kajimura, N.; Nomura, S.; Sekiyama, N.; Otomo, J.; Usukura, J.; Nakanishi, S.; Jingami, H. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem., 2000, 275(36), 28144-28151.
[http://dx.doi.org/10.1074/jbc.M003226200] [PMID: 10874032]
[756]
Ray, K.; Hauschild, B.C. Cys-140 is critical for metabotropic glutamate receptor-1 dimerization. J. Biol. Chem., 2000, 275(44), 34245-34251.
[http://dx.doi.org/10.1074/jbc.M005581200] [PMID: 10945991]
[757]
Ray, K.; Hauschild, B.C.; Steinbach, P.J.; Goldsmith, P.K.; Hauache, O.; Spiegel, A.M. Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca(2+) receptor critical for dimerization. Implications for function of monomeric Ca(2+) receptor. J. Biol. Chem., 1999, 274(39), 27642-27650.
[http://dx.doi.org/10.1074/jbc.274.39.27642] [PMID: 10488104]
[758]
Muto, T.; Tsuchiya, D.; Morikawa, K.; Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA, 2007, 104(10), 3759-3764.
[http://dx.doi.org/10.1073/pnas.0611577104] [PMID: 17360426]
[759]
Rondard, P.; Liu, J.; Huang, S.; Malhaire, F.; Vol, C.; Pinault, A.; Labesse, G.; Pin, J.P. Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors. J. Biol. Chem., 2006, 281(34), 24653-24661.
[http://dx.doi.org/10.1074/jbc.M602277200] [PMID: 16787923]
[760]
Hu, J.; Hauache, O.; Spiegel, A.M. Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J. Biol. Chem., 2000, 275(21), 16382-16389.
[http://dx.doi.org/10.1074/jbc.M000277200] [PMID: 10747888]
[761]
Brown, E.M. Clinical lessons from the calcium-sensing receptor. Nat. Clin. Pract. Endocrinol. Metab., 2007, 3(2), 122-133.
[http://dx.doi.org/10.1038/ncpendmet0388] [PMID: 17237839]
[762]
Deal, C. Future therapeutic targets in osteoporosis. Curr. Opin. Rheumatol., 2009, 21(4), 380-385.
[http://dx.doi.org/10.1097/BOR.0b013e32832cbc2a] [PMID: 19461517]
[763]
Brown, E.M. Anti-parathyroid and anti-calcium sensing receptor antibodies in autoimmune hypoparathyroidism. Endocrinol. Metab. Clin. North Am., 2009, 38(2), 437-445. x
[http://dx.doi.org/10.1016/j.ecl.2009.01.001] [PMID: 19328421]
[764]
Burger, A. Progress in Medicinal Chemistry. J. Med. Chem., 1963, 6(6), 827.
[765]
Gao, Y.; Robertson, M.J.; Rahman, S.N.; Seven, A.B.; Zhang, C.; Meyerowitz, J.G.; Panova, O.; Hannan, F.M.; Thakker, R.V.; Bräuner-Osborne, H.; Mathiesen, J.M.; Skiniotis, G. Asymmetric activation of the calcium-sensing receptor homodimer. Nature, 2021, 595(7867), 455-459.
[http://dx.doi.org/10.1038/s41586-021-03691-0] [PMID: 34194040]
[766]
Yano, S.; Brown, E.M.; Chattopadhyay, N. Calcium-sensing receptor in the brain; Churchill Livingstone, 2004, pp. 257-264.
[http://dx.doi.org/10.1016/j.ceca.2003.10.008]
[767]
Giudice, M.L.; Mihalik, B.; Dinnyés, A.; Kobolák, J. The nervous system relevance of the calcium sensing receptor in health and disease. Molecules, 2019, 24(14), 2546.
[http://dx.doi.org/10.3390/molecules24142546] [PMID: 31336912]
[768]
Berridge, M.J. Neuronal calcium signaling. Neuron, 1998, 21(1), 13-26.
[http://dx.doi.org/10.1016/S0896-6273(00)80510-3] [PMID: 9697848]
[769]
Schrank, S.; Barrington, N.; Stutzmann, G.E. Calcium-handling defects and neurodegenerative disease. Cold Spring Harb. Perspect. Biol., 2020, 12(7), 1-25.
[http://dx.doi.org/10.1101/cshperspect.a035212] [PMID: 31427373]
[770]
Kawamoto, E.M.; Vivar, C.; Camandola, S. Physiology and pathology of calcium signaling in the brain. Front. Pharmacol., 2012, 3, 61.
[http://dx.doi.org/10.3389/fphar.2012.00061] [PMID: 22518105]
[771]
Khachaturian, Z.S. Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol. Aging, 1987, 8(4), 345-346.
[http://dx.doi.org/10.1016/0197-4580(87)90073-X] [PMID: 3627349]
[772]
Mattson, M.P.; Pedersen, W.A.; Duan, W.; Culmsee, C.; Camandola, S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases.In: Annals of the New York Academy of Sciences,, 1999, pp. 154-175.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb07824.x]
[773]
Surmeier, D.J.; Schumacker, P.T.; Guzman, J.D.; Ilijic, E.; Yang, B.; Zampese, E. Calcium and Parkinson’s disease. Biochem. Biophys. Res. Commun., 2017, 483(4), 1013-1019.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.168] [PMID: 27590583]
[774]
Stutzmann, G.E.; Smith, I.; Caccamo, A.; Oddo, S.; Laferla, F.M.; Parker, I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J. Neurosci., 2006, 26(19), 5180-5189.
[http://dx.doi.org/10.1523/JNEUROSCI.0739-06.2006] [PMID: 16687509]
[775]
Pchitskaya, E.; Popugaeva, E.; Bezprozvanny, I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium, 2018, 70, 87-94.
[http://dx.doi.org/10.1016/j.ceca.2017.06.008] [PMID: 28728834]
[776]
Bettler, B.; Tiao, J.Y.H. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol. Ther., 2006, 110(3), 533-543.
[http://dx.doi.org/10.1016/j.pharmthera.2006.03.006] [PMID: 16644017]
[777]
Sakamaki, K.; Nomura, M.; Hatakenaka, S.; Miyakubo, H.; Tanaka, J. GABAergic modulation of noradrenaline release in the median preoptic nucleus area in the rat. Neurosci. Lett., 2003, 342(1-2), 77-80.
[http://dx.doi.org/10.1016/S0304-3940(03)00242-8] [PMID: 12727322]
[778]
Waldmeier, P.C.; Kaupmann, K.; Urwyler, S. Roles of GABAB receptor subtypes in presynaptic auto- and heteroreceptor function regulating GABA and glutamate release. J. Neural Transm. (Vienna), 2008, 115(10), 1401-1411.
[http://dx.doi.org/10.1007/s00702-008-0095-7] [PMID: 18665320]
[779]
Jones, K.A.; Borowsky, B.; Tamm, J.A.; Craig, D.A.; Durkin, M.M.; Dai, M.; Yao, W.J.; Johnson, M.; Gunwaldsen, C.; Huang, L.Y.; Tang, C.; Shen, Q.; Salon, J.A.; Morse, K.; Laz, T.; Smith, K.E.; Nagarathnam, D.; Noble, S.A.; Branchek, T.A.; Gerald, C. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 1998, 396(6712), 674-679.
[http://dx.doi.org/10.1038/25348] [PMID: 9872315]
[780]
Kaupmann, K.; Malitschek, B.; Schuler, V.; Heid, J.; Froestl, W.; Beck, P.; Mosbacher, J.; Bischoff, S.; Kulik, A.; Shigemoto, R.; Karschin, A.; Bettler, B. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 1998, 396(6712), 683-687.
[http://dx.doi.org/10.1038/25360] [PMID: 9872317]
[781]
Fatemi, S.H.; Folsom, T.D.; Thuras, P.D. Deficits in GABA(B) receptor system in schizophrenia and mood disorders: A postmortem study. Schizophr. Res., 2011, 128(1-3), 37-43.
[http://dx.doi.org/10.1016/j.schres.2010.12.025] [PMID: 21303731]
[782]
Nyitrai, G.; Kékesi, K.A.; Emri, Z.; Szárics, E.; Juhász, G.; Kardos, J. GABA(B) receptor antagonist CGP-36742 enhances somatostatin release in the rat hippocampus in vivo and in vitro . Eur. J. Pharmacol., 2003, 478(2-3), 111-119.
[http://dx.doi.org/10.1016/j.ejphar.2003.08.006] [PMID: 14575795]
[783]
Galvez, T.; Parmentier, M.L.; Joly, C.; Malitschek, B.; Kaupmann, K.; Kuhn, R.; Bittiger, H.; Froestl, W.; Bettler, B.; Pin, J.P. Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J. Biol. Chem., 1999, 274(19), 13362-13369.
[http://dx.doi.org/10.1074/jbc.274.19.13362] [PMID: 10224098]
[784]
Margeta-Mitrovic, M.; Jan, Y.N.; Jan, L.Y. Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14649-14654.
[http://dx.doi.org/10.1073/pnas.251554498] [PMID: 11724956]
[785]
Li C jun, Lu Y, Zhou M, Zong X gang, Li C, Xu X lin. Activation of GABAB receptors ameliorates cognitive impairment via restoring the balance of HCN1/HCN2 surface expression in the hippocampal CA1 area in rats with chronic cerebral hypoperfusion. Mol. Neurobiol., 2014, 50(2), 704-720.
[786]
Kuramoto, N.; Wilkins, M.E.; Fairfax, B.P.; Revilla-Sanchez, R.; Terunuma, M.; Tamaki, K.; Iemata, M.; Warren, N.; Couve, A.; Calver, A.; Horvath, Z.; Freeman, K.; Carling, D.; Huang, L.; Gonzales, C.; Cooper, E.; Smart, T.G.; Pangalos, M.N.; Moss, S.J. Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron, 2007, 53(2), 233-247.
[http://dx.doi.org/10.1016/j.neuron.2006.12.015] [PMID: 17224405]
[787]
Dave, K.R.; Lange-Asschenfeldt, C.; Raval, A.P.; Prado, R.; Busto, R.; Saul, I.; Pérez-Pinzón, M.A. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/γ-aminobutyric acid release and biosynthesis. J. Neurosci. Res., 2005, 82(5), 665-673.
[http://dx.doi.org/10.1002/jnr.20674] [PMID: 16247804]
[788]
Tu, H.; Xu, C.; Zhang, W.; Liu, Q.; Rondard, P.; Pin, J.P.; Liu, J. GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. J. Neurosci., 2010, 30(2), 749-759.
[http://dx.doi.org/10.1523/JNEUROSCI.2343-09.2010] [PMID: 20071540]
[789]
Cryan, J.F.; Kaupmann, K. Don’t worry ‘B’ happy!: A role for GABA(B) receptors in anxiety and depression. Trends Pharmacol. Sci., 2005, 26(1), 36-43.
[http://dx.doi.org/10.1016/j.tips.2004.11.004] [PMID: 15629203]
[790]
Bowery, N.G. GABAB receptor: A site of therapeutic benefit. Curr. Opin. Pharmacol., 2006, 6(1), 37-43.
[http://dx.doi.org/10.1016/j.coph.2005.10.002] [PMID: 16361115]
[791]
Goudet, C.; Magnaghi, V.; Landry, M.; Nagy, F.; Gereau, R.W., IV; Pin, J.P. Metabotropic receptors for glutamate and GABA in pain. Brain Res. Brain Res. Rev., 2009, 60(1), 43-56.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.007] [PMID: 19146876]
[792]
Boczek, T.; Mackiewicz, J.; Sobolczyk, M.; Wawrzyniak, J.; Lisek, M.; Ferenc, B.; Guo, F.; Zylinska, L. The role of G protein-coupled receptors (GPCRs) and calcium signaling in schizophrenia. focus on GPCRs activated by neurotransmitters and chemokines. Cells, 2021, 10(5), 1228.
[http://dx.doi.org/10.3390/cells10051228] [PMID: 34067760]
[793]
Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol., 2010, 50(1), 295-322.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145533] [PMID: 20055706]
[794]
Conn, P.J.; Pin, J-P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37(1), 205-237.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.205] [PMID: 9131252]
[795]
Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology, 2011, 60(7-8), 1017-1041.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.022] [PMID: 21036182]
[796]
Iyer, A.M.; van Scheppingen, J.; Milenkovic, I.; Anink, J.J.; Lim, D.; Genazzani, A.A.; Adle-Biassette, H.; Kovacs, G.G.; Aronica, E. Metabotropic glutamate receptor 5 in Down’s syndrome hippocampus during development: increased expression in astrocytes. Curr. Alzheimer Res., 2014, 11(7), 694-705.
[http://dx.doi.org/10.2174/1567205011666140812115423] [PMID: 25115540]
[797]
Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection? Front. Mol. Neurosci., 2018, 11, 414.
[http://dx.doi.org/10.3389/fnmol.2018.00414] [PMID: 30483053]
[798]
Chen, X.; Lin, R.; Chang, L.; Xu, S.; Wei, X.; Zhang, J.; Wang, C.; Anwyl, R.; Wang, Q. Enhancement of long-term depression by soluble amyloid β protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3. Neuroscience, 2013, 253, 435-443.
[http://dx.doi.org/10.1016/j.neuroscience.2013.08.054] [PMID: 24012839]
[799]
Renner, M.; Lacor, P.N.; Velasco, P.T.; Xu, J.; Contractor, A.; Klein, W.L.; Triller, A. Deleterious effects of amyloid β oligomers acting as an extracellular scaffold for mGluR5. Neuron, 2010, 66(5), 739-754.
[http://dx.doi.org/10.1016/j.neuron.2010.04.029] [PMID: 20547131]
[800]
Caraci, F.; Molinaro, G.; Battaglia, G.; Giuffrida, M.L.; Riozzi, B.; Traficante, A.; Bruno, V.; Cannella, M.; Merlo, S.; Wang, X.; Heinz, B.A.; Nisenbaum, E.S.; Britton, T.C.; Drago, F.; Sortino, M.A.; Copani, A.; Nicoletti, F. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies β-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol. Pharmacol., 2011, 79(3), 618-626.
[http://dx.doi.org/10.1124/mol.110.067488] [PMID: 21159998]
[801]
White, J.H.; Wise, A.; Main, M.J.; Green, A.; Fraser, N.J.; Disney, G.H.; Barnes, A.A.; Emson, P.; Foord, S.M.; Marshall, F.H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature, 1998, 396(6712), 679-682.
[http://dx.doi.org/10.1038/25354] [PMID: 9872316]
[802]
Stewart, G.D.; Comps-Agrar, L.; Nørskov-Lauritsen, L.B.; Pin, J.P.; Kniazeff, J. Allosteric interactions between GABAB1 subunits control orthosteric binding sites occupancy within GABAB oligomers. Neuropharmacology, 2018, 136((Pt A)), 92-101.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.042] [PMID: 29305121]
[803]
Pin, J.P.; Kniazeff, J.; Prézeau, L.; Liu, J.F.; Rondard, P. GPCR interaction as a possible way for allosteric control between receptors. Mol. Cell. Endocrinol., 2019, 486, 89-95.
[http://dx.doi.org/10.1016/j.mce.2019.02.019] [PMID: 30849406]
[804]
Koehl, A.; Hu, H.; Feng, D.; Sun, B.; Zhang, Y.; Robertson, M.J.; Chu, M.; Kobilka, T.S.; Laeremans, T.; Steyaert, J.; Tarrasch, J.; Dutta, S.; Fonseca, R.; Weis, W.I.; Mathiesen, J.M.; Skiniotis, G.; Kobilka, B.K. Structural insights into the activation of metabotropic glutamate receptors. Nature, 2019, 566(7742), 79-84.
[http://dx.doi.org/10.1038/s41586-019-0881-4] [PMID: 30675062]
[805]
Ellaithy, A.; Gonzalez-Maeso, J.; Logothetis, D.A.; Levitz, J. Structural and biophysical mechanisms of class C G protein-coupled receptor function. Trends Biochem. Sci., 2020, 45(12), 1049-1064.
[http://dx.doi.org/10.1016/j.tibs.2020.07.008] [PMID: 32861513]
[806]
Pagano, A.; Rovelli, G.; Mosbacher, J.; Lohmann, T.; Duthey, B.; Stauffer, D.; Ristig, D.; Schuler, V.; Meigel, I.; Lampert, C.; Stein, T.; Prezeau, L.; Blahos, J.; Pin, J.; Froestl, W.; Kuhn, R.; Heid, J.; Kaupmann, K.; Bettler, B. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J. Neurosci., 2001, 21(4), 1189-1202.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01189.2001] [PMID: 11160389]
[807]
Couve, A.; Filippov, A.K.; Connolly, C.N.; Bettler, B.; Brown, D.A.; Moss, S.J. Intracellular retention of recombinant GABAB receptors. J. Biol. Chem., 1998, 273(41), 26361-26367.
[http://dx.doi.org/10.1074/jbc.273.41.26361] [PMID: 9756866]
[808]
Duthey, B.; Caudron, S.; Perroy, J.; Bettler, B.; Fagni, L.; Pin, J.P.; Prézeau, L. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J. Biol. Chem., 2002, 277(5), 3236-3241.
[http://dx.doi.org/10.1074/jbc.M108900200] [PMID: 11711539]
[809]
Robbins, M.J.; Calver, A.R.; Filippov, A.K.; Hirst, W.D.; Russell, R.B.; Wood, M.D.; Nasir, S.; Couve, A.; Brown, D.A.; Moss, S.J.; Pangalos, M.N. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J. Neurosci., 2001, 21(20), 8043-8052.
[http://dx.doi.org/10.1523/JNEUROSCI.21-20-08043.2001] [PMID: 11588177]
[810]
Galvez, T.; Duthey, B.; Kniazeff, J.; Blahos, J.; Rovelli, G.; Bettler, B.; Prézeau, L.; Pin, J.P. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J., 2001, 20(9), 2152-2159.
[http://dx.doi.org/10.1093/emboj/20.9.2152] [PMID: 11331581]
[811]
Margeta-Mitrovic, M.; Jan, Y.N.; Jan, L.Y. Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14643-14648.
[http://dx.doi.org/10.1073/pnas.251554798] [PMID: 11724957]
[812]
Fritzius, T.; Bettler, B. The organizing principle of GABAB receptor complexes: Physiological and pharmacological implications. Basic Clin. Pharmacol. Toxicol., 2020, 126(S6)(Suppl. 6), 25-34.
[http://dx.doi.org/10.1111/bcpt.13241] [PMID: 31033219]
[813]
Benke, D. GABAB receptor trafficking and interacting proteins: targets for the development of highly specific therapeutic strategies to treat neurological disorders? Biochem. Pharmacol., 2013, 86(11), 1525-1530.
[http://dx.doi.org/10.1016/j.bcp.2013.09.016] [PMID: 24084431]
[814]
Calebiro, D.; Rieken, F.; Wagner, J.; Sungkaworn, T.; Zabel, U.; Borzi, A.; Cocucci, E.; Zürn, A.; Lohse, M.J. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc. Natl. Acad. Sci. USA, 2013, 110(2), 743-748.
[http://dx.doi.org/10.1073/pnas.1205798110] [PMID: 23267088]
[815]
Kent, C.N.; Park, C.; Lindsley, C.W. Classics in Chemical Neuroscience: Baclofen. ACS Chem. Neurosci., 2020, 11(12), 1740-1755.
[http://dx.doi.org/10.1021/acschemneuro.0c00254] [PMID: 32436697]
[816]
Agabio, R.; Sinclair, J.M.; Addolorato, G.; Aubin, H-J.; Beraha, E.M.; Caputo, F.; Chick, J.D.; de La Selle, P.; Franchitto, N.; Garbutt, J.C.; Haber, P.S.; Heydtmann, M.; Jaury, P.; Lingford-Hughes, A.R.; Morley, K.C.; Müller, C.A.; Owens, L.; Pastor, A.; Paterson, L.M.; Pélissier, F.; Rolland, B.; Stafford, A.; Thompson, A.; van den Brink, W.; de Beaurepaire, R.; Leggio, L. Baclofen for the treatment of alcohol use disorder: the Cagliari Statement. Lancet Psychiatry, 2018, 5(12), 957-960.
[http://dx.doi.org/10.1016/S2215-0366(18)30303-1] [PMID: 30413394]
[817]
Pin, J-P.; Kniazeff, J.; Liu, J.; Binet, V.; Goudet, C.; Rondard, P.; Prézeau, L. Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J., 2005, 272(12), 2947-2955.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04728.x] [PMID: 15955055]
[818]
El Moustaine, D.; Granier, S.; Doumazane, E.; Scholler, P.; Rahmeh, R.; Bron, P.; Mouillac, B.; Banères, J.L.; Rondard, P.; Pin, J.P. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16342-16347.
[http://dx.doi.org/10.1073/pnas.1205838109] [PMID: 22988116]
[819]
Morató, X.; Luján, R.; Gonçalves, N.; Watanabe, M.; Altafaj, X.; Carvalho, A.L.; Fernández-Dueñas, V.; Cunha, R.A.; Ciruela, F. Metabotropic glutamate type 5 receptor requires contactin-associated protein 1 to control memory formation. Hum. Mol. Genet., 2018, 27(20), 3528-3541.
[http://dx.doi.org/10.1093/hmg/ddy264] [PMID: 30010864]
[820]
García-Negredo, G.; Soto, D.; Llorente, J.; Morató, X.; Galenkamp, K.M.O.; Gómez-Soler, M.; Fernández-Dueñas, V.; Watanabe, M.; Adelman, J.P.; Shigemoto, R.; Fukazawa, Y.; Luján, R.; Ciruela, F. Coassembly and coupling of SK2 channels and mGlu5 receptors. J. Neurosci., 2014, 34(44), 14793-14802.
[http://dx.doi.org/10.1523/JNEUROSCI.2038-14.2014] [PMID: 25355231]
[821]
Fagni, L.; Chavis, P.; Ango, F.; Bockaert, J. Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci., 2000, 23(2), 80-88.
[http://dx.doi.org/10.1016/S0166-2236(99)01492-7] [PMID: 10652549]
[822]
Canela, L.; Fernández-Dueñas, V.; Albergaria, C.; Watanabe, M.; Lluís, C.; Mallol, J.; Canela, E.I.; Franco, R.; Luján, R.; Ciruela, F. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function. J. Neurochem., 2009, 111(2), 555-567.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06348.x] [PMID: 19694902]
[823]
Bockaert, J.; Perroy, J.; Bécamel, C.; Marin, P.; Fagni, L. GPCR interacting proteins (GIPs) in the nervous system: Roles in physiology and pathologies. Annu. Rev. Pharmacol. Toxicol., 2010, 50(1), 89-109.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105705] [PMID: 20055699]
[824]
Goudet, C.; Kniazeff, J.; Hlavackova, V.; Malhaire, F.; Maurel, D.; Acher, F.; Blahos, J.; Prézeau, L.; Pin, J.P. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J. Biol. Chem., 2005, 280(26), 24380-24385.
[http://dx.doi.org/10.1074/jbc.M502642200] [PMID: 15863499]
[825]
Kammermeier, P.J. Functional and pharmacological characteristics of metabotropic glutamate receptors 2/4 heterodimers. Mol. Pharmacol., 2012, 82(3), 438-447.
[http://dx.doi.org/10.1124/mol.112.078501] [PMID: 22653971]
[826]
Pandya, N.J.; Klaassen, R.V.; van der Schors, R.C.; Slotman, J.A.; Houtsmuller, A.; Smit, A.B.; Li, K.W. Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex. Proteomics, 2016, 16(20), 2698-2705.
[http://dx.doi.org/10.1002/pmic.201500400] [PMID: 27392515]
[827]
Hayashi, M.K.; Tang, C.; Verpelli, C.; Narayanan, R.; Stearns, M.H.; Xu, R.M.; Li, H.; Sala, C.; Hayashi, Y. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell, 2009, 137(1), 159-171.
[http://dx.doi.org/10.1016/j.cell.2009.01.050] [PMID: 19345194]
[828]
Jong, Y-J.I.; Sergin, I.; Purgert, C.A.; O’Malley, K.L. Location-dependent signaling of the group 1 metabotropic glutamate receptor mGlu5. Mol. Pharmacol., 2014, 86(6), 774-785.
[http://dx.doi.org/10.1124/mol.114.094763] [PMID: 25326002]
[829]
Damian, M.; Martin, A.; Mesnier, D.; Pin, J.P.; Banères, J.L. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J., 2006, 25(24), 5693-5702.
[http://dx.doi.org/10.1038/sj.emboj.7601449] [PMID: 17139258]
[830]
Albizu, L.; Cottet, M.; Kralikova, M.; Stoev, S.; Seyer, R.; Brabet, I.; Roux, T.; Bazin, H.; Bourrier, E.; Lamarque, L.; Breton, C.; Rives, M.L.; Newman, A.; Javitch, J.; Trinquet, E.; Manning, M.; Pin, J.P.; Mouillac, B.; Durroux, T. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol., 2010, 6(8), 587-594.
[http://dx.doi.org/10.1038/nchembio.396] [PMID: 20622858]
[831]
Sebastianutto, I.; Goyet, E.; Andreoli, L.; Font-Ingles, J.; Moreno-Delgado, D.; Bouquier, N.; Jahannault-Talignani, C.; Moutin, E.; Di Menna, L.; Maslava, N.; Pin, J.P.; Fagni, L.; Nicoletti, F.; Ango, F.; Cenci, M.A.; Perroy, J. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease. J. Clin. Invest., 2020, 130(3), 1168-1184.
[http://dx.doi.org/10.1172/JCI126361] [PMID: 32039920]
[832]
Surmeier, D.J.; Graves, S.M.; Shen, W. Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr. Opin. Neurobiol., 2014, 29, 109-117.
[http://dx.doi.org/10.1016/j.conb.2014.07.008] [PMID: 25058111]
[833]
Bagetta, V.; Ghiglieri, V.; Sgobio, C.; Calabresi, P.; Picconi, B. Synaptic dysfunction in Parkinson’s disease. Biochem. Soc. Trans., 2010, 38(2), 493-497.
[http://dx.doi.org/10.1042/BST0380493] [PMID: 20298209]
[834]
Ciruela, F.; Escriche, M.; Burgueño, J.; Angulo, E.; Casadó, V.; Soloviev, M.M.; Canela, E.I.; Mallol, J.; Chan, W.Y.; Lluis, C.; McIlhinney, R.A.; Franco, R. Metabotropic glutamate 1α and adenosine A1 receptors assemble into functionally interacting complexes. J. Biol. Chem., 2001, 276(21), 18345-18351.
[http://dx.doi.org/10.1074/jbc.M006960200] [PMID: 11278325]
[835]
Kamikubo, Y.; Tabata, T.; Sakairi, H.; Hashimoto, Y.; Sakurai, T. Complex formation and functional interaction between adenosine A1 receptor and type-1 metabotropic glutamate receptor. J. Pharmacol. Sci., 2015, 128(3), 125-130.
[http://dx.doi.org/10.1016/j.jphs.2015.06.002] [PMID: 26154847]
[836]
Kamikubo, Y.; Shimomura, T.; Fujita, Y.; Tabata, T.; Kashiyama, T.; Sakurai, T.; Fukurotani, K.; Kano, M. Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum. J. Neurosci., 2013, 33(47), 18661-18671.
[http://dx.doi.org/10.1523/JNEUROSCI.5567-12.2013] [PMID: 24259587]
[837]
Klinger, M.; Freissmuth, M.; Nanoff, C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell. Signal., 2002, 14(2), 99-108.
[http://dx.doi.org/10.1016/S0898-6568(01)00235-2] [PMID: 11781133]
[838]
Moreno, J.L.; Muguruza, C.; Umali, A.; Mortillo, S.; Holloway, T.; Pilar-Cuéllar, F.; Mocci, G.; Seto, J.; Callado, L.F.; Neve, R.L.; Milligan, G.; Sealfon, S.C.; López-Giménez, J.F.; Meana, J.J.; Benson, D.L.; González-Maeso, J. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A·mGlu2) receptor heteromerization and its psychoactive behavioral function. J. Biol. Chem., 2012, 287(53), 44301-44319.
[http://dx.doi.org/10.1074/jbc.M112.413161] [PMID: 23129762]
[839]
González-Maeso, J.; Ang, R.L.; Yuen, T.; Chan, P.; Weisstaub, N.V.; López-Giménez, J.F.; Zhou, M.; Okawa, Y.; Callado, L.F.; Milligan, G.; Gingrich, J.A.; Filizola, M.; Meana, J.J.; Sealfon, S.C. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature, 2008, 452(7183), 93-97.
[http://dx.doi.org/10.1038/nature06612] [PMID: 18297054]
[840]
González-Maeso, J.; Weisstaub, N.V.; Zhou, M.; Chan, P.; Ivic, L.; Ang, R.; Lira, A.; Bradley-Moore, M.; Ge, Y.; Zhou, Q.; Sealfon, S.C.; Gingrich, J.A. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron, 2007, 53(3), 439-452.
[http://dx.doi.org/10.1016/j.neuron.2007.01.008] [PMID: 17270739]
[841]
Fribourg, M.; Moreno, J.L.; Holloway, T.; Provasi, D.; Baki, L.; Mahajan, R.; Park, G.; Adney, S.K.; Hatcher, C.; Eltit, J.M.; Ruta, J.D.; Albizu, L.; Li, Z.; Umali, A.; Shim, J.; Fabiato, A.; MacKerell, A.D., Jr; Brezina, V.; Sealfon, S.C.; Filizola, M.; González-Maeso, J.; Logothetis, D.E. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell, 2011, 147(5), 1011-1023.
[http://dx.doi.org/10.1016/j.cell.2011.09.055] [PMID: 22118459]
[842]
Schröder, H.; Wu, D.F.; Seifert, A.; Rankovic, M.; Schulz, S.; Höllt, V.; Koch, T. Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the micro-opioid receptor. Neuropharmacology, 2009, 56(4), 768-778.
[http://dx.doi.org/10.1016/j.neuropharm.2008.12.010] [PMID: 19162047]
[843]
Neugebauer, V.; Li, W.; Bird, G.C.; Han, J.S. The amygdala and persistent pain. Neuroscientist, 2004, 10(3), 221-234.
[http://dx.doi.org/10.1177/1073858403261077] [PMID: 15155061]
[844]
Spooren, W.P.J.M.; Gasparini, F.; Salt, T.E.; Kuhn, R. Novel allosteric antagonists shed light on mglu(5) receptors and CNS disorders. Trends Pharmacol. Sci., 2001, 22(7), 331-337.
[http://dx.doi.org/10.1016/S0165-6147(00)01694-1] [PMID: 11431019]
[845]
Dickenson, A.H. Central acute pain mechanisms. Ann. Med., 1995, 27(2), 223-227.
[http://dx.doi.org/10.3109/07853899509031963] [PMID: 7632418]
[846]
Lee, H.J.; Choi, H.S.; Ju, J.S.; Bae, Y.C.; Kim, S.K.; Yoon, Y.W.; Ahn, D.K. Peripheral mGluR5 antagonist attenuated craniofacial muscle pain and inflammation but not mGluR1 antagonist in lightly anesthetized rats. Brain Res. Bull., 2006, 70(4-6), 378-385.
[http://dx.doi.org/10.1016/j.brainresbull.2005.09.021] [PMID: 17027773]
[847]
Gabra, B.H.; Smith, F.L.; Navarro, H.A.; Carroll, F.I.; Dewey, W.L. mGluR5 antagonists that block calcium mobilization in vitro also reverse (S)-3,5-DHPG-induced hyperalgesia and morphine antinociceptive tolerance in vivo . Brain Res., 2008, 1187(1), 58-66.
[http://dx.doi.org/10.1016/j.brainres.2007.10.007] [PMID: 18022146]
[848]
Fuxe, K.; Marcellino, D.; Borroto-Escuela, D.O.; Frankowska, M.; Ferraro, L.; Guidolin, D.; Ciruela, F.; Agnati, L.F. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J. Recept. Signal Transduct., 2010, 30(5), 272-283.
[http://dx.doi.org/10.3109/10799893.2010.506191] [PMID: 20684666]
[849]
Agnati, L.F.; Guidolin, D.; Albertin, G.; Trivello, E.; Ciruela, F.; Genedani, S.; Tarakanov, A.; Fuxe, K. An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A(2A), dopamine D(2), cannabinoid CB(1), and metabotropic glutamate mGlu(5) receptors. J. Recept. Signal Transduct., 2010, 30(5), 355-369.
[http://dx.doi.org/10.3109/10799893.2010.487492] [PMID: 20524778]
[850]
Agnati, L.F.; Guidolin, D.; Vilardaga, J.P.; Ciruela, F.; Fuxe, K. On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. J Recept Signal Transduct., 2010, 30(5), 287-303.
[http://dx.doi.org/10.3109/10799891003786226] [PMID: 20429829]
[851]
Agnati, L.F.; Fuxe, K.; Zoli, M.; Rondanini, C.; Ogren, S.O. New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med. Biol., 1982, 60(4), 183-190.
[PMID: 6128444]
[852]
Fuxe, K.; Canals, M.; Torvinen, M.; Marcellino, D.; Terasmaa, A.; Genedani, S.; Leo, G.; Guidolin, D.; Diaz-Cabiale, Z.; Rivera, A.; Lundstrom, L.; Langel, U.; Narvaez, J.; Tanganelli, S.; Lluis, C.; Ferré, S.; Woods, A.; Franco, R.; Agnati, L.F. Intramembrane receptor-receptor interactions: A novel principle in molecular medicine. J. Neural Transm. (Vienna), 2007, 114(1), 49-75.
[http://dx.doi.org/10.1007/s00702-006-0589-0] [PMID: 17066251]
[853]
Agnati, L.F.; Guidolin, D.; Leo, G.; Carone, C.; Genedani, S.; Fuxe, K. Receptor-receptor interactions: A novel concept in brain integration. Prog. Neurobiol., 2010, 90(2), 157-175.
[http://dx.doi.org/10.1016/j.pneurobio.2009.10.004] [PMID: 19850102]
[854]
Agnati, L.F.; Franzen, O.; Ferré, S.; Leo, G.; Franco, R.; Fuxe, K. Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: Focus on motor learning in the basal ganglia. In: J. Neural Transmission, Supplement, 2003, pp. 1-28.
[855]
Denning, D.W.; Follansbee, S.E.; Scolaro, M.; Norris, S.; Edelstein, H.; Stevens, D.A. Pulmonary aspergillosis in the acquired immunodeficiency syndrome. N. Engl. J. Med., 1991, 324(10), 654-662.
[http://dx.doi.org/10.1056/NEJM199103073241003] [PMID: 1994248]
[856]
Fuxe, K.; Marcellino, D.; Borroto-Escuela, D.O.; Frankowska, M.; Ferraro, L.; Guidolin, D.; Ciruela, F.; Agnati, L.F. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J. Recept. Signal Transduct. Res., 2010, 30(5), 272-283.
[http://dx.doi.org/10.3109/10799893.2010.506191] [PMID: 20684666]
[857]
Navarro, G.; Carriba, P.; Gandía, J.; Ciruela, F.; Casadó, V.; Cortés, A.; Mallol, J.; Canela, E.I.; Lluis, C.; Franco, R. Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Sci. World J., 2008, 8, 1088-1097.
[http://dx.doi.org/10.1100/tsw.2008.136] [PMID: 18956124]
[858]
Dean, B.; Sundram, S.; Bradbury, R.; Scarr, E.; Copolov, D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience, 2001, 103(1), 9-15.
[http://dx.doi.org/10.1016/S0306-4522(00)00552-2] [PMID: 11311783]
[859]
Guillin, O.; Abi-Dargham, A.; Laruelle, M. Neurobiology of dopamine in schizophrenia. Int. Rev. Neurobiol., 2007, 78, 1-39.
[http://dx.doi.org/10.1016/S0074-7742(06)78001-1] [PMID: 17349856]
[860]
Kerppola, T.K. Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol., 2008, 85, 431-470.
[http://dx.doi.org/10.1016/S0091-679X(08)85019-4] [PMID: 18155474]
[861]
Carriba, P.; Navarro, G.; Ciruela, F.; Ferré, S.; Casadó, V.; Agnati, L.; Cortés, A.; Mallol, J.; Fuxe, K.; Canela, E.I.; Lluís, C.; Franco, R. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat. Methods, 2008, 5(8), 727-733.
[http://dx.doi.org/10.1038/nmeth.1229] [PMID: 18587404]
[862]
Deckert, J.; Brenner, M.; Durany, N.; Zöchling, R.; Paulus, W.; Ransmayr, G.; Tatschner, T.; Danielczyk, W.; Jellinger, K.; Riederer, P. Up-regulation of striatal adenosine A(2A) receptors in schizophrenia. Neuroreport, 2003, 14(3), 313-316.
[http://dx.doi.org/10.1097/00001756-200303030-00003] [PMID: 12634474]
[863]
Sundram, S.; Copolov, D.; Dean, B. Clozapine decreases [3H] CP 55940 binding to the cannabinoid 1 receptor in the rat nucleus accumbens. Naunyn Schmiedebergs Arch. Pharmacol., 2005, 371(5), 428-433.
[http://dx.doi.org/10.1007/s00210-005-1074-2] [PMID: 15995876]
[864]
Urigüen, L.; García-Fuster, M.J.; Callado, L.F.; Morentin, B.; La Harpe, R.; Casadó, V.; Lluis, C.; Franco, R.; García-Sevilla, J.A.; Meana, J.J. Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology (Berl.), 2009, 206(2), 313-324.
[http://dx.doi.org/10.1007/s00213-009-1608-2] [PMID: 19652957]
[865]
Cabello, N.; Gandía, J.; Bertarelli, D.C.G.; Watanabe, M.; Lluís, C.; Franco, R.; Ferré, S.; Luján, R.; Ciruela, F. Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J. Neurochem., 2009, 109(5), 1497-1507.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06078.x] [PMID: 19344374]
[866]
Popoli, P.; Pèzzola, A.; Torvinen, M.; Reggio, R.; Pintor, A.; Scarchilli, L.; Fuxe, K.; Ferré, S. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology, 2001, 25(4), 505-513.
[http://dx.doi.org/10.1016/S0893-133X(01)00256-1] [PMID: 11557164]
[867]
Díaz-Cabiale, Z.; Vivó, M.; Del Arco, A.; O’Connor, W.T.; Harte, M.K.; Müller, C.E.; Martínez, E.; Popoli, P.; Fuxe, K.; Ferré, S. Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci. Lett., 2002, 324(2), 154-158.
[http://dx.doi.org/10.1016/S0304-3940(02)00179-9] [PMID: 11988350]
[868]
Schwarzschild, M.A.; Agnati, L.; Fuxe, K.; Chen, J.F.; Morelli, M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci., 2006, 29(11), 647-654.
[http://dx.doi.org/10.1016/j.tins.2006.09.004] [PMID: 17030429]
[869]
Bockaert, J.; Fagni, L.; Dumuis, A.; Marin, P. GPCR interacting proteins (GIP). Pharmacol. Ther., 2004, 103(3), 203-221.
[http://dx.doi.org/10.1016/j.pharmthera.2004.06.004] [PMID: 15464590]
[870]
Fagni, L.; Ango, F.; Perroy, J.; Bockaert, J. Identification and functional roles of metabotropic glutamate receptor-interacting proteins. Semin. Cell Dev. Biol., 2004, 15(3), 289-298.
[http://dx.doi.org/10.1016/j.semcdb.2003.12.018] [PMID: 15125892]
[871]
Kamal, M.; Maurice, P.; Jockers, R. Expanding the concept of G protein-coupled receptor (GPCR) dimer asymmetry towards GPCR-interacting proteins. Pharm, 2011, 4(2), 273-284.
[872]
Bockaert, J.; Dumuis, A.; Fagni, L.; Marin, P. GPCR-GIP networks: A first step in the discovery of new therapeutic drugs?. Curr. Opin. Drug Discov. Devel., 2004, 7(5), 649-657.
[PMID: 15503867]
[873]
Kowalsman, N.; Niv, M.Y.; Kowalsman, N. Niv • M Y, Filizola M. GPCR &amp; Company: Databases and Servers for GPCRs and Interacting Partners. Adv. Exp. Med. Biol., 2014, 796, 185-204.
[http://dx.doi.org/10.1007/978-94-007-7423-0_9] [PMID: 24158806]
[874]
Maurice, P.; Guillaume, J.L.; Benleulmi-Chaachoua, A.; Daulat, A.M.; Kamal, M.; Jockers, R. GPCR-interacting proteins, major players of GPCR function. Adv. Pharmacol., 2011, 62, 349-380.
[http://dx.doi.org/10.1016/B978-0-12-385952-5.00001-4] [PMID: 21907915]
[875]
Magalhaes, A.C.; Dunn, H.; Ferguson, S.S.G. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol., 2012, 165(6), 1717-1736.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x] [PMID: 21699508]
[876]
Ritter, S.L.; Hall, R.A. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol., 2009, 10(12), 819-830.
[http://dx.doi.org/10.1038/nrm2803] [PMID: 19935667]
[877]
Shaw, A.S.; Filbert, E.L. Scaffold proteins and immune-cell signalling. Nat. Rev. Immunol., 2009, 9(1), 47-56.
[http://dx.doi.org/10.1038/nri2473]
[878]
Wong, W.; Scott, J.D. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol., 2004, 5(12), 959-970.
[http://dx.doi.org/10.1038/nrm1527]
[879]
Maurice, P.; Daulat, A.M.; Turecek, R.; Ivankova-Susankova, K.; Zamponi, F.; Kamal, M.; Clement, N.; Guillaume, J.L.; Bettler, B.; Galès, C.; Delagrange, P.; Jockers, R. Molecular organization and dynamics of the melatonin MT1 receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J., 2010, 29(21), 3646-3659.
[http://dx.doi.org/10.1038/emboj.2010.236] [PMID: 20859254]
[880]
Neitzel, K.L.; Hepler, J.R. Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling. Semin. Cell Dev. Biol., 2006, 17(3), 383-389.
[http://dx.doi.org/10.1016/j.semcdb.2006.03.002] [PMID: 16647283]
[881]
Xie, G.X.; Palmer, P.P. How regulators of G protein signaling achieve selective regulation. J. Mol. Biol., 2007, 366(2), 349-365.
[http://dx.doi.org/10.1016/j.jmb.2006.11.045] [PMID: 17173929]
[882]
Bockaert, J.; Perroy, J.; Ango, F. The complex formed by group i metabotropic glutamate receptor (mGluR) and homer1a plays a central role in metaplasticity and homeostatic synaptic scaling. J. Neurosci., 2021, 41(26), 5567-5578.
[http://dx.doi.org/10.1523/JNEUROSCI.0026-21.2021] [PMID: 34193623]
[883]
Ango, F.; Prézeau, L.; Muller, T.; Tu, J.C.; Xiao, B.; Worley, P.F. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein. Homer. Nat, 2001, 411(6840), 962-965.
[http://dx.doi.org/10.1038/35082096]
[884]
Kammermeier, P.J.; Xiao, B.; Tu, J.C.; Worley, P.F.; Ikeda, S.R. Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J. Neurosci., 2000, 20(19), 7238-7245.
[http://dx.doi.org/10.1523/JNEUROSCI.20-19-07238.2000] [PMID: 11007880]
[885]
Xiao, B.; Tu, J.C.; Worley, P.F. Homer: A link between neural activity and glutamate receptor function. Curr. Opin. Neurobiol., 2000, 10(3), 370-374.
[http://dx.doi.org/10.1016/S0959-4388(00)00087-8] [PMID: 10851183]
[886]
Ehlers, M.D. Synapse structure: glutamate receptors connected by the shanks. Curr. Biol., 1999, 9(22), R848-R850.
[http://dx.doi.org/10.1016/S0960-9822(00)80043-3] [PMID: 10574750]
[887]
Bockaert, J.; Fagni, L.; Perroy, J. Functional crosstalk between group I metabotropic glutamate receptors and ionotropic glutamate receptors controls synaptic transmission. In: G Protein-Coupled Receptors,; , 2011, p. pp. 269-283.
[http://dx.doi.org/10.1039/9781849733441-00269]
[888]
Ferré, S.; Ciruela, F.; Dessauer, C.W.; González-Maeso, J.; Hébert, T.E.; Jockers, R.; Logothetis, D.E.; Pardo, L. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Pharmacol. Ther., 2022, 231(Sep), 107977.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107977] [PMID: 34480967]
[889]
Erez, M.; Takemori, A.E.; Portoghese, P.S. Narcotic antagonistic potency of bivalent ligands which contain beta-naltrexamine. Evidence for bridging between proximal recognition sites. J. Med. Chem., 1982, 25(7), 847-849.
[http://dx.doi.org/10.1021/jm00349a016] [PMID: 7108900]
[890]
Portoghese, P.S.; Ronsisvalle, G.; Larson, D.L.; Yim, C.B.; Sayre, L.M.; Takemori, A.E. Opioid agonist and antagonist bivalent ligands as receptor probes. Life Sci., 1982, 31(12-13), 1283-1286.
[http://dx.doi.org/10.1016/0024-3205(82)90362-9] [PMID: 6292615]
[891]
Huang, B.; St Onge, C.M.; Ma, H.; Zhang, Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov. Today, 2021, 26(1), 189-199.
[http://dx.doi.org/10.1016/j.drudis.2020.10.006] [PMID: 33075471]
[892]
Shonberg, J.; Scammells, P.J.; Capuano, B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem, 2011, 6(6), 963-974.
[http://dx.doi.org/10.1002/cmdc.201100101] [PMID: 21520422]
[893]
Budzinski, J.; Maschauer, S.; Kobayashi, H.; Couvineau, P.; Vogt, H.; Gmeiner, P.; Roggenhofer, A.; Prante, O.; Bouvier, M.; Weikert, D. Bivalent ligands promote endosomal trafficking of the dopamine D3 receptor-neurotensin receptor 1 heterodimer. Commun. Biol., 2021, 4(1), 1062.
[http://dx.doi.org/10.1038/s42003-021-02574-4] [PMID: 34508168]
[894]
Qian, M.; Wouters, E.; Dalton, J.A.R.; Risseeuw, M.D.P.; Crans, R.A.J.; Stove, C.; Giraldo, J.; Van Craenenbroeck, K.; Van Calenbergh, S. Synthesis toward Bivalent Ligands for the Dopamine D2 and Metabotropic Glutamate 5 Receptors. J. Med. Chem., 2018, 61(18), 8212-8225.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00671] [PMID: 30180563]
[895]
Nasrallah, C.; Cannone, G.; Briot, J.; Rottier, K.; Berizzi, A.E.; Huang, C.Y.; Quast, R.B.; Hoh, F.; Banères, J.L.; Malhaire, F.; Berto, L.; Dumazer, A.; Font-Ingles, J.; Gómez-Santacana, X.; Catena, J.; Kniazeff, J.; Goudet, C.; Llebaria, A.; Pin, J.P.; Vinothkumar, K.R.; Lebon, G. Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Rep., 2021, 36(9), 109648.
[http://dx.doi.org/10.1016/j.celrep.2021.109648] [PMID: 34469715]
[896]
Bock, A.; Bermudez, M. Allosteric coupling and biased agonism in G protein-coupled receptors. FEBS J., 2021, 288(8), 2513-2528.
[http://dx.doi.org/10.1111/febs.15783] [PMID: 33621418]
[897]
Ma, N.; Nivedha, A.K.; Vaidehi, N. Allosteric communication regulates ligand-specific GPCR activity. FEBS J., 2021, 288(8), 2502-2512.
[http://dx.doi.org/10.1111/febs.15826] [PMID: 33738925]
[898]
Romantini, N.; Alam, S.; Dobitz, S.; Spillmann, M.; De Foresta, M.; Schibli, R.; Schertler, G.F.X.; Wennemers, H.; Deupi, X.; Behe, M.; Berger, P. Exploring the signaling space of a GPCR using bivalent ligands with a rigid oligoproline backbone. Proc. Natl. Acad. Sci. USA, 2021, 118(48), e2108776118.
[http://dx.doi.org/10.1073/pnas.2108776118] [PMID: 34810259]
[899]
Haubrich, J.; Font, J.; Quast, R.B.; Goupil-Lamy, A.; Scholler, P.; Nevoltris, D.; Acher, F.; Chames, P.; Rondard, P.; Prézeau, L.; Pin, J.P. A nanobody activating metabotropic glutamate receptor 4 discriminates between homo- and heterodimers. Proc. Natl. Acad. Sci. USA, 2021, 118(33), e2105848118.
[http://dx.doi.org/10.1073/pnas.2105848118] [PMID: 34385321]
[900]
Wagner, T.R.; Rothbauer, U. Nanobodies - Little helpers unravelling intracellular signaling. Free Radic. Biol. Med., 2021, 176, 46-61.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.09.005] [PMID: 34536541]
[901]
Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B. Naturally occurring antibodies devoid of light chains. Nat, 1993, 363(6428), 446-448.
[http://dx.doi.org/10.1038/363446a0]
[902]
Che, T.; English, J.; Krumm, B.E.; Kim, K.; Pardon, E.; Olsen, R.H.J.; Wang, S.; Zhang, S.; Diberto, J.F.; Sciaky, N.; Carroll, F.I.; Steyaert, J.; Wacker, D.; Roth, B.L. Nanobody-enabled monitoring of kappa opioid receptor states. Nat. Commun., 2020, 11(1), 1145.
[http://dx.doi.org/10.1038/s41467-020-14889-7] [PMID: 32123179]
[903]
Stoeber, M.; Jullié, D.; Li, J.; Chakraborty, S.; Majumdar, S.; Lambert, N.A.; Manglik, A.; von Zastrow, M. Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. eLife, 2020, 9, 9.
[PMID: 32096468]
[904]
Stoeber, M.; Jullié, D.; Lobingier, B.T.; Laeremans, T.; Steyaert, J.; Schiller, P.W.; Manglik, A.; von Zastrow, M. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron, 2018, 98(5), 963-976.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.04.021] [PMID: 29754753]
[905]
Che, T.; Majumdar, S.; Zaidi, S.A.; Ondachi, P.; McCorvy, J.D.; Wang, S.; Mosier, P.D.; Uprety, R.; Vardy, E.; Krumm, B.E.; Han, G.W.; Lee, M.Y.; Pardon, E.; Steyaert, J.; Huang, X.P.; Strachan, R.T.; Tribo, A.R.; Pasternak, G.W.; Carroll, F.I.; Stevens, R.C.; Cherezov, V.; Katritch, V.; Wacker, D.; Roth, B.L. Structure of a nanobody-stabilized active state of the kappa opioid receptor. Cell, 2018, 172(1-2), 55-67.e15.
[http://dx.doi.org/10.1016/j.cell.2017.12.011] [PMID: 29307491]
[906]
Johnson, G.P.; Agwuegbo, U.; Jonas, K.C. New insights into the functional impact of G protein-coupled receptor oligomerization. Curr. Opin. Endocr. Metab. Res., 2021, 16, 43-50.
[http://dx.doi.org/10.1016/j.coemr.2020.08.005]
[907]
De Groof, T.W.M.; Bobkov, V.; Heukers, R.; Smit, M.J. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol. Cell. Endocrinol., 2019, 484, 15-24.
[http://dx.doi.org/10.1016/j.mce.2019.01.021] [PMID: 30690070]
[908]
Dolgin, E. First GPCR-directed antibody passes approval milestone. Nat. Rev. Drug Discov., 2018, 17(7), 457-459.
[http://dx.doi.org/10.1038/nrd.2018.103] [PMID: 29950713]
[909]
Han, L.; Liu, Y.; Xiong, H.; Hong, P. CGRP monoclonal antibody for preventive treatment of chronic migraine: An update of meta-analysis. Brain Behav., 2019, 9(2), e01215.
[http://dx.doi.org/10.1002/brb3.1215] [PMID: 30656853]
[910]
DelaCuesta-Barrutia, J.; Peñagarikano, O.; Erdozain, A.M.G.G. Protein-coupled receptor heteromers as putative pharmacotherapeutic targets in autism. Front. Cell. Neurosci., 2020, 14, 588662.
[http://dx.doi.org/10.3389/fncel.2020.588662] [PMID: 33192330]
[911]
So, C.H.; Varghese, G.; Curley, K.J.; Kong, M.M.C.; Alijaniaram, M.; Ji, X.; Nguyen, T.; O’dowd, B.F.; George, S.R. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol. Pharmacol., 2005, 68(3), 568-578.
[http://dx.doi.org/10.1124/mol.105.012229] [PMID: 15923381]
[912]
Franco, R.; Ferré, S.; Agnati, L.; Torvinen, M.; Ginés, S.; Hillion, J.; Casadó, V.; Lledó, P.; Zoli, M.; Lluis, C.; Fuxe, K. Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology, 2000, 23(4)(Suppl.), S50-S59.
[http://dx.doi.org/10.1016/S0893-133X(00)00144-5] [PMID: 11008067]
[913]
Torvinen, M.; Ginés, S.; Hillion, J.; Latini, S.; Canals, M.; Ciruela, F.; Bordoni, F.; Staines, W.; Pedata, F.; Agnati, L.F.; Lluis, C.; Franco, R.; Ferré, S.; Fuxe, K. Interactions among adenosine deaminase, adenosine A(1) receptors and dopamine D(1) receptors in stably cotransfected fibroblast cells and neurons. Neuroscience, 2002, 113(3), 709-719.
[http://dx.doi.org/10.1016/S0306-4522(02)00058-1] [PMID: 12150791]
[914]
Cao, Y.; Xie, K.Q.; Zhu, X.Z. The enhancement of dopamine D1 receptor desensitization by adenosine A1 receptor activation. Eur. J. Pharmacol., 2007, 562(1-2), 34-38.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.090] [PMID: 17368618]
[915]
Soriano, A.; Ventura, R.; Molero, A.; Hoen, R.; Casadó, V.; Cortés, A.; Fanelli, F.; Albericio, F.; Lluís, C.; Franco, R.; Royo, M. Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J. Med. Chem., 2009, 52(18), 5590-5602.
[http://dx.doi.org/10.1021/jm900298c] [PMID: 19711895]
[916]
Fuxe, K.; Ferré, S.; Canals, M.; Torvinen, M.; Terasmaa, A.; Marcellino, D.; Goldberg, S.R.; Staines, W.; Jacobsen, K.X.; Lluis, C.; Woods, A.S.; Agnati, L.F.; Franco, R. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J. Mol. Neurosci., 2005, 26(2-3), 209-220.
[http://dx.doi.org/10.1385/JMN:26:2-3:209] [PMID: 16012194]
[917]
Ciruela, F.; Burgueño, F.; Casadó, V.; Canals, M.; Marcellino, D.; Goldberg, S.R. Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope−epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal. Chem., 2004, 76(18), 5354-5363.
[918]
Bara-Jimenez, W.; Sherzai, A.; Dimitrova, T.; Favit, A.; Bibbiani, F.; Gillespie, M.; Morris, M.J.; Mouradian, M.M.; Chase, T.N. Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology, 2003, 61(3), 293-296.
[http://dx.doi.org/10.1212/01.WNL.0000073136.00548.D4] [PMID: 12913186]
[919]
Rocheville, M.; Lange, D.C.; Kumar, U.; Patel, S.C.; Patel, R.C.; Patel, Y.C. Receptors for dopamine and somatostatin: Formation of hetero-oligomers with enhanced functional activity. Science (80), 2000, 288(5463), 154-157.
[920]
Damian, M.; Pons, V.; Renault, P.; M’Kadmi, C.; Delort, B.; Hartmann, L.; Kaya, A.I.; Louet, M.; Gagne, D.; Ben Haj Salah, K.; Denoyelle, S.; Ferry, G.; Boutin, J.A.; Wagner, R.; Fehrentz, J.A.; Martinez, J.; Marie, J.; Floquet, N.; Galès, C.; Mary, S.; Hamm, H.E.; Banères, J.L. GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proc. Natl. Acad. Sci. USA, 2018, 115(17), 4501-4506.
[http://dx.doi.org/10.1073/pnas.1712725115] [PMID: 29632174]
[921]
Cordisco, G.S.; Mustafá, E.R.; Rodriguez, S.S.; Perello, M.; Raingo, J. Dopamine receptor type 2 and ghrelin receptor coexpression alters CaV2.2 modulation by G protein signaling cascades. ACS Chem. Neurosci., 2020, 11(1), 3-13.
[http://dx.doi.org/10.1021/acschemneuro.9b00426] [PMID: 31808667]
[922]
Morales-Figueroa, G.E.; Rivera-Ramírez, N.; González-Pantoja, R.; Escamilla-Sánchez, J.; García-Hernández, U.; Galván, E.J.; Arias-Montaño, J.A. Adenosine A2A and histamine H3 receptors interact at the cAMP/PKA pathway to modulate depolarization-evoked [3H]-GABA release from rat striato-pallidal terminals. Purinergic Signal., 2019, 15(1), 85-93.
[http://dx.doi.org/10.1007/s11302-018-9638-z] [PMID: 30565027]
[923]
Lenard, N.R.; Daniels, D.J.; Portoghese, P.S.; Roerig, S.C. Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Eur. J. Pharmacol., 2007, 566(1-3), 75-82.
[http://dx.doi.org/10.1016/j.ejphar.2007.02.040] [PMID: 17383633]
[924]
Daniels, D.J.; Lenard, N.R.; Etienne, C.L.; Law, P-Y.; Roerig, S.C.; Portoghese, P.S. Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc. Natl. Acad. Sci. USA, 2005, 102(52), 19208-19213.
[http://dx.doi.org/10.1073/pnas.0506627102] [PMID: 16365317]
[925]
Zhang, Y.Q.; Limbird, L.E. Hetero-oligomers of α2A-adrenergic and μ-opioid receptors do not lead to transactivation of G-proteins or altered endocytosis profiles. Biochem. Soc. Trans., 2004, •••, 856-860.
[http://dx.doi.org/10.1042/BST0320856]
[926]
Jordan, B.A.; Gomes, I.; Rios, C.; Filipovska, J.; Devi, L.A. Functional interactions between μ opioid and α 2A-adrenergic receptors. Mol. Pharmacol., 2003, 64(6), 1317-1324.
[http://dx.doi.org/10.1124/mol.64.6.1317] [PMID: 14645661]
[927]
Glass, M.J.; Pickel, V.M. α(2A)-adrenergic receptors are present in μ-opioid receptor containing neurons in rat medial nucleus tractus solitarius. Synapse, 2002, 43(3), 208-218.
[http://dx.doi.org/10.1002/syn.10036] [PMID: 11793427]
[928]
Gabilondo, A.M.; Meana, J.J.; Barturen, F.; Sastre, M.; García-Sevilla, J.A. μ-Opioid receptor and α 2-adrenoceptor agonist binding sites in the postmortem brain of heroin addicts. Psychopharmacology (Berl.), 1994, 115(1-2), 135-140.
[http://dx.doi.org/10.1007/BF02244763] [PMID: 7862885]
[929]
Fongang, B.; Cunningham, K.A.; Rowicka, M. Kudlicki, A protein co-evolution strategies detect predicted functional interaction between the serotonin 5-HT2A and 5-HT2C receptors. bioRxiv, 2019, 512558.
[http://dx.doi.org/10.1101/512558]
[930]
Cunningham, K.A.; Anastasio, N.C.; Fox, R.G.; Stutz, S.J.; Bubar, M.J.; Swinford, S.E.; Watson, C.S.; Gilbertson, S.R.; Rice, K.C.; Rosenzweig-Lipson, S.; Moeller, F.G. Synergism between a serotonin 5-HT2A receptor (5-HT2AR) antagonist and 5-HT2CR agonist suggests new pharmacotherapeutics for cocaine addiction. ACS Chem. Neurosci., 2013, 4(1), 110-121.
[http://dx.doi.org/10.1021/cn300072u] [PMID: 23336050]
[931]
Martín, A.B.; Fernandez-Espejo, E.; Ferrer, B.; Gorriti, M.A.; Bilbao, A.; Navarro, M.; Rodriguez de Fonseca, F.; Moratalla, R. Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology, 2008, 33(7), 1667-1679.
[http://dx.doi.org/10.1038/sj.npp.1301558] [PMID: 17957223]
[932]
Doumazane, E.; Scholler, P.; Zwier, J.M.; Trinquet, E.; Rondard, P.; Pin, J-P. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J., 2011, 25(1), 66-77.
[http://dx.doi.org/10.1096/fj.10-163147] [PMID: 20826542]
[933]
Nieto, A.; Bailey, T.; Kaczanowska, K.; McDonald, P. GABAB receptor chemistry and pharmacology: Agonists, antagonists, and allosteric modulators. Curr. Top. Behav. Neurosci., 2021.
[http://dx.doi.org/10.1007/7854_2021_232] [PMID: 34036555]
[934]
Delille, H.K.; Becker, J.M.; Burkhardt, S.; Bleher, B.; Terstappen, G.C.; Schmidt, M.; Meyer, A.H.; Unger, L.; Marek, G.J.; Mezler, M. Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology, 2012, 62(7), 2184-2191.
[http://dx.doi.org/10.1016/j.neuropharm.2012.01.010] [PMID: 22300836]
[935]
Shah, U.H.; González-Maeso, J. Serotonin and glutamate interactions in preclinical schizophrenia models. ACS Chem. Neurosci., 2019, 10(7), 3068-3077.
[http://dx.doi.org/10.1021/acschemneuro.9b00044] [PMID: 30807107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy